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Abstract The model for microbially induced calcite precipitation (MICP) published by Ebigbo et al. (2012)

has been improved based on new insights obtained from experiments and model calibration. The challenge

in constructing a predictive model for permeability reduction in the underground with MICP is the quantifica-

tion of the complex interaction between flow, transport, biofilm growth, and reaction kinetics. New data from

Lauchnor et al. (2015) on whole-cell ureolysis kinetics from batch experiments were incorporated into the

model, which has allowed for a more precise quantification of the relevant parameters as well as a simplifica-

tion of the reaction kinetics in the equations of the model. Further, the model has been calibrated objectively

by inverse modeling using quasi-1D column experiments and a radial flow experiment. From the postprocess-

ing of the inverse modeling, a comprehensive sensitivity analysis has been performed with focus on the

model input parameters that were fitted in the course of the model calibration. It reveals that calcite precipita-

tion and concentrations of NH1

4 and Ca21 are particularly sensitive to parameters associated with the ureolysis

rate and the attachment behavior of biomass. Based on the determined sensitivities and the ranges of values

for the estimated parameters in the inversion, it is possible to identify focal areas where further research can

have a high impact toward improving the understanding and engineering of MICP.

1. Introduction

Microbially induced calcite precipitation (MICP) occurs when microbial metabolism alters the surrounding

aqueous phase in a way that leads to precipitation of calcite. In this study, we focus on biofilm-based MICP

via ureolysis by the bacterium Sporosarcina pasteurii.

MICP offers an engineering option that uses the controlled biofilm growth to achieve targeted calcite pre-

cipitation. In subsurface applications, this process is typically associated with a reduction of porosity and,

even more importantly, of permeability. As an engineering technology, it can be used to alter hydraulic flow

conditions and can be applied, for example, to cut off highly permeable pathways such as fractures, faults,

or behind-casing defects in boreholes within a geological formation [Phillips et al., 2013a; Mitchell et al.,

2013; Phillips et al., 2013b].

S. pasteurii expresses the enzyme urease that catalyzes the hydrolysis reaction of urea (ðNH2Þ2CO) into

ammonia (NH3) and carbon dioxide (CO2). Aqueous solutions of ammonia become alkaline. Thus, the ureol-

ysis reaction leads to an increase in pH. This shifts the carbonate balance in an aqueous solution toward

higher concentrations of dissolved carbonate (CO22
3 ). Adding calcium (Ca21) to the system then results in

the precipitation of calcium carbonate (CaCO3). The overall MICP reaction is:

ðNH2Þ2CO12H2O1Ca21 ! 2NH1

4 1CaCO3 # (1)

In a porous medium, this process, which results in the aforementioned impacts on the hydraulic properties,

depends on the interplay between biofilm growth, fluid dynamics, and reaction rates. Accordingly, a biofilm

may develop which is characterized by an interaction of attachment, nutrient-dependent growth, decay,

and detachment with the hydraulic conditions in the pore space. The density of a biofilm, i.e., the number

of cells within a certain volume, is dependent on several factors such as shear stress or nutrient supply [Paul

et al., 2012]; data for these factors are not yet available for a reliable quantitative description.

Key Points:

� Revision of the model based on

recent experiments

� Model recalibration using calcite and

in situ concentration measurements

� Identification of areas for further

research

Supporting Information:

� Supporting Information S1

Correspondence to:

J. Hommel,

johannes.hommel@iws.uni-stuttgart.de

Citation:

Hommel, J., E. Lauchnor, A. Phillips,

R. Gerlach, A. B. Cunningham,

R. Helmig, A. Ebigbo, and H. Class

(2015), A revised model for microbially

induced calcite precipitation:

Improvements and new insights based

on recent experiments, Water Resour.

Res., 51, doi:10.1002/2014WR016503.

Received 2 OCT 2014

Accepted 29 APR 2015

Accepted article online 5 MAY 2015

VC 2015. American Geophysical Union.

All Rights Reserved.

HOMMEL ET AL. A MODEL FOR MICP: IMPROVEMENTS AND NEW INSIGHTS 1

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2014WR016503
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


A major difficulty for practical engineering applications of MICP is the predictive planning of its use and

impact, since it involves a number of complex interacting processes. While the basic chemistry and the flow

processes are known, it is the exact quantitative description of the interactions and, in particular, the influ-

ence of the biofilm and the developing precipitates that pose challenges to achieving predictability.

Models for simulating MICP processes have been developed by a number of authors [Martinez et al., 2014;

Barkouki et al., 2011; Cuthbert et al., 2013; van Wijngaarden et al., 2011, 2013; Ebigbo et al., 2012], each of the

models focusing on different processes. Often, the models developed are designed to match a series of

experiments. Consequently, they focus on the processes of relevance in the corresponding experiments

while neglecting other processes that might be relevant in the field.

The models presented by Martinez et al. [2014] and Barkouki et al. [2011] use a complex ureolysis rate equa-

tion [Fidaleo and Lavecchia, 2003] and a saturation-state dependent precipitation rate, while neglecting

changes in permeability and the processes related to bacterial transport, growth, and decay. As a result, the

ureolytic activity is assumed to be constant over time for each point in space and the distribution of urease

in space is described by a Gamma distribution [Martinez et al., 2014] or an exponential function [Barkouki

et al., 2011].

In Cuthbert et al. [2013], a first-order kinetic model is assumed for ureolysis, and bacterial transport and

attachment are modeled. The precipitation rate is assumed to be stoichiometric to the ureolysis rate. The

impact of MICP on the fracture transmissivity is measured in the experiment and included in the model

depended on a reduction of the fracture aperture related to the volume of precipitated calcite.

Michaelis-Menten kinetics are used to model the ureolysis rate in van Wijngaarden et al. [2011, 2013] and,

like Cuthbert et al. [2013], these authors assume that the precipitation rate is proportional to the ureolysis

rate. The permeability is decreased based on the porosity reduction caused by the precipitated calcite. A

Kozeny-Carman relationship is used to calculate the permeability. Bacteria are assumed to be homogene-

ously distributed in van Wijngaarden et al. [2011], while van Wijngaarden et al. [2013] account for attach-

ment and detachment due to adsorption and desorption respectively. For special cases, van Wijngaarden

et al. [2011, 2013] propose analytical solutions.

Ebigbo et al. [2012] developed a complex two-phase model including component transport, kinetic reac-

tions, and reduction of porosity and permeability due to calcite precipitation and biofilm presence. This

model uses a complex, biofilm-dependent ureolysis rate equation adapted from Fidaleo and Lavecchia

[2003] and a calcite precipitation rate equation dependent on interfacial area and saturation state [Zhong

and Mucci, 1989] as well as on dissolution kinetics [Compton et al., 1989; Chou et al., 1989]. Additionally, the

model accounts for microbial processes such as attachment, substrate-dependent growth, decay, and

detachment due to shear stress as well as for reduced porosity and permeability using a Kozeny-Carman

relationship.

The model used in this study is an extension of the model presented in Ebigbo et al. [2012] after revisions

such as the replacement of some of the fitted parameter values with updated literature values and an

updated ureolysis rate equation [Lauchnor et al., 2015]. All rate equations, except the updated one for ureol-

ysis, as well as the constitutive relationships used in Ebigbo et al. [2012] are assumed to be still valid.

The aims of this study are to investigate the predictive performance of the model developed in Ebigbo et al.

[2012] for new column experiments and a 2-D radial flow experiment, to examine the effect of the imple-

mentation of a rate equation for ureolysis based on recent research on the ureolysis of S. pasteurii [Lauchnor

et al., 2015], and to assess the range of fitting-parameter values obtained by inverse modeling. This should

lead to the identification of areas to focus further research on, prioritizing future experimental investigations

as well as defining strategies for the model development with the long-term perspective of a predictive

field-scale MICP model. Figure 1 shows the sequential steps and objectives of this study.

2. Processes and Recent Experiments

2.1. Overview and Experiments

The original model was calibrated for columns using a certain set of conditions [Ebigbo et al., 2012]. How-

ever, after changes in the solution chemistry that were subsequently implemented in the experiments,
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modeling results no longer accurately predicted the measurements. For a substantial revision of the com-

plex model of Ebigbo et al. [2012], the processes needed to be reconsidered in detail. Our considerations

and hypotheses are based on a series of new experimental data from column experiments similar to those

described in Ebigbo et al. [2012].

Data from three column experiments are used in the inverse modeling and determination of the fitting

parameters. One column from the previous study, Column 4 (C4), is used to ensure reproducibility. Two

more column studies were performed with modifications to the previous study. As these columns were

operated as duplicates, they are denoted column D1 and column D2.

All columns were constructed from clear PVC pipe of 2.54 cm diameter and 61 cm length, filled with 40

mesh quartz sand (0.5 mm effective filtration size, manufacturer information, Unimin Corp., Emmet, ID),

packed under water and vertically positioned. They were inoculated with S. pasteurii and subjected to a

16 h attachment period, after which a 24 h growth period was initiated by continuous addition of growth

medium in an upflow configuration at 10 ml
min

. Following the growth period, calcium additions commenced,

consisting of injecting two pore volumes of calcium-containing medium, followed by a no-flow period to

allow reaction and precipitation to occur. This mineralization period was followed by injection of growth

medium to resuscitate the microorganisms and the procedure was repeated until calcium had been

injected 22 times for column C4 and 30 times for columns D1 and D2.

Differences between the operating parameters for the columns C4, D1 and D2 are presented in support-

ing information Table S1, while the composition of injected fluids is given in supporting information Table

S2. The first modification to the columns D1 and D2 was a reduction in the Ca21 concentration to 0.33 M,

which is equal to the molar concentration of urea in the mineralization medium. Second, the no-flow

Figure 1. Overview of steps taken in this study.
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period for biomineralization was reduced from 24 to 4 h as successfully implemented by [Phillips et al.,

2013a] to increase Ca21-precipitation efficiency and decrease the time necessary to achieve the desired

permeability reduction. Finally, the column studies used in the improved model calibration were con-

structed with five sampling ports at locations 10, 20, 30, 40 and 50 cm downstream of the inlet. Ports

were made by drilling 1.252 cm holes in the PVC and securing rubber stoppers in the holes, allowing for

sampling of pore fluid via a 23 gauge needle and 5 mL syringe. The sampling took place along the direc-

tion of flow and over time during the experiments, providing additional measurements for model

calibration.

While columns D1 and D2 were operated, pore fluid was sampled from the ports at 1 h intervals during

selected no-flow mineralization periods. The effluent pH, NH1

4 and Ca21 at the end of each mineralization

and growth period were monitored, in addition to the NH1

4 and Ca21 measured in sampling ports over

time during mineralization periods. Viable bacterial counts were performed on effluent samples, ensuring

that S. pasteurii remained the active organism during the experiments. Finally, the columns were cut into

eight sections to measure the precipitated calcite.

Additionally, a 2-D radial flow experiment was conducted in a radial flow reactor constructed from two plex-

iglass plates and a bicycle rim (BR), which enabled us to investigate the influence of a radial flow field on

MICP. The radial flow experiment is valuable to investigate differences between different fluid-dynamic

cases and make the model more broadly applicable to various environments, especially for field-relevant

radial flow conditions.

The radial flow reactor was constructed from two 31 cm diameter, 1
00

4
Plexiglas plates that sandwiched a

pack of the 40 mesh quartz sand, which was sealed on the outer diameter by squeezing the Plexiglas onto

a metal ring (bicycle rim) with clamps. In between the Plexiglas and metal was a bead of Teflon putty which

sealed the edge to prevent leaks when clamped tightly. Sixteen 1
00

4
NPT threads were inserted around the

circumference of the top Plexiglas plate (outlet) as well as one thread in the center (inlet); these were all

attached by barbed fittings to silicone tubing. The central inlet was connected via tubing to a peristaltic

pump; the outlet tubes emptied into an elevated effluent collection tub.

The radial flow reactor was inoculated with 3 l of an overnight culture of S. pasteurii which was allowed to

attach for 16.5 h and then subjected to a 12 h growth stage. After the growth period, calcium-containing

medium was injected under constant flow conditions for 12 h followed by an overnight precipitation

period. At the termination of the experiment, the Plexiglas plates were removed and the sand was sampled

at 2.5, 4, 6.5 and 9 inches from the center in eight radial directions. Relevant experimental design parame-

ters are summarized in supporting information Table S1, while supporting information Table S2 gives the

composition of the injected fluids.

Microbially, whole-cell-catalyzed ureolysis is the driving force of MICP, increasing pH to the pKa of NH3-NH
1

4

by the production of NH3. At this pH, a substantial amount of carbonate is present in the solution (the pKa

of HCO2

3 -CO
22
3 is approximately one order of magnitude higher), which in turn, in the presence of calcium

ions, can lead to a supersaturation of calcium carbonate in the solution, thereby promoting the precipita-

tion of calcium carbonate. The dissociation coefficients of H2CO3 and NH3 are calculated using relations

given by Millero et al. [2007] and Bell et al. [2008] respectively.

Another key parameter is the distribution of biomass within the porous medium, since the presence of ure-

olytic microbes is a prerequisite for MICP. As the distribution of biomass is not exactly known for the MICP

experiments, it is not possible to validate the equations governing the distribution of biomass directly by

comparing with biofilm measurements. However, the ureolytic activity of the bacteria, which is monitored

by measurement of the product NH1

4 in recent column experiments, allows for an indirect evaluation of the

model’s ability to predict the biomass distribution.

2.2. Model Concept

The conceptual model for MICP follows the one presented by Ebigbo et al. [2012]. It accounts for two-

phase multicomponent reactive transport on the continuum scale, including biofilm and calcite as solid

phases. The considered reactions are pH-dependent dissociation reactions, microbial growth and decay

as well as microbially catalyzed ureolysis and mass-transfer reactions between the different phases. Mass
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transfer may occur between both fluid phases by mutual dissolution of water and CO2 in the gas or the

aqueous phase. It may also occur between the aqueous phase and the two ‘solid’ phases, biofilm and cal-

cite denoted by subscripts (f) and (c) respectively, by attachment or detachment of biomass and precipi-

tation or dissolution of calcite. The mobile components, denoted by superscripts j, are water (w),

dissolved inorganic carbon (Ctot), sodium (Na), chloride (Cl), calcium (Ca), urea (u), ammonium and ammo-

nia (Ntot), substrate (s), oxygen (O2), and suspended biomass (b). Substrate is the carbon and energy

source of the bacteria and O2 the electron acceptor. The consumption of both is linked to biomass growth

by the yield coefficient Y; see Table 1. A pore-scale representation of the relevant processes and phases is

shown in Figure 2.

The primary variables solved are the aqueous-phase pressure pw, mole fractions xjw of component j in the

water phase, and, for the solid phases biofilm and calcite, volume fractions /k . All calcium carbonate is

assumed to precipitate as calcite, since experimental investigations of Phillips et al. [2015]; Mitchell et al.

[2013]; Lauchnor et al. [2013]; Cuthbert et al. [2012] confirmed by XRD measurements that calcite is the pre-

dominant polymorph of calcium carbonate precipitates forming under MICP conditions. In Phillips et al.

[2013a], calcite and possibly vaterite were observed.

However, the CO2-phase saturation is used as primary variable instead of the mole fraction of total inor-

ganic carbon in water xCtotw whenever both fluid phases are present within the same control volume. All reac-

tive and mass-transfer processes are incorporated in the component mass balance equations (2) and (3) by

component-specific source and sink terms:

X

a

@

@t
/qax

j
aSa

� �

1r � qax
j
ava

� �

2r � qaDpm;arxja
� �

� �

5qj (2)

Table 1. Component-Specific Reactive Source and Sink Terms as Implemented in the Conceptual Modela

Component Source Term Rates

Water qw 0

Total carbon qCtot rdiss2rprec1rurea
Sodium qNa 0

Chloride qCl 0

Calcium qCa rdiss2rprec
Urea qu 2rurea
Total nitrogen qNtot 2rurea

Substrate qs 2
rbg1rfg
MsY

b

Oxygen qO2 2F
rbg1rfg
MO2 Y

b

Suspended biomass qb
rbg2rb

dc
2ra1rd

Mb

Biofilm qf
rfg2rf

dc
1ra2rd

Mf

Calcite qc rprec2rdiss

Precipitation rate of calcite rprec kprecAsw X21ð Þnprec ; X � 1b

Dissolution rate of calcite rdiss kdiss;1mH11kdiss;2
� �

Acw X21ð Þndiss ; X < 1b

Interfacial area solid and water Asw Asw;0 12
/c

/0

� �2
3b

Interfacial area calcite and water Acw min Asw; ac/cð Þb

Saturation state of calcite X

mCa21 cCa21m
CO2-

3
c
CO2-

3

Ksp

b

Growth rate of biofilm rfg l/fqf
Growth rate of suspended biomass rbg lCb

wSw/

Specific growth rate l klY
Cs
w

Ks1Cs
w

C
O2
w

KO21C
O2
w

Decay rate of biofilm rfb b01
rprecM

CaCO3

qc /1/fð Þ

� �

/fqf

Decay rate of suspended biomass rbb b0 11
KpH
m2

H1

� 	

Cb
wSw/

aThe ureolysis rate rurea is discussed in detail in section 2.3 and shown in equation (4). Attachment and detachment rates ra and rd
are discussed in section 2.4 and shown in equations (5) and (7) respectively. The other rate equations are summarized in the lower sec-

tion of the table. Further details of those rates are discussed in Ebigbo et al. [2012].
bMj is the molar mass of j, Y is the growth yield coefficient, F is the ratio of oxygen to substrate used for growth, kprec and nprec are

empirical precipitation parameters [Zhong and Mucci, 1989], kdiss;1; kdiss;2 , and ndiss are dissolution parameters [Chou et al., 1989; Comp-

ton et al., 1989], Asw;0 is the initial interfacial area of solid and water phase, Ksp the calcite solubility product and cj the activity coeffi-

cients of j calculated using Pitzer equations [Millero et al., 1984; Wolf et al., 1989; Clegg and Whitfield, 1995] ac the specific surface area

of calcite, kl the maximum specific growth rate [Connolly et al., 2013], b0 the endogenous decay rate [Taylor and Jaff�e, 1990], and KpH is

an empirical constant [Kim et al., 2000].
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here t is time, / porosity, qa; Sa,

and va the density, saturation and

the velocity of phase a respectively,

xja the mole fraction of component

j in phase a. Dpm;a is the dispersion

tensor of phase a in the porous

medium, and qj is the source term

of component j due to biochemi-

cal reactions. The mass balances for

the solid phases calcite and biofilm

contain only a storage and source

term since they are immobile:

@

@t
/kqkð Þ5qk (3)

here /k and qk are volume fraction

and density of the solid phase k,

and qk is the source term of phase

k due to biochemical reactions.

The sources and sinks due to reac-

tions qj and qk are specific to the

components and given in Table 1.

The reaction rates mol
m3s

� �

used to calculate the source terms are as follows:

1. rurea is the rate of ureolysis (equation (4)),

2. rdiss and rprec are the rates of calcite dissolution and precipitation,

3. rbg and rfg are the growth rates of suspended biomass and biofilm,

4. rbdc and rfdc are the decay rates of suspended biomass and biofilm,

5. and ra (equation (5)) and rd (equation (7)) are the attachment and detachment rates of biomass.

For more details on the reaction rates, we refer to Ebigbo et al. [2012] or the reaction-rate-equation sum-

mary in Table 1. However, since the rate of microbially catalyzed ureolysis and the rates of attachment and

detachment are important in the context of this study, they will be discussed in sections 2.3 and 2.4.

2.3. Revised Ureolysis Kinetics

Most studies on ureolysis kinetics either focus on the kinetics of extracted enzyme [Cuthbert et al., 2012;

Stocks-Fischer et al., 1999; Tobler et al., 2011] or, when whole-cell systems are investigated, simplify kinetics

to zero or first-order reaction rates depending only on urea concentrations [Cuthbert et al., 2012; Ferris et al.,

2004; Okwadha and Li, 2010; Tobler et al., 2011]. Few models for whole-cell systems use complex kinetics;

e.g., Ebigbo et al. [2012] use a Michaelis-Menten-type ureolysis kinetic adapted from Fidaleo and Lavecchia

[2003].

Urease extracted from S. pasteurii has been shown to have higher half-saturation coefficients than plant ure-

ase and an optimum rate at a pH of 8 [Stocks-Fischer et al., 1999], whereas the optimal pH determined for

the jack bean urease in Fidaleo and Lavecchia [2003] is at a pH of 7. In whole-cell systems, additional mass-

transfer (transport) processes of reactants and products across the cell wall and regulatory processes within

the cells are likely to influence the observed reaction rates in the bulk medium. This has been circumvented

in continuum scale approaches through lumped apparent kinetic parameters.

The kinetic rates of biofilm cells might be different from the kinetics of suspended cells, as described in Car-

rera et al. [2004]. Even in the case of pure immobilized enzyme, there may be a decrease in the apparent

reaction rates attributed to immobilization [Bachmeier et al., 2002]. Other studies observed no significant dif-

ference between the kinetics of suspended and biofilm cells [Shreve and Vogel, 1993; Mirpuri et al., 1997].

However, in thick biofilms, the diffusive transport of urea and NH1

4 within the biofilm might significantly

reduce the apparent ureolysis rate. In the light of the available information on this topic, we consider the

Figure 2. Schematic view of relevant processes and phases considered in the concep-

tual model.
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assumption of no significant difference between biofilm and suspended cell kinetics to be the most appro-

priate at this point, especially since no satisfactory parameterizations of the processes possibly leading to

differences in the reaction kinetics are available on the Darcy scale.

In batch experiments, Lauchnor et al. [2015] investigated the influences of urea, NH1

4 , cell concentration,

and pH of the medium on the ureolysis of whole cells of S. pasteurii. These new observations and measure-

ments can be accounted for in the MICP model by adjusting the Michaelis-Menten kinetics and parameters:

rurea5kurease kub qf /f

mu

mu1Ku
(4)

rurea represents the revised rate of ureolysis according to Lauchnor et al. [2015], kurease the revised maximum

activity of urease adapted from Lauchnor et al. [2015], qf and /f the density and volume fraction or biofilm

respectively, kub the mass ratio of urease to biofilm as given in Bachmeier et al. [2002], mu the molality of

urea calculated from the water phase composition, and Ku is the half saturation constant for urea adapted

from Lauchnor et al. [2015].

To convert the new half-saturation constant given by Lauchnor et al. [2015] K5355 mmol
l

to molalities
mol
kgH2O

, we assume that the concentrations used in the experiments did not affect the density. Thus, the

half-saturation constant Ku in the model is set to 0:355 mol
kgH2O

.

The value of the apparent urease activity kurease in a whole-cell system is calculated by dividing the maxi-

mum reaction rate Vmax by the urease content of a bacterial cell kub . According to Bachmeier et al. [2002],

the urease content in S. pasteurii is at most 1% of the dry cell mass. As the cells in Lauchnor et al. [2015] are

in late exponential phase with urea-replete conditions, it is assumed that they produce the maximum

amount of urease possible. Thus, for further analysis, it is assumed that kub is equal to 0.01. To convert the

units of Vmax given in Lauchnor et al. [2015] from mmol
CFU�h (CFU standing for colony-forming units) to SI units for

compatibility with the conceptual model, the same cell weight of 2:5 10216 kg
CFU

is used as in Ebigbo et al.

[2012], originally given in Norland et al. [1987]. The resulting updated value for kurease is 706:7
mol

kgbiomass �s
, calcu-

lated from the value of the maximum reaction rate Vmax56:4 1029 mmol
CFU�h given in Lauchnor et al. [2015].

As the observed ureolysis rates in Lauchnor et al. [2015] are directly proportional to the cell concentration, the

exponent previously fitted in equation (11) [Ebigbo et al., 2012] is set to nub51 to achieve this linear dependence.

2.4. Biofilm-Hydraulics Interactions

Accumulation of biofilm in a porous medium reduces the pore space available for flow, thereby reducing

the permeability. For constant flow, it increases the effective flow velocity in the pores and thus the pres-

sure gradient required to maintain constant flow. This process continues until the pores are either com-

pletely filled with biofilm, blocking the flow, or a point is reached at which the increased detachment due

to shear forces is in equilibrium with the accumulation of biomass by growth or attachment. Such an equi-

librium will probably lead to local preferential flow paths where shear stress detaches the biofilm and neigh-

boring regions are blocked by the biofilm. This can result in a subcontinuum-scale structure where different

processes are dominant in each region on separate time scales. A dual-continuum approach as used in

Ebigbo et al. [2010] is able to represent such subcontinuum-scale features on the Darcy scale. However, for

the sake of computational efficiency and simplicity, as well as because of the lack of data available regard-

ing biofilm transport processes, we refrain from using a dual-continuum approach in this study.

Microbial attachment is often modeled either as an adsorption equilibrium or according to colloid filtration

theory. In the literature, there is a multitude of different approaches for describing attachment and detach-

ment, depending on chemical conditions in the fluid or physical properties of the cells and the porous

medium. For example, Torkzaban et al. [2008] observe that attachment of Escherichia coli increases with the

ionic strength of the fluid. In microbially enhanced oil recovery simulations by Nielsen et al. [2014], microbial

attachment is calculated either as adsorption following a Langmuir isotherm or according to the colloid fil-

tration theory if the ratio of the cell size to the pore diameter is sufficiently large. However, in this study, it is

assumed that the first-order-rate equation (see equations (5) and (6)) describing the transfer of biomass

from the water phase (suspended biomass) to the biofilm phase by microbial attachment as given in Ebigbo

et al. [2012] is still valid and only the values of the attachment coefficients have to be calibrated:
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ra5kaC
b
w/Sw (5)

ka5ca;1/f1ca;2 (6)

ra stands for the rate of attachment, Cb
w for the mass concentration of suspended biomass in the water

phase kg
m3

� �

, Sw the saturation of the water phase, ca;1 the attachment coefficient of suspended biomass to

existing biofilm, and ca;2 the general attachment coefficient of suspended biomass to any solid surface.

Detachment of biomass from biofilm is assumed to be proportional to the shear stress, approximated on

the Darcy scale by using the absolute value of the water-phase potential gradient. Additionally, the growth

rate contributes to the detachment rate, as vigorously growing biofilm is typically weaker and as such more

susceptible to detachment. The detachment rate in this study is calculated as in Ebigbo et al. [2012]:

rd5kd/fqf (7)

rd is the rate of detachment and kd the detachment coefficient:

kd5cd;1 /Swð jrpw2qwgjÞ
0:58

1
/f

/02/c

l (8)

cd;1 is a coefficient for the shear-stress-dependent detachment, jrpw2qwgj the absolute value of the water-

phase potential gradient, /0 the initial porosity, /c the volume fraction of calcite, and l the specific growth rate

of biomass, calculated based on double Monod kinetics dependent on both substrate and oxygen, see Table 1.

Since the detachment rate rd is dependent on the potential gradient, it increases as the intrinsic permeabil-

ity K is reduced during MICP by bio-clogging and precipitated calcite. It decreases in the following manner:

K

K0
5

/2/crit

/02/crit

� 	3

(9)

Here K0 is the initial permeability, /crit the critical porosity at which the permeability is zero as estimated by

Ebigbo et al. [2012], and /0 is the initial porosity. The porosity / decreases as the volume fractions of biofilm

and calcite increase:

/5/02/c2/f (10)

The total amount of biofilm in the system /fqf is determined by biofilm volume fraction and density. /f is lim-

ited by the volume fraction available for biofilm /02/cð Þ The smaller qf ,the smaller the maximum amount of

attached biomass that can accumulate in the system. Additionally, /f of a given amount of biofilm is higher

for low qf , thereby increasing its influence on porosity and permeability. Reduced permeability leads to

increased detachment, as jrpw2qwgj increases. For complex 2-D or 3-D systems, low qf might not necessarily

increase detachment, as it inevitably would for 1-D systems, but lead to increased clogging and the formation

of flow channels, increasing heterogeneity and dispersivity. Thus, the biofilm density is a key parameter of the

model which greatly influences the amount of interaction between biofilm and flow processes.

The biofilm densities provided in the available literature vary over two orders of magnitude. Melo [2005]

gives dry matter biofilm densities from 2.5 to 91 kg
m3, Zhang and Bishop [1994] provide densities from 29 to

38 kg
m3, while Paul et al. [2012] measure dry densities ranging from 5 to 39 kg

m3. In Taylor and Jaff�e [1990], the

lowest value given is 2.5 kg
m3 , while the value used in the previous model is 10 kg

m3 [Ebigbo et al., 2012]. As

described in Paul et al. [2012], biofilm density is variable in space and time, changing with shear stress and

growth conditions. However, to our knowledge, no parameterization is currently available that can duly

account for these processes in the context of such a model. Thus, in the model, the biofilm density is a con-

stant value representing both the dry cell density as well as the total dry biofilm density, neglecting the

contribution of extracellular polymers.

2.5. Fitting Procedure

The number of fitting parameters is reduced compared with Ebigbo et al. [2012] by replacing some fitted

values with literature values as discussed in section 4.1.

The fitting parameters of the conceptual model are the biofilm density qf , the attachment coefficient of bac-

teria to existing biofilm ca;1, and the attachment coefficient of bacteria to arbitrary solid surfaces ca;2. It is
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assumed that the first-order-rate equation (equation (5)) describing microbial attachment as given in Ebigbo

et al. [2012] is still valid and only the values of the attachment coefficients have to be calibrated.

For some of the inverse model runs (section 3), kub, the parameter that has been identified in Ebigbo et al.

[2012] as being most sensitive, is included in the set of calibration parameters to improve fitting. This can

be additionally interpreted as a test of the hypothesis that the ureolysis rates of suspended and biofilm cells

are equal, since the value of kurease was calculated using this assumption (see section 2.3).

3. Model Calibration

Inverse modeling is used to recalibrate the numerical model implemented in the open-source simulator

DuMux [Flemisch et al., 2011] using the experimental results of a variety of experimental setups. The grid

used for the DuMux model is chosen in such a way that the grid nodes match the experimental sampling

locations. Additionally, a grid-convergence study confirmed that the resolution of the grid used is suffi-

ciently fine to avoid grid-induced artifacts as shown in supporting information Figure S1.

We perform inverse modeling rather than trial-and-error-based methods as used in Ebigbo et al. [2012] for

the recalibration. Inverse modeling provides some analysis of parameter sensitivity and correlations

between the different fitting parameters. To this end, iTOUGH2 and its PEST Protocol [Finsterle, 2007, 2011]

were used as inverse model and coupled to the DuMux forward model using parameter input files. For

details of the inverse modeling procedure, we refer interested readers to Finsterle [2007, 2011].

Various experimental results are used for the calibration of the model, including three column experiments,

Column 4 (C4) [Ebigbo et al., 2012], two duplicate columns (D1, D2) and a 2-D radial flow experiment within

a bicycle rim (BR). The latter is used to investigate possible influences of the flow field on the fitted parame-

ter values, which would indicate inconsistencies in the conceptual model. For experiments C4 and BR, only

the calcite volume-fraction distribution data at the end of the experiment were available for calibration; see

supporting information Table S3. For experiments D1 and D2, additional in situ measurements of pore-fluid

Ca21 and NH1

4 concentrations during the experiments at 10 cm intervals (i.e., 10, 20, 30, 40, and 50 cm from

the injection point) are available and used as observation data for the inversions. These concentration

measurements were conducted for each of the two experiments at six different points in time (i.e., 0, 0.5, 1,

2, 3 and 4 h after the end of selected Ca21-rich injections), each measurement being repeated six (for D1)

or seven (for D2) times; see supporting information Tables S4–S7.

Finally, to be able to obtain parameter values averaged over all experimental setups, inverse modeling is

performed using data of multiple experiments (C4, D2, BR), henceforth denoted (M). Since D2 is the experi-

mental data set proving the most observations, the detailed discussions and plots (Figures 7–9 in section 4)

focus on selected parameter sets obtained using this data set. These parameter sets are given in Table 2

while the respective parameter sensitivities as well as the correlations the ‘‘best fit’’ parameter set are shown

in Table 3.

The initial guesses of the fitting parameters are based on parameter values given previously [Ebigbo et al.,

2012] and for later inverse model runs based on estimates from previous inverse model runs. The other impor-

tant parameters for inverse modeling, the standard deviations of the groups of observations, were estimated

using experimentally determined standard deviations of the individual measurements. For the data sets D1

and D2 with in situ measurements of Ca21- and NH1

4 , the contribution of CaCO3 to the objective function was

weighted with a factor of 10 compared with those of the concentrations to compensate for the difference in

the number of measurements (8 for CaCO3, over 100 for Ca21 and NH1

4 ). This was done to achieve approxi-

mately equal initial sensitivity for each data set (CaCO3; Ca
21 , and NH1

4 measurements). Approximately equal

sensitivity is considered necessary to ensure that every data set contributes to the parameter estimation, espe-

cially the application-relevant calcite data set which would otherwise be outnumbered. For inverse model

runs where Ca21 and NH1

4 concentrations were considered a single data set, equal, averaged standard devia-

tions were assumed as required by iTOUGH2, while for inverse model runs where each pulse was considered

a separate data set, individual standard deviations for each pulse were used. The standard deviations were

estimated based on a 5% reproducibility for the ion chromatography measurements.

The values obtained from the model calibration by inverse modeling for the biofilm density qf range from

0.01 to 35 kg
m3 (Figure 3), depending on the data set used for inverse modeling as well as the inverse
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modeling setup (i.e., the initial guess

or the use of Ca21 and NH1

4 as one

single observations set or the use of

pulse-wise sets of observation). If the

very low values obtained in the

inverse model runs, which exclude

kub from the set of fitting parameters,

were neglected, the values for each

experimental data set were within

one order of magnitude. Calibration using the bicycle-rim data yielded exclusively higher qf ranging from

6.4 to 35 kg
m3 compared with the calibrations to any of the column experiments, where the highest value

was 14.7 kg
m3. The values of qf obtained by using the multiexperiment data set M are 4.3 and 8.3 kg

m3; note

that M consists of all data from C4, D2 and BR, the calcite data of each experiment and the Ca21 and NH1

4

data of D2 receive initially approximately equal weight. qf54:3 kg
m3 was obtained when the Ca21 and NH1

4

data of D2 were input as pulse-wise sets of observations, while qf58:3 kg
m3 was obtained for the inverse model run

on the data set M when considering the Ca21 and NH1

4 data of D2 a single observation set each. These values

compare well with the lower values fitted against BR data and the intermediate range of the values fitted to the

column experiments. They also match the parameter set ‘‘best fit,’’ where the biofilm density obtained is 6.9 kg
m3.

Low biofilm densities are observed for calibration against any experiment when kub is excluded from the set of

fitting parameters and set to the constant literature value of 0.01 [Bachmeier et al., 2002].

Figure 4 shows the coefficient ca;1 which varies between 10212:81 and 1021:81 1
s
. However, most values for ca;1

are in the much narrower range of 1027:08 to 1024:56.

The values of ca;1 obtained by calibration against the combined data set of M, 1025:78 (Ca21 and NH1

4

single observation sets each) and 1024:56 1
s
(Ca21 and NH1

4 pulse-wise observation sets), are intermedi-

ate, while the ‘‘best fit’’ to D2, ca;151027:08 1
s
, is very low. Some calibrations using the column D2 data

yield even lower values for ca;1 (10212:81 and 10211:92). For the bicycle-rim experiment, remarkably low

values of ca;1510210 1
s
occur in sets of parameters in which the biofilm density is high (24 and 35 kg

m3).

Figure 5 indicates that the parameter ca;2 varies between 10214:59 and 1025:43 1
s
. Note that the extremely

low values of 10214:59 and 10214:27 1
s
obtained by fitting to column experiment D2 data are outliers. Most

values are higher and range from 1028:00 to 1025:43 1
s
. For almost all data sets, 1026 1

s
is a representative

value for the order of magnitude. In fact, for the bicycle-rim data set, the ca;2 values are within one order of

magnitude, between 1026:39 and 1025:43 1
s
.

In most sets of parameters, ca;2 is between 1 and 2.5 orders of magnitude lower than ca;1. Contrary to this

general trend, ca;1 is several orders of magnitude lower than the corresponding ca;2 in some of the fits using

the bicycle-rim experiment data. This is also the case for the parameter set ‘‘best fit,’’ where ca;151027:08 1
s
is

one order of magnitude lower than ca;251026:07 1
s
.

Table 2. Selected Parameter Sets Obtained by Inverse Modeling of Column

Experiment D2 Data, Used for the Plots in Figures 7–9

Name ca;1 (
1
s
) ca;2 (

1
s
) qf (

kg
m3) kub

low ca;1 and ca;2 10211:29 10214:59 4.80 0.0045

low qf 1025:70 1026:66 0.062 0.01a

low kub 1024:81 1025:30 13.35 0.0014

best fit 1027:08 1026:07 6.9 0.00032

akub50:01 not fitted, but set according to Bachmeier et al. [2002].

Table 3. Parameter and Data Sensitivities for the Parameter Sets Given in Table 2 and Direct Correlations for the Fitted Parameters of

the ‘‘Best Fit’’ as Given by iTOUGH2

qf ca;1 ca;2 kub NH1

4 Ca21 CaCO3

Parameter and Data Sensitivity

low ca;1 and ca;2 22328.0 615970.7 226.9 26.6 216384.9 368056.1 54111.2

low qf 2293.4 263.4 549.0 a 1851.4 447.3 806.9

low kub 20.3 417.0 817.9 735.4 658.7 1294.6 37.3

best fit 59.2 583.1 642.2 1686.9 1086.9 1431.6 453.0

qf ca;1 ca;2 kub

Direct Correlations for the ‘‘Best Fit’’b

qf 1 20.416 20.804 0.277

ca;1 20.416 1 20.504 0.473

ca;2 20.804 20.504 1 0.502

kub 0.277 0.473 0.502 1

akub not fitted, but set according to Bachmeier et al. [2002].
bThe direct correlations for most other parameter sets are in the same range (6 0.2).
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In the inverse model runs including kub

as a fourth fitting parameter, the result-

ing values are all below the literature

value of 0.01 given in Bachmeier et al.

[2002] (see Figure 6). This result indi-

cates that the apparent ureolysis rate or

urease production of S. pasteurii grow-

ing as a biofilm is probably lower than

the rate of suspended cells investigated

in Lauchnor et al. [2015]. This might be

caused by transport limitations as

observed in Bachmeier et al. [2002] or

due to a different metabolic activity of

biofilm cells [Carrera et al., 2004].

For the duplicate column experiments,

the range of calibrated kub values was

from 0.00032 to 0.0052, the ‘‘best fit’’

parameter value being the lowest. As in

the case of for the biofilm density qf ,

the values of kub obtained by fitting to

bicycle-rim data are higher and range from 0.0026 to 0.0059. The values of kub obtained for the two inverse

model runs using the data set M (0.001 and 0.0052) are in the range of the values fitted to D1 and D2. kub5

0:001 was obtained when the Ca21 and NH1

4 data of D2 were input as pulse-wise sets of observations, while

kub50:0052 was obtained for the inverse model run on the data set M when considering these data a single

observation set each.

If kub is included into the set of fitting parameters and the model is calibrated to the bicycle-rim data, the values

of the biofilm density are moderate, while assuming a fixed kub50:01 yields the lowest (6.4 kg
m3) and the highest

(35 kg
m3) densities obtained for this experimental setup. If kub is included into the set of fitting parameters for the

column experiments higher biofilm densities are obtained, while the values of the attachment coefficients do

not change.

This can be explained by both kub and qf occurring in the ureolysis rate equation, in which they are multi-

plied by each other, see equation (4). However, kub and qf are not correlated (r5 0.277 for the ‘‘best fit’’

parameter set, see Table 3), since the

biofilm density also determines the

volume fraction of a given mass of bio-

film. Low densities lead to high volume

fractions and a corresponding

decrease in porosity and permeability.

This increases the pressure gradient,

thereby increasing detachment and

limiting the maximum biomass (qf/f )

present in the system.

S. pasteurii is aerobic and requires oxy-

gen to synthesize urease [Martin et al.,

2012]. According to simulations, all

oxygen is consumed during no-flow

periods, which in reality would

decrease the enzyme content of cells

because de novo urease cannot be

produced anaerobically. Hence, the

low values for kub are comparable with

the average urease contents of the
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Figure 3. Values obtained for the biofilm density qf for each experiment through

parameter estimation using iTOUGH2. Multiple experiments (C4, D2, and BR) are

combined in the data set M to fit averaged parameters values.

Figure 4. Values obtained for the attachment coefficient to biofilm ca;1 through

parameter estimation using iTOUGH2. Multiple experiments (C4, D2, and BR) are

combined in the data set M to fit averaged parameters values.
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cells under alternatingly aerobic and

anaerobic conditions, since the model

assumes that the urease content of

the cells is constant. The higher val-

ues of kub fitted using the BR data

support this hypothesis as the con-

stant flow injection scheme for this

experiment reduces oxygen limitation

of the cells. However, even in this

experiment, the fitted values are con-

siderably lower than the literature

value of 0.01.

For a more detailed investigation of

the parameters obtained, the simula-

tion results for selected sets of

parameters as given in Table 2 are

plotted together with experimental

data of column experiment D2 in Fig-

ures 7–9. The concentrations of Ca21

and NH1

4 shown in Figures 7 and 8

are measured and calculated at 0.3 m distance from the injection point. The data for the other measure-

ment locations at 0.1, 0.2, 0.4, and 0.5 m distance are not shown here because of space constraints, but

show similar trends.

Parameter sets with extremely low attachment coefficients ca;1 and ca;2 predict hardly any ureolysis and,

hence, no calcite precipitation for the first three measured pulses. On the other hand, the parameter sets

with higher ca;1 and ca;2 overestimate both ureolysis and precipitation and predict that nearly all Ca21

would precipitate in all of the measurement pulses, while measurements show complete precipitation of

dissolved calcium only for the last four pulses.

The ‘‘best fit’’ parameter set is able to predict most Ca21 and NH1

4 measurements. All other sets of parame-

ters have in common that the reaction rates are overestimated although they were fitted to the same data

set, which can best be seen in the comparison of measured and simulated NH1

4 concentrations in Figure 8.

Especially for later times, the simu-

lated NH1

4 concentrations right after

the corresponding Ca21-rich injection

are higher than the experimentally

observed concentrations. This shows

that the model predicts significant

urea hydrolysis already during the

injection phase while the experimen-

tal measurements do not confirm this

prediction.

With constant weight of the seven

pulses of in situ measurements over

time after a Ca21-rich injection, the

first three pulses of measured Ca21

and NH1

4 concentrations do not

match the data set D2 as seen in the

plot for the parameter set ‘‘low

attachment’’ in Figures 7 and 8. For

the data set D1, a similar trend was

observed (data not shown). Conse-

quently, the weight of the first pulses

was increased because attachment of

Figure 5. Values obtained for the attachment coefficient to arbitrary surfaces ca;2
through parameter estimation using iTOUGH2. Multiple experiments (C4, D2, and

BR) are combined in the data set M to fit averaged parameters values.

Figure 6. Values obtained for the urease content of biofilm kub through parameter

estimation using iTOUGH2. Multiple experiments (C4, D2, and BR) are combined in

the data set M to fit averaged parameters values. For C4, kub was not included in

the set of fitting parameters for the inverse modeling.
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bacteria is most relevant during the early times of the column experiment and thus determines the amount

of attached biomass before significant growth occurs.

With higher weighting of the first three Ca21-rich injections, the fitted model is able to match the measured

concentrations of NH1

4 and Ca21 more appropriately, although none of the parameter sets obtained

resulted in model predictions matching the characteristic shape of both early and late measurements. For

most measurements, however, the predictions for experiment D2 using the ‘‘best fit’’ parameter set (see

Table 2) are closer to the measurements than for any other parameter set fitted using the data of experi-

ment D2, see supporting information Table S8.

The final distribution of calcite obtained by modeling has a different shape compared with the experiments.

Even when the weight of the calcite data set was very high, the estimated parameters did not significantly

improve the shape of the modeled calcite distribution, especially in the inlet region. This is somewhat unex-

pected, because the sensitivity analysis provided by iTOUGH2 suggests that at least the inverse model runs

leading to the parameter sets ‘‘low qf ’’ and ‘‘best fit’’ were sensitive to the CaCO3 data, see Table 3. Most

modeled volume fractions of calcite for D1 and D2 are higher than those measured, especially in the influ-

ent region. When the first 10 cm of the influent region are neglected, the two parameter sets, which were

most sensitive to the CaCO3 data, the ‘‘low qf ’’ and especially the ‘‘best fit’’ parameter set, result in modeled

calcite distributions which are almost within the standard deviations of the experimental measurements.

This result is additionally supported by the model predictions of both parameter sets resulting in very low

residuals when compared with the calcite measurement (see supporting information Table S8). Figure 9

compares the measured and the simulated calcite distribution.

Figure 7. Simulation results for selected parameter sets in comparison to measured Ca21 concentrations for column experiment D2 at 0.2 m distance from the injection point. (c) A total

of seven measurement series were conducted after the end of Ca21-rich injection pulses. For a better temporal resolution shows (a) a zoom of the second measurement series and

(b) one of the last (seventh). The parameter values corresponding to each set of parameters are given in Table 2.
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As expected, the calibrated values of the fitting parameters are different depending on the experimental

setup used for calibration, the initial guess of the parameters, and the weight (weighted standard deviation)

of the observations. However, similar experimental setups, as in D1 and D2, lead to similar best-fit parame-

ter values for identical inverse model parameters. The calibration results using multiple experimental data

Figure 8. Simulation results for selected parameter sets in comparison to measured NH1

4 concentrations for column experiment D2 at 0.2 m distance from the injection point. (c) A total

of 7 measurement series were conducted after the end of Ca21-rich injection pulses. For a better temporal resolution shows (a) a zoom of the second measurement series and (b) one of

the last (seventh). The parameter values corresponding to each set of parameters are given in Table 2.

Figure 9. Simulation results for selected parameter sets in comparison to measured final volume fractions of calcite for column experiment

D2. The error bars on the experimental values represent the standard deviation of triplicate measurements. The parameter values corre-

sponding to each set of parameters are given in Table 2.
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sets M yield intermediate parameter values. Thus, the values calibrated using the data set M can be inter-

preted as values averaged over the individual experimental setups. Consequently, these values represent a

good approximation of the experiment-independent, true values of the fitting parameters. The values of

the parameter set fitted to M that has the low value of kub50:001 are additionally quite similar to the

parameter set ‘‘best fit’’ of data set D2.

The calibrated parameter values (qf and ca;1) for the bicycle-rim data set encompass a wide range compared

with the values calibrated to the other experimental data, except the extremely low attachment coefficients

for some inverse model runs using D2 data. This might indicate that the inverse problem is ill-posed when

using exclusively the limited BR data. For this experiment, no time-dependent measurements of pore fluids

are available for calibration.

4. Discussion

Most fitted values of the biofilm density qf compare well with the values given in the literature. Only some val-

ues fitted to D1 and D2 data are extremely low <1 kg
m3

� �

. However, these low values are obtained in inverse

modeling runs which excluded the urease content of the cells kub from the set of parameters and assumed it

to be equal to the maximum value given in Bachmeier et al. [2002]. In the inverse model runs including kub as

fitting parameter, all estimates are lower than this maximum value. The calibrated values of the attachment

coefficient ca;2 are, in general, 2 orders of magnitude lower than the values given for E. coli in Torkzaban et al.

[2008]. Both qf and ca;2 are species-dependent parameters, which limits the comparability of the calibrated val-

ues to literature data, because specific literature on the properties of S. pasteurii is sparse.

For most sets of parameters, except for the fits to the bicycle-rim experiment with kub set to the literature

value of 0.01, the coefficient of attachment to existing biofilm ca;1 is usually 1–2.5 orders of magnitude

higher than the coefficient of attachment to arbitrary surfaces ca;2. In the attachment coefficient equation

(equation (6)), ca;1 is multiplied by the volume fraction of biofilm, which is bounded by the value of the ini-

tial porosity. Thus, for realistic biofilm volume fractions (/f being typically less than 1% and initially no bio-

film being present) and attachment-coefficient values as fitted, equation (6) is dominated by ca;2 and the

impact of ca;1/f is negligible. The sets of parameters obtained from inverse modeling of the bicycle-rim

experiment with kub set to 0.01 yield values for ca;1 which are 4 orders of magnitude lower than the values

for ca;2, which would indicate that preferential attachment to biofilm does not occur during this experiment.

Similarly, in the ‘‘best fit’’ parameter set, ca;1 is one order of magnitude lower than ca;2.Thus, preferential

attachment to biofilm is not necessary to match the experimental results using the description of MICP cur-

rently implemented in the conceptual model.

The residuals between model predictions and the experimental results are reduced compared with the

Ebigbo et al. [2012] model by some of the parameter sets, while other parameter sets lead to increased

residuals (see supporting information Table S8). One explanation might be that the objective function has

local minima which lead to nonoptimal parameter sets, depending on the initial guess of the fitted parame-

ters. However, the parameter set ‘‘best fit’’ does not only have very low residuals when compared with the

data set of experiment D2 used for calibration, but also matches quite well both the effluent pH measure-

ments of experiment D2 (see supporting information Figure S5) which were not used as observation in

inverse modeling as well as the calcite distributions of the other column experiments C4 and D1, see sup-

porting information Figures S2 and S3.

Sections 4.2 and 4.3 discuss the experimental needs identified in this study as prerequisites for improving

the conceptual understanding of MICP. Prior to this, the revised model is compared with the Ebigbo et al.

[2012] model.

4.1. Comparison With the Previous Model

The main difference between the revised model used in this study and the MICP model developed previ-

ously [Ebigbo et al., 2012] is the ureolysis rate equation. The previous model features complex Michaelis-

Menten-type ureolysis kinetics adapted from Fidaleo and Lavecchia [2003]:

rurea;old5
kurease;old

11mH1

Keu;1
1

Keu;2
mH1

kub;old qf /fð Þnub
mu

mu1Ku;old

KNH1

4

mNH1

4 1KNH1

4

(11)

Water Resources Research 10.1002/2014WR016503

HOMMEL ET AL. A MODEL FOR MICP: IMPROVEMENTS AND NEW INSIGHTS 15



rurea;old is the rate of ureolysis as calculated in Ebigbo et al. [2012], kurease;old the maximum activity of urease

from Krajewska [2009], mH1

and mNH1

4 are the molalities of H1 and NH1

4 , calculated from the water phase

composition and the mole fractions respectively, Keu;1 and Keu;2 are speciation constants for the protonation

and deprotonation of urease [Fidaleo and Lavecchia, 2003], kub;old is the mass ratio of urease to biofilm and

nub is an exponent accounting for nonlinear relations between biofilm and urease mass, both kub;old and nub

being fitting parameters in the model of Ebigbo et al. [2012], Ku;old [Krajewska, 2009] is the half-saturation

constant for urea as used in Ebigbo et al. [2012], and KNH1

4
is the product inhibition constant from [Fidaleo

and Lavecchia, 2003].

This complex kinetic model accounts for a reduction of the maximum reaction rate by enzyme inactivation

caused by nonoptimal pH and inhibition by high product (NH1

4 ) concentrations as well as for varying bio-

film mass and urea concentrations. Within the context of a MICP model, the main uncertainty of this ureoly-

sis rate equation is that it was developed for the pure enzyme extracted from jack beans while, in most

proposed MICP applications, whole cells of the bacterium S. pasteurii are used instead of pure enzymes.

The revised model uses the ureolysis rate equation (equation (4)) updated according to recent experimental

investigations on the ureolysis kinetics of whole cells of S. pasteurii [Lauchnor et al., 2015]; see section 2.3.

The new rate equation is specific for whole-cell systems of S. pasteurii and has neither pH dependency nor

NH1

4 inhibition since Lauchnor et al. [2015] demonstrated that neither process is influential to ureolysis in

whole-cell systems of S. pasteurii.

Further, the maximum specific growth rate kl52:89 1025 1
s
, one of the parameters used to fit the model in

Ebigbo et al. [2012], was replaced by a recently published literature value of kl54:1667 1025 1
s
given in Con-

nolly et al. [2013]. Additionally, the molecular diffusion coefficient in the water phase Dw was set to

1:587 � 1029 m2

s
, as given in Riquelme et al. [2007]. Table 4 compares the parameters used in Ebigbo et al.

[2012] with the parameters used in the revised model.

The performance of both the previous [Ebigbo et al., 2012] and the revised model proposed here in predict-

ing the calcite distributions of various experiments (C4, D1 and BR) is shown in supporting information Fig-

ures S2–S4. Figures 7–9 give more detailed comparisons of the predictions of both models and column D2

data. These figures illustrate the improved match of model predictions and experimental observations

gained with the revised model using the parameter set ‘‘best fit.’’ This is confirmed by the calculated resid-

uals given in supporting information Table S8.

The improvement of the revised model is a result of the increase in quantity and quality of the experimental

data available, improving both the conceptual understanding of MICP as well as increasing the information

for model recalibration. The ureolysis kinetics for the ureolysis of S. pasteurii [Lauchnor et al., 2015] resulted

in the updated ureolysis rate equation which, together with the maximum specific growth rate for S. pas-

teurii [Connolly et al., 2013], allowed a reduction of the number of fitting parameters.

For the model recalibration, additional MICP experiments were available, providing measurements for an

increased range of experimental conditions such as the injection strategy and injection rate (supporting

information Table S1), the injected concentration (supporting information Table S2), and geometry (section

2.1 and Figure 1). Additionally, for the experiments D1 and D2, spatially and temporally resolved measure-

ment of NH1

4 and Ca21 were available for recalibration, increasing the number of observations from the 8

calcite measurements up to more than 400 for each of the experiments.

Finally, the parameter estimation was more systematic as inverse modeling, rather than trial-and-error,

methods were used for recalibration using the extended set of experimental observations as input, which

resulted in additional insights, e.g., a sensitivity analysis of the model to both the observations used and the

parameters estimated. The sensitivity analysis provided by iTOUGH2 indicated that the model is most sensi-

tive to changes in the ureolysis rate equation. kub (and qf instead, in case kub was excluded from the fitting

parameters) was identified as the most sensitive parameter, followed by the attachment coefficients.

4.2. Ureolysis

All parameter sets including kub as a fitting parameter yield values smaller than the literature value of 0.01,

indicating that the rate of ureolysis is overpredicted by equation (4) using the kinetic parameters for sus-

pended cells from Lauchnor et al. [2015]. This is supported by the comparison of modeled with measured

concentrations, as exemplarily shown in Figure 8, and by recalibrated sets of parameters with fixed kub5
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0:01 resulting in low biofilm density, thereby favoring detachment and reducing the amount of ureolytic

biomass in the simulations to match a lower reaction rate.

Another reason for the small kub estimates can be that S. pasteurii needs oxygen both to grow and produce

urease [Martin et al., 2012]. In the simulations of the column experiments, all oxygen is consumed during

the batch periods following a Ca21-rich injection leading to anoxic conditions. These anoxic conditions

could have led to less urease production in the biofilm, which would account for the lower average value of

kub in the model. Additionally, the measurements show that the NH1

4 concentration right at the end of the

Ca21-rich injections is equal to the injected concentration of 0.177 mol
l
, indicating that no significant amount

of urea is hydrolyzed during flow, rather urea was hydrolyzed during no-flow periods. On the contrary, the

model predicts that NH1

4 concentrations already increase during the flow period for the later pulses for any

set of parameters fitted (see Figures 8a and 8b).

This overestimation is caused by the model assumptions that the ureolysis rate is dependent on the bulk

urea concentration (see equation (4)) and that the kinetic parameters are equal to those proposed by Lauch-

nor et al. [2015] (see section 2.3). Therefore, the use of suspended-cell kinetics will probably not be the final

approach for MICP models, as most of the cells during MICP in subsurface systems are in biofilms [Ebigbo

et al., 2012; Cuthbert et al., 2012]. It is important to investigate experimentally whether this overestimation is

due to neglected additional mass transfer processes within the porous medium and the biofilm, as sug-

gested by Bachmeier et al. [2002], or caused by a change in the kinetics resulting from the change in the

growth mode, as suggested by Carrera et al. [2004]. Extracellular urease changes the apparent ureolysis

kinetics of microbial cells in biofilms [Klose and Tabatabai, 1999] and the production of urease in cells within

a biofilm might be different from that in suspended cells. Additionally, the assumption of well-mixed condi-

tions is dependent on the heterogeneity of the porous medium. For the experiments, single-grain-size sand

was used and packed carefully to avoid initial heterogeneities as described in section 2.1. Preferential flow

paths and stagnant regions developing during the experiments could have lead to concentration and

reaction-rate differences on the pore scale which are difficult to represent with an averaged bulk-

concentration-dependent reaction rate in the Darcy-scale model.

A key step is to determine whether the reduced apparent reaction rates in biofilm systems occur due to

mass-transfer limitations or due to significant differences in metabolism between biofilm and suspended

cells. A combination of small to micro-scale experiments and pore-scale modeling is a promising approach

for determining which of these processes is responsible for the observed discrepancies. If the discrepancies

are caused by locally heterogeneous concentrations, the model can be improved by implementing additional

equations describing the mass transfer between biofilm and liquid phase as well as diffusion within the bio-

film. To give an example, mass transfer processes within the biofilm can be implemented using a double-

continuum model as used in Ebigbo et al. [2010]. If locally heterogeneous concentrations are not able to

explain the difference in the reaction rates observed, the biofilm-based kinetics parameters have to be deter-

mined experimentally for S. pasteurii. Alternatively, independently of what causes the discrepancy, upscaled

biofilm-related kinetics parameters can be used which explicitly account for the metabolism of attached cells

as well as heterogeneous concentrations and additional mass transfer. However, the conceptual understand-

ing of biofilm-catalyzed ureolysis and of the potential influence of biofilm-fluid mass transfer needs to be

improved. Further experimental research should focus especially on determining the apparent ureolysis rates

of S. pasteurii biofilms and the resulting calcite precipitation rates, since these are the key processes of MICP.

4.3. Attachment and Biofilm Density

The best-fit attachment coefficients ca;1 and ca;2 vary over several orders of magnitude, indicating that the

model is not very sensitive to them although the sensitivity analysis carried out by iTOUGH2 shows that the

attachment coefficients have medium to high sensitivity compared with the other parameters fitted; see

Table 3. Thus, a better knowledge of bacterial attachment would substantially improve the model. The

model is especially sensitive to ca;1 and ca;2 at the beginning of the simulation, where the biofilm distribu-

tion is determined by attachment and not yet dominated by the interplay of growth and detachment, see

Figures 7a and 8a. Especially for field-scale applications in which oxygen is not readily available, attachment

of injected cells or cells detached from upstream regions might be the dominant process determining the

distribution of biofilm. Experiments might show whether preferential attachment of S. pasteurii to existing

biofilms, as assumed in equation (6), can be observed or not.
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Further, the biofilm density is assumed to be constant in the conceptual model. In the literature, however, it

is shown that the density of biofilms depends on various environmental factors such as exposure to shear

stress, compaction of biofilm due to external stress, the history of exposure to external and shear stress dur-

ing growth, and the type of electron acceptor available during growth [Paul et al., 2012]. Biofilm density

may also change with the thickness of the biofilm as shown in Zhang and Bishop [1994]. The validity of the

assumption of a constant biofilm density used in the conceptual model has to be investigated in experi-

ments, since the biofilm density strongly influences the amount of simulated attached biomass in the sys-

tem. A better knowledge of the biofilm density is crucial to the success of any further investigation of the

interactions of biofilm and hydraulic conditions. These interactions govern the distribution of catalytically

active biofilm in the porous medium, thereby controlling the distribution of the precipitated calcite.

5. Final Remarks

Given the recent insight and experimental data on ureolysis and biofilm-hydraulics interactions, the model

uncertainty is restricted by the currently insufficient knowledge of those processes and a lack of parameter-

izations which could crucially improve successful modeling of MICP. The focal points of future research as

identified in this study are summarized in Table 5.

The difference between the experimental and modeled calcite distributions indicates that at least one rele-

vant process for MICP is not yet implemented in sufficient detail in the conceptual model. Before a more

detailed calibration of the numerical model is attempted, the conceptual understanding of all relevant proc-

esses, including the biofilm-catalyzed ureolysis, resulting calcite precipitation as well as the interplay of

hydraulics and biofilm processes, has to be improved. Pore-scale investigations of ureolysis catalyzed by S.

Table 4. Comparison of Revised, Refitted, and Other Parameter Values Used to the Values Given in Ebigbo et al. [2012]

Parameter Unit Revised Value Revised Reference Ebigbo et al. [2012] Ebigbo et al. [2012]

/0 0.4 Ebigbo et al. [2012] 0.4 Measured

/crit 0 Ebigbo et al. [2012] 0 Estimated

K0 m2 2 �310210 ; 1:82 �310210 Measured;

Ebigbo et al. [2012]

1:7922:30 �310210 Measured

qc
kg
m3 2710 Ebigbo et al. [2012] 2710

qf
kg
m3 0:01235 Refitted 10 Fitted

Dw
m2

s
1:587 �31029 Riquelme et al. [2007] 1029

aL m 0.025 Frippiat et al. [2008] 0.025 Frippiat et al. [2008]

Asw;0
m2

m3 5000 Ebigbo et al. [2012] 5000 Estimated

ac
m2

m3 20000 Ebigbo et al. [2012] 20000 Estimated

kprec
mol
m2s

1:5 �310210 Zhong and Mucci [1989] 1:5 �310210 Zhong and Mucci [1989]

nprec 3.27 Zhong and Mucci [1989] 3.27 Zhong and Mucci [1989]

kdiss;1
kgH2O
m3 8:9 �31021 Chou et al. [1989] 8:9 �31021 Chou et al. [1989]

kdiss;2
mol
m2s

6:5 �31027 Chou et al. [1989] 6:5 �31027 Chou et al. [1989]

ndiss 1 Flukiger and Bernard [2009] 1 Flukiger and Bernard [2009]

kl
1
s

4:1667 �31025 Connolly et al. [2013] 2:89 �31025 Fitted

Ks
kg
m3 7:99 �31024 Taylor and Jaff�e [1990] 7:99 �31024 Taylor and Jaff�e [1990]

KO2

kg
m3 2 �31025 Hao et al. [1983] 2 �31025 Hao et al. [1983]

Y 0.5 Seto and Alexander [1985] 0.5 Seto and Alexander [1985]

F 0.5 Mateles [1971] 0.5 Mateles [1971]

b0
1
s

3:18 �31027 Taylor and Jaff�e [1990] 3:18 �31027 Taylor and Jaff�e [1990]

KpH ð mol
kgH2O

Þ2 6:15 �310210 Kim et al. [2000] 6:15 �310210 Kim et al. [2000]

ca;1
1
s

1:55 �310213
21:55 �31022 Refitted 0.0443 Fitted

ca;2
1
s

2:57 �310215
23:72 �31026 Refitted 9:19 �31024 Fitted

cd;1
1
s

2:89 �31028 Ebigbo et al. [2010] 2:89 �31028 Ebigbo et al. [2010]

kurease
mol
kgs

706:7 Lauchnor et al. [2015] 41.7 Krajewska [2009]

Ku
mol
kgH2O

0:355 Lauchnor et al. [2015] 0.0173 Krajewska [2009]

Keu;1
mol
kgH2O

Removed Lauchnor et al. [2015] 7:57 �31027 Fidaleo and Lavecchia [2003]

Keu;2
mol
kgH2O

Removed Lauchnor et al. [2015] 1:27 �31028 Fidaleo and Lavecchia [2003]

KNH1

4

mol
kgH2O

Removed Lauchnor et al. [2015] 0.0122 Fidaleo and Lavecchia [2003]

kub 0:01; 0:001420:0059 Bachmeier et al. [2002];

Refitted

0.11 Fitted

nub 1:0 Lauchnor et al. [2015] 1.5 Fitted

T
�C 25 Ebigbo et al. [2012] 25 Constant
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pasteurii biofilms might help determining which of the processes involved have to be considered in more

detail.

Hence, a systematic experimental approach is needed for the investigation of the processes related to S.

pasteurii biofilms in relevant conditions. Experiments are needed to derive apparent biofilm-based, volume-

averaged parameter values which can be used for both engineering applications of MICP and numerical

models used to design and evaluate future MICP experiments and applications.

Parallel to further experimentation, an investigation of simplified models designed to answer specific

engineering questions is a promising approach for future modeling work, since knowledge of the relevant

processes is limited and parameterizations are not available. For field-scale applications, the reduced

accuracy of such simplified models is probably acceptable, since important site-specific modeling input

parameters such as permeability and porosity are often not known in sufficient detail, resulting in an

accuracy reduction which is greater than the reduction caused by simplifying model assumptions. Addi-

tionally, simplified models might prove to be computationally more efficient, thereby facilitating the use

of MICP.
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