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Summary 

An improved method of construction of the attainable region (AR), based on the method of bounding 
hyperplanes by Abraham and Feinberg1,2, has been developed. The current implementation of the 
method utilises a rotation of a plane about existing extreme points of the AR to further eliminate 
unachievable regions from an initial bounding set. The algorithm has shown to be faster in two 
dimensional constructions and has been extended to include construction of candidate ARs involving 
non-isothermal kinetics in concentration and concentration-time space. 

Keywords 

Attainable Regions, polytopes, convex regions, bounding hyperplanes 

Introduction

 

* Corresponding author. Tel.: +27 11 717 7557; E-mail address: diane.hildebrandt@wits.ac.za 

In 1964, F.J.M. Horn introduced the idea of the attainable 
region (AR)3. In general terms, the AR is the result of all 
possible outcomes for all possible conceivable designs 
(including those inconceivable designs which surpass 
current imagination) with respect to a specified input. The 
idea was meant to be a general one, with the notion that it 
would be suitable for a vast set of circumstances and 
disciplines 4.  
Early work by Glasser et al.5, Hildebrandt6 and 
Hildebrandt and Glasser7 laid much of the contemporary 
geometrical foundation of the attainable region as it is 
perceived today and sought to establish a definite 
interpretation of Horn’s idea. Viewed as a geometric 
figure in space generated by the combination of reaction 
and mixing processes, the AR is a process synthesis tool 
used for the determination of optimal reactor network 
structures.  
Work by Glasser et al.5, Hildebrandt6, Feinberg and 
Hildebrandt4, and Feinberg8,9 have shown that by use of 
three archetypal reactors alone - the continuously stirred 
tank reactor (CSTR), the plug-flow reactor (PFR) and the 
differential side-stream reactor (DSR), as well as allowing 
for the process of mixing among all network streams, the 
full set of all outcomes (the AR ) may be constructed.  

 
Description 
Current methods of candidate AR construction fall into 
two broad categories. Methods which attempt to generate 

the AR from inside-out 5,10,11,12, and those from outside-in 
2,13,14,  
A method of candidate AR construction has been 
developed which is based on the method of bounding 
hyperplanes by Abraham and Feinberg1,2. The method 
utilises an outside-in approach to construct the AR with a 
large number of bounding hyperplanes approximating the 
true convex polytope representing the AR itself. .  
The algorithm begins by first placing an upper bound in 
concentration space. This initial bounding space, referred 
to by Feinberg2 as the stoichiometric subspace, is the 
starting polytope which is regarded as the bounding set of 
all concentrations in n-dimensional concentration space 
achievable through chemical reaction and determined by 
the set of reaction equations specific to the process under 
consideration. With each successive iteration, unattainable 
regions, that is, regions which form part of the 
stoichiometric subspace but which are physically 
unachievable through any conceivable reaction network, 
are 'cut away' resulting in a successively smaller and 
tighter bounding set. The elimination process is achieved 
by successive introduction of bounding hyperplanes, 
which divide the current polytope into two regions. The 
hyperplanes are orientated in a way which division of the 
two regions results in one of the two halves containing 
only unachievable concentrations. This region is then 
discarded and the newly introduced hyperplane is added to 
the current set of constraints forming the bounding set. 
After repeated stages of refinement, a convex polytope is 



  
 
produced containing only those output compositions 
achievable i.e. the AR. 
The original method developed by Abraham and Feinberg 
introduces a bounding hyperplane at a corner of the 
polytope, with a fixed orientation calculated on an average 
of the hyperplane orientations which shape the corner. The 
plane is then moved into the current bounding set until 
stopping criteria are met. 
In the same manner as the original, the revised method's 
main feature incorporates the use of a number of 
hyperplanes which successively eliminate regions from an 
initial bounding set. What differs in the revised approach 
however, is in the choice of hyperplane orientation and 
positioning in space. 
The authors propose a method of hyperplane rotation, 
utilising the extreme points of the convex polytope 
generated from previous iterations as edges from which 
the hyperplane can be rotated about. New extreme points 
to the AR are found through a rotation of a plane, where 
existing extreme points are combined with new ones to 
build the polytope face by face. By choice of a rotation 
about an edge, the area swept out during elimination 
iterations is shown to reject larger portions of the 
unattainable set. What results is a modified method which 
demonstrates improved calculation times for a specified 
set of reaction kinetics and feed specifications when 
compared to the original method of bounding hyperplanes 
of Abraham and Feinberg. 
The method is currently under early stages of development 
and as a result, capable of candidate AR construction in 
two dimensions only. In spite of these limitations 
however, the method has been successfully adapted to 
handle construction of candidate regions for non-
isothermal kinetics. Elimination via a rotation implies no 
dependence or knowledge of an existing corner to the 
current polytope, and hence reliance on a closed polytope 
is not a requirement. As a consequence of this, 
construction of unbounded ARs, such as those which are 
formed in concentration-residence time space are also 
possible with the revised method.  
Candidate ARs for isothermal rate kinetics including the 
classical van de Vusse and Trambouze examples, as well 
as more complicated cases involving multiple steady states 
have been considered and have been successfully 
validated with the regions generated by the standard 
approaches of Hidebrandt6, Seodigeng et al.12, Goddor et 
al.15, Kauchali et al.10, Manousiouthakis and Justanieah13, 
Zhou and Manousiouthakis14, and Abraham and 
Feinberg1,2. Temperature dependent van de Vusse kinetics 
have been considered with this new method and the 
associated candidate ARs and the optimal operating 
temperature profile have been constructed, and shown to 
agree with the operating profiles of Godorr et al.15. 
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