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We develop a variant of the Nelder-Mead (NM) simplex search
procedure for stochastic simulation optimization that is de-
signed to avoid many of the weaknesses encumbering similar
direct-search methods—in particular, excessive sensitivity to
starting values, premature termination at a local optimum, lack
of robustness against noisy responses, and computational in-
efficiency. The Revised Simplex Search (RSS) procedure con-
sists of a three-phase application of the NM method in which:
(a) the ending values for one phase become the starting values
for the next phase; (b) the step size for the initial simplex
(respectively, the shrink coefficient) decreases geometrically
(respectively, increases linearly) over successive phases; and
(c) the final estimated optimum is the best of the ending values
for the three phases. To compare RSS versus NM and proce-
dure RS�S9 due to Barton and Ivey, we summarize a simulation
study based on four selected performance measures computed
for six test problems that include additive white-noise error,
with three levels of problem dimensionality and noise variability
used in each problem. In the selected test problems, RSS
yielded significantly more accurate estimates of the optimum
than NM or RS�S9, and both RSS and RS�S9 required roughly
four times as many function evaluations as NM.

S tochastic simulation optimization can be viewed as find-
ing a combination of (deterministic) input parameters (factor
levels or design variables) that yields the optimal expected
value of a user-specified (random) output response gener-
ated by the simulation model. Let the d-dimensional design
point x � [x1, . . . , xd] represent the factor-level combination
specifying the policy governing operation of the simulation
model under the associated scenario (or alternative system
configuration). Thus the components of x together with a
(possibly infinite) stream of random numbers constitute the
full set of inputs to the simulation model; and we let Y(x) �
[Y1(x), . . . , Yp(x)] denote the p-dimensional random vector
of output responses generated on one run of the simulation
at design point x. With respect to optimization of system
performance, we assume that one of the components of Y(x),
say the initial element Y1(x), is the primary response of
interest; and we let �(x) � E[Y1(x)] denote the response
surface function to be optimized. We define the region of
interest for the optimization procedure,

� � �x � Rd�

x defines feasible system operating conditions� , (1)

where Rd denotes d-dimensional Euclidean space. Assuming
that the primary performance measure is expected total cost
and thus should be minimized, we seek to determine

�* � min
x��

� �x� and x* � arg min
x��

� �x� ,

the minimum cost and the optimal design point defining the
minimum-cost system configuration.

In this article we formulate, implement, and evaluate a
stochastic simulation optimization procedure that incorpo-
rates many desirable properties of the well-known Nelder-
Mead (NM) simplex search procedure (Nelder and Mead
1965) while avoiding some of the critical weaknesses of this
procedure—in particular, excessive sensitivity to starting
values, premature termination at a local optimum, lack of
robustness against noisy responses, and computational in-
efficiency (Parkinson and Hutchinson 1972, Barton and Ivey
1996). In Section 2 we give a formal algorithmic statement of
the Revised Simplex Search (RSS) procedure. In Section 3 we
summarize the main figures of merit that we used to eval-
uate and compare procedures for stochastic simulation op-
timization, and we analyze the significant factors that affect
the performance of simplex-search-type procedures. Section
4 contains a summary of a comprehensive Monte Carlo
comparison of procedure RSS versus the classical procedure
NM as well as procedure RS�S9, a variant of NM that was
developed by Barton and Ivey (1996). Finally, in Section 4 we
recapitulate the main findings of this work, and we present
recommendations for future research. Although this paper is
based on Humphrey (1997), some of our results were also
presented in Humphrey and Wilson (1998).

1. Revised Simplex Search (RSS) Procedure
In this section we describe the operation of the RSS proce-
dure, and we introduce the symbolism required to specify
precisely the steps of the procedure. RSS operates in three
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phases indexed by the phase counter �, and within each
phase, each additional stage q involves generating a new
simplex from the current simplex via the operations of re-
flection, expansion, contraction, or shrinkage (as described
below) until the termination criterion for the current phase
(also described below) is satisfied. In the current phase � and
stage q of procedure RSS, we let xi � [xi,1, . . . , xi,d] denote
the ith vertex of the latest simplex generated by RSS for i �
1, . . . , d � 1, q � 0, 1, . . . , and � � 1, 2, 3. (Although xi

(q,�)

might be a more complete notation for the ith vertex of the
qth simplex generated in phase �, we suppress the exponent
(q,�) for simplicity since no confusion can result from this
usage.) In the initial phase of operation of RSS, the user
provides the initial vertex x1 � [x1,1, . . . , x1,d] that defines
the starting point for the overall search procedure. In terms
of the step size parameter �, the initial step size �1 for the
first phase is �1 � max{1, ��x1,j��j � 1, . . . , d}. The remaining
vertices of the initial simplex are given by xi�1 � x1 � �1ei

for i � 1, . . . , d, where ei is the d-dimensional unit vector
with one in the ith component and zeros elsewhere. In the
initial phase of operation of RSS, the coefficient for the
shrinkage operation has the value �1 � 0.5 originally recom-
mended by Nelder and Mead (1965).

With respect to the current (latest) simplex generated in
phase � of the operation of procedure RSS, we let �̂(xi)
denote the simulation-based estimate of the objective func-
tion value �(xi) at vertex xi for i � 1, . . . , d � 1, and we let
xmax denote the vertex of the current simplex yielding

�̂max � �̂�xmax� � max� �̂�xi��1 � i � d � 1� . (2)

In similar fashion, we define xmin and �̂min � �̂min (xmin), and
we let xntw denote the vertex of the current simplex yielding
�̂ntw � �̂(xntw), the next-to-worst (second largest) of the
response surface estimates observed at the vertices of the
current simplex. When it is not important to emphasize the
vertex upon which quantities like �̂(xmax) depend, we will
use the alternative notation �̂max for simplicity. For q � 0,
1, . . . , the qth stage within phase � of procedure RSS begins
by computing the centroid of all the vertices in the current
simplex except xmax,

xcen �
1
d � � �

i�1

d�1

xi� 	 xmax� . (3)

Phase � of procedure RSS ends when RSS generates a new
simplex that is sufficiently “small” to satisfy the termination
criterion. Then the phase counter � is incremented by one
and procedure RSS is restarted, provided � � 3.

At the beginning of phase � of procedure RSS for � � 2
and 3, we take the initial step size to be �� � 1

2
��	1 so that the

initial step size decreases geometrically over successive
phases. Similarly, we take �� � ��	1 � 0.2 for � � 2 and 3
so that the shrink coefficient increases linearly over succes-
sive phases until it reaches the value 0.9 recommended by
Barton and Ivey (1996) for optimization of noisy functions.
For � � 1, 2, 3, we let x̂*(�) denote the final estimate of the
optimal solution delivered in phase �. Then we take as the

final estimated optimum the best of the ending values for all
three phases. A flow chart of RSS is depicted in Figure 1, and
a formal statement of the algorithm is given below. The basis
for the design of procedure RSS is detailed in Section 2
below.

Steps of Procedure RSS
0. Set Up Phase 1. Initialize the following: the phase counter
� 4 1; the iteration (stage, simplex) counter, q 4 0; the
shrink coefficient used in phase 1, �1 4 0.5; the initial step
size used in phase 1,

�1 4 � max�� �x1, j��j � 1, . . . , d� , if x1 
 0d ,
1, otherwise;

(4)

and the other vertices of the initial simplex in phase 1,

xi�1 4 x1 � �1ei for i � 1, . . . , d . (5)

Go to step 1.
1. Attempt Reflection. Form a new simplex by reflecting
xmax through the centroid xcen of the remaining vertices of
the current simplex to obtain the reflected point

xrefl 4 xcen � ��xcen 	 xmax� ,

where � � 1.0 is the reflection coefficient of Nelder and
Mead (1965). If

�̂min � �̂ refl � �̂ntw , (6)

that is, if the reflected point xrefl yields a response no worse
(no larger) than the next-to-worst vertex xntw in the current
simplex but does not yield a better (smaller) response than
the best vertex xmin, then replace the worst vertex xmax in the
current simplex by the reflected point xrefl,

xmax 4 xrefl ; (7)

and go to step 6 to test the termination criterion. If the
condition (6) for accepting the reflection is not satisfied, then
go to step 2.
2. Attempt Expansion. If

�̂ refl � �̂min (8)

so that the reflected point xrefl is better than the best vertex
xmin in the current simplex, then extend the search in the
direction xrefl 	 xcen to yield the expansion point

xexp 4 xcen � �xrefl 	 xcen� ,

where  � 2.0 is the expansion coefficient of Nelder and
Mead (1965). If �̂exp 
 �̂min, then accept the expansion and
replace xmax by xexp in the current simplex,

xmax 4 xexp ;

and go to step 6. If �̂exp � �̂min, then reject the attempted
expansion and replace xmax by xrefl in the current simplex,

xmax 4 xrefl ;

and go to step 6. Finally if the condition (8) for attempting
expansion is not satisfied, then go to step 3.
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3. Set Up Attempted Contraction. If

�̂ refl � �̂ntw

so that the reflected point xrefl yields a worse (larger) re-
sponse than the next-to-worst vertex xntw of the current
simplex, then reduce the size of the current simplex—either
by a contraction or a more drastic shrinkage. To set up this
reduction in the size of the simplex, update the worst vertex
in the current simplex as follows:

if �̂ refl � �̂max , then� xmax 4 xrefl

�̂max 4 �̂ refl
� .

Compute the contraction point

xcont 4 xcen � ��xmax 	 xcen� ,

where � � 0.5 is the contraction coefficient of Nelder and
Mead (1965).
4. Contract Simplex in One Direction. If

�̂cont � �̂max ,

so that the contracted point xcont yields a response no worse
(no larger) than the worst vertex xmax of the current simplex,

Figure 1. Flow chart of procedure RSS.
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then replace xmax in the current simplex by xcont,

xmax 4 xcont ;

and go to step 6; otherwise go to step 5.
5. Shrink Entire Simplex. If the contracted point xcont yields
a worse (larger) response than every vertex in the current
simplex including xmax so that the shrinkage condition

�̂cont � �̂max

is satisfied, then reduce the lengths of all edges of the current
simplex with common endpoint xmin by the shrinkage factor
��, yielding a new simplex with vertices

xi 4 xmin � ���xi 	 xmin� for i � 1, . . . , d � 1; (9)

and go to step 6.
6. Test Termination Criterion for Current Phase. After each
reflection, expansion, contraction, or shrinkage, apply the
termination criterion

max
1�i�d�1

	xi 	 xmin	 � � �1	xmin	 , if 	xmin	 
 0,
�2 , otherwise, (10)

where �1 and �2 are user-specified tolerances and the max-
imum is taken over all vertices in the current simplex. If the
termination condition (10) is not satisfied, then increment
the iteration counter q 4 q � 1 and go to step 1. If the
termination condition (10) is satisfied, then go to step 7.
7. Terminate Current Phase. Record the termination point of
the current phase

x̂*��� 4 xmin , (11)

increment the phase counter,

� 4 � � 1,

and go to step 8.
8. Test Final Termination Criterion. If � � 3, then compute
the final estimate x̂* of the global optimum according to

�* 4 arg min� �̂ x̂*������ � 1, 2, 3� and x̂*4 x̂*��*� ;

finally deliver x̂* and �̂(x̂*) and stop. If � � 3, then go to
step 9.
9. Set Up Next Phase. Initialize the following: the iteration
counter q 4 0; the first vertex of the initial simplex in the
current phase,

x1 4 x̂*�� 	 1� ; (12)

the initial step size for the current phase,

�� 4
1
2

��	1 ; (13)

the shrink coefficient for the current phase,

�� 4 ��	1 � 0.2; (14)

and the other vertices of the initial simplex in the current
phase,

xi�1 4 x1 � ��ei for i � 1, . . . , d . (15)

Go to step 1.

2. Development of Procedure RSS
In this section we formulate the principal performance mea-
sures that we used to evaluate and compare procedures for
stochastic simulation optimization, and we summarize our
preliminary analysis of the significant factors affecting the
performance of simplex-search-type procedures. This anal-
ysis formed the basis for the design of procedure RSS.

2.1 Formulation of Performance Measures for Simulation
Optimization
We used four figures of merit to evaluate stochastic simula-
tion optimization procedures: (a) logarithm of the number of
function evaluations; (b) absolute percentage deviation of
the estimated optimal function value from the true optimal
function value; (c) maximum over all coordinates of the
absolute percentage deviation of the estimated optimum
from the true optimum taken with respect to each coordi-
nate separately; and (d) average over all coordinates of the
absolute percentage deviation of the estimated optimum
from the true optimum taken with respect to each coordi-
nate separately.

2.1.1 Logarithm of Number of Function Evaluations

To measure the computational work performed by a simu-
lation optimization procedure, we compute the (natural)
logarithm of the total number of function evaluations re-
quired by the procedure before it terminates and delivers the
final estimates �̂(x̂*) and x̂*:

L � ln�total number of function evaluations required� .
(16)

The logarithmic transformation in (16) is used to obtain
approximately normal observations with a common vari-
ance to which we can apply standard statistical techniques
such as analysis of variance and multiple comparisons pro-
cedures; see Anderson and McLean (1974). Although L is
widely used in experimental comparisons of simulation op-
timization procedures (Barton and Ivey 1996), it should be
recognized that in the optimization of a large-scale stochas-
tic simulation model, each function evaluation represents a
separate simulation run, and different runs may require
substantially different amounts of execution time to deliver
the corresponding function values. Thus in general L pro-
vides at best a rough indication of the total computational
work required by a simulation optimization procedure.

2.1.2 Final Function Value

Provided that the optimal function value �* � 0, we use the
absolute percentage deviation

D � 
 �̂*� x̂*� 	 �*
�*


 (17)

as a measure of the accuracy of the final result delivered by
a simulation optimization procedure. When averaged over
independent replications of each procedure applied to a
given test problem, the quantity (17) provides a dimension-
less figure of merit that allows us to compare the perfor-
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mance of simulation optimization procedures across differ-
ent test problems. All the test problems used in this work
were specifically constructed to have nonzero optimal func-
tion values.

2.1.3 Coordinatewise Maximum Absolute Percentage
Deviation from Global Optimum

The third performance measure is the maximum over all j
(for 1 � j � d) of the absolute percentage deviation of x̂*j (the
jth coordinate of the estimated optimum x̂*) from x*j (the jth
coordinate of the true optimum x*), provided that each
x*j � 0:

B � max
1�j�d


 x̂*j 	 x*j
x*j


 . (18)

When there are multiple optima, we evaluate the right-hand
side of (18) for each optimum, and we take the smallest of
these quantities as the final value of B. When averaged over
independent replications of each procedure applied to a
given test problem, the quantity (18) provides another di-
mensionless figure of merit that allows us to compare the
performance of simulation optimization procedures across
different test problems. All of the test problems used in this
work were specifically constructed to have optima with all
coordinates having nonzero values.

2.1.4 Coordinatewise Average Absolute Percentage
Deviation from Global Optimum

The final performance measure is the average computed
over all j (for 1 � j � d) of the absolute percentage deviation
of x̂*j (the jth coordinate of the estimated optimum x̂*) from x*j
(the jth coordinate of the true optimum x*), provided that
each x*j � 0:

A �
1
d �

j�1

d 
 x̂*j 	 x*j
x*j


 . (19)

When there are multiple optima, we evaluate the right-hand
side of (19) for each optimum and take the smallest of these
quantities as the final value of A. We believe that A provides
the best overall characterization of the accuracy with which
a simulation optimization procedure estimates the true op-
timum.

No single performance measure can tell the entire story
about the performance of a particular search procedure, but
we believe that (16)–(19) provide meaningful information
that can be aggregated over different test problems to yield
a comprehensive basis for comparison of selected simulation
optimization procedures.

2.2 Significant Factors Affecting Performance of
Simplex-Search-Type Procedures
In seeking to formulate a simplex-search-type procedure
that avoids some of the drawbacks of the Nelder-Mead
procedure when it is applied to optimization of noisy re-
sponse functions, we identified three significant factors af-

fecting the performance of such procedures: sizing the initial
simplex, restarting the search, and adjusting the shrink co-
efficient �. Each of these factors will be discussed briefly; a
more detailed analysis of these factors is given in Humphrey
(1997) and in Humphrey and Wilson (2000).

2.2.1 Sizing the Initial Simplex

Our preliminary experimentation showed that starting a
simplex-search-type procedure with a larger initial simplex
generally improved the performance of the procedure. The
idea behind starting with a larger initial simplex is straight-
forward. A smaller simplex starting far from the true opti-
mum will have to iterate many times (mostly through re-
flections and expansions) in order to move into a
neighborhood of the optimum in which the response surface
is well behaved. Along the way to such a neighborhood, any
errant contractions or shrinkages of the current simplex will
significantly slow the procedure’s progress toward the op-
timum. By comparison, a larger simplex starting far from the
optimum can make much faster progress toward the opti-
mum by “covering more ground” with each reflection or
expansion; and in this situation any errant contractions or
shrinkages will have a less severe effect on the procedure’s
progress toward the optimum. Although Parkinson and
Hutchinson (1972) observed similar effects in their extensive
numerical evaluation of the performance of simplex-search-
type procedures for optimization of deterministic response
functions, the situation is much less clear-cut when such
procedures are applied to noisy responses. Based on a pre-
liminary simulation study similar to that described in Sec-
tion 3 below, we found that taking the initial step size
parameter � � 4.0 in (4) appeared to yield the best overall
performance for procedure RSS.

2.2.2 Restarting the Search

Our preliminary experimentation also revealed that to
guard against premature termination at a false optimum, the
most effective action was to step away from the current
termination point, restart the search procedure with a new
initial simplex, and compare the resulting alternative termi-
nation points. Parkinson and Hutchinson (1972) observed
similar effects with deterministic response functions. Based
on a preliminary simulation study similar to that described
in Section 3 below, we found that significantly improved
performance of RSS was obtained by restarting the proce-
dure twice—thus in effect we designed RSS to operate in
three phases and finally deliver the best solution taken over
all three phases. Displays (12)–(15) specify the restart step
for phase � of procedure RSS as it depends on the results of
phase � 	 1 for � � 2 and 3. Notice that on each successive
phase of operation of procedure RSS, the initial step size is
reduced by 50% compared to the initial step size used in the
previous phase.

2.2.3 Adjusting the Shrink Coefficient

Another change incorporated into procedure RSS involves
the shrink coefficient �. Every time a shrinkage is performed,
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each edge of the simplex is rescaled by the factor �; and since
0 
 � 
 1, the overall size of the simplex is substantially
reduced. Based on a preliminary simulation study similar to
that described in Section 3 below, we obtained better per-
formance in the first phase of operation of procedure RSS by
using the shrink coefficient value �1 � 0.5 that was originally
recommended by Nelder and Mead (1965); but in the later
phases of operation of RSS, we obtained greater protection
against premature termination with the larger shrink coef-
ficient values �2 � 0.7 and �3 � 0.9. In procedure RS�S9,
Barton and Ivey (1996) fixed the shrink coefficient at the
value 0.9 to reduce the likelihood of premature termination;
moreover, after each shrinkage operation (9) is performed,
procedure RS�S9 requires resampling the response at the
anchor point xmin and then reranking and relabeling the
vertices of the new simplex (that is, xmax, xntw, xmin, etc.)
before attempting the next reflection operation.

The motivation for the shrink-coefficient assignments
�1 � 0.5, �2 � 0.7, �3 � 0.9 used in procedure RSS is that
during the earlier, “hill-climbing” phases of the operation of
RSS, the current simplex is usually far from the optimum,
and the likelihood of an errant shrinkage should be rela-
tively low since the topology of the response surface often
has a larger effect on the behavior of the search procedure
than the noise in the sampled responses. If during its first
phase of operation procedure RSS detects what appears to
be nonconvex behavior in the responses observed at the
vertices of the current simplex so that a shrinkage operation
should be performed, then the smaller value of �1 should
enable the shrink operation to be more effective in position-
ing the simplex in a locally convex neighborhood of the
optimum. If several errant shrinkages are performed during
the earlier phases of the search and the simplex becomes too
small to make effective progress toward the optimum, then
procedure RSS attempts to compensate for this through the
formation of a new initial simplex at the start of each of the
later phases of the search. Moreover in the later phases of the
search, the simplex is usually in a subregion of the region of
interest (1) where the response surface is relatively flat so
that the noise in the sampled responses typically has a larger
effect on the behavior of the search procedure; consequently
the likelihood of performing an errant shrinkage should be
higher than it was in the earlier phases of the search. Because
shrinkages drastically reduce the size of the simplex, we
attempt to protect against errant shrinkages (and conse-
quently premature termination) in the later phases of the
search by increasing the value of the shrink coefficient �� for
successive values of the phase counter �.

3. Experimental Performance Evaluation
In this section we describe the problems used in testing
procedure RSS and comparing its performance with that of
procedures NM and RS�S9. We also provide a summary
and analysis of the experimental results.

3.1 Description of Test Problems
We selected six problems to serve as a test-bed for compar-
ing the performance of procedure RSS with that of proce-
dures NM and RS�S9. Similar problems were used in the

experimental performance evaluation of Parkinson and
Hutchinson (1972) for optimization of deterministic re-
sponse functions and in the study of Baron and Ivey (1996)
for optimization of noisy response functions. To mimic the
behavior of responses generated by a stochastic simulation
model, we took each sampled response to have the form
�̂(x) � �(x) � �, where �(�) is one of the test functions
described below and the additive white-noise error term � is
randomly sampled from a normal distribution with a mean
of zero and a standard deviation that is systematically var-
ied to examine the effect of increasing levels of noise vari-
ability on the selected simplex-search-type procedures. For
all three procedures, we used the common termination cri-
terion (10) with �1 � 5.0 � 10	6 and �2 � 10	20 to provide
an equitable basis for comparing the performance of these
procedures. For each test problem described below, we spec-
ify the function to be minimized, the starting point used by
each search procedure, the optimal function value, and the
point(s) corresponding to the optimal function value. A
complete description of all test problems is given in Hum-
phrey (1997).

3.1.1 Test Problem 1: Variably Dimensioned Function

The variably dimensioned function is defined as

� �x� � �
i�1

d�2

 f i�x��2 � 1,

where

f i�x� � xi 	 1 for i � 1, . . . , d , fd�1�x� � �
j�1

d

j� xj 	 1� ,

and fd�2�x� � � �
j�1

d

j� xj 	 1�� 2

.

The initial point is given by x1 � [x1,1, x1,2, . . . , x1,d], where
x1,j � 1 	 ( j/d), j � 1, . . . , d. The optimal function value of
�* � 1 is achieved at the point x* � [1, . . . , 1]. Figure 2
depicts the variably dimensioned function for the case d � 2.

3.1.2 Test Problem 2: Trigonometric Function

The trigonometric function is defined as

� �x� � �
i�1

d

 f i�x��2 � 1,

where

f i�x� � d 	 �
j�1

d

cos� xj 	 1� � i1 	 cos� xi 	 1��

	 sin� xi 	 1� , i � 1, . . . , d .
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We used the starting point x1 � [1/d, . . . , 1/d]. The optimal
value of �* � 1 is achieved at every point in the lattice of
points given by

x*k1k2· · ·kd � 1 � 2�k1 , . . . , 1 � 2�kd� ,

where kj � 0, �1, �2, . . . , for j � 1, . . . , d . (20)

Figure 3 depicts the trigonometric function for d � 2. When
a given search procedure terminates on this test problem, we
determine which of the optimal points specified by (20) is
closest in Euclidean distance to the final estimate x̂*, and we
use that optimum for calculating performance measures A
and B as specified in displays (19) and (18), respectively.

3.1.3 Test Problem 3: Extended Rosenbrock Function

The extended Rosenbrock function is defined as

� �x� � �
i�1

d

 f i�x��2 � 1,

where

f2i	1�x� � 10� x2i 	 x2i	1
2 �

f2i�x� � �1 	 x2i	1�
� for i � 1, . . . , d/ 2.

The initial point is given by x1 � [	1.2, 1, . . . , 	1.2, 1], and
the optimal value of �* � 1 occurs at x* � [1, . . . , 1]. Figure
4 depicts the extended Rosenbrock function for the case d �
2.

3.1.4 Test Problem 4: Extended Powell Singular Function

The extended Powell singular function is defined as

� �x� � �
i�1

d

 f i�x��2 � 1,

where

f4i	3�x� � x4i	3 � 10x4i	2 	 11
f4i	2�x� � �5� x4i	1 	 x4i�
f4i	1�x� � � x4i	2 	 2x4i	1 � 1�2

f4i�x� � �10� x4i	3 	 x4i�
2

� for i � 1, . . . , d/4,

so that the dimensionality d of the input vector x must be a
multiple of 4. The starting point is x1 � [3, 	1, 0, 1, . . . , 3,
	1, 0, 1], and the optimal value of �* � 1 is achieved at the
point x* � [1, . . . , 1].

3.1.5 Test Problem 5: Brown’s Almost-Linear Function

Brown’s almost-linear function is defined as

� �x� � �
i�1

d

 f i�x��2 � 1,

Figure 2. Test problem 1: variably dimensioned function
for d � 2.

Figure 3. Trigonometric function (test problem 2) for d �
2.

Figure 4. Test problem 3: extended Rosenbrock function
for d � 2.
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where

f i�x� � xi � �
j�1

d

xj 	 �d � 1� for i � 1, . . . , d 	 1,

and fd�x� �  �
j�1

d

xj� 	 1.

The initial point is given by x1 � [1/2, . . . , 1/2], and the
optimal function value is �* � 1, which occurs at two dif-
ferent points for all values of d. Moré et al. (1981) show that
�(x*) � 1 at x* � (�, . . . , �, �1	d), where � satisfies

d�d 	 �d � 1��d	1 � 1 � 0. (21)

Notice that � � 1 is a solution of (21) for every value of d. We
computed the following additional real solutions of (21): � �
1
2

for d � 2; � � 0.9794304 for d � 10; and � � 0.9937218 for
d � 18. Table I specifies the optimal points x*1, x*2 for the
values of d used in our experimental performance evalua-
tion. Figure 5 depicts Brown’s almost linear function for the
case d � 2. When a given search procedure terminates on
this test problem, we determine which of the two optimal
points is closer in Euclidean distance and we use that opti-
mal point for calculating performance measures A and B.

3.1.6 Test Problem 6: Corana Function

In some respects, the Corana function (Corana et al. 1987)
represents the most difficult test problem used in our exper-
imental performance evaluation. We take

� � �x � Rd�	ai � xi � ai for i � 1, . . . , d� ,

where ai � 104 for i � 1, . . . , d, and we define a set of
“pockets” within � as follows:

�k1, . . . ,kd � �x � ��kisi 	 ti � xi 	 1 � kisi � ti

for i � 1, . . . , d� ,

where k1, . . . , kd are integers, the vectors t � (t1, . . . , td) and
s � (s1, . . . , sd) are composed of positive real numbers, and
ti 
 si/2 for i � 1, . . . , d. From this we define � to be the
family of open, disjoint, rectangular subdomains of Rd

within � defined as follows:

� � �
k1�	�

��

· · · �
kd�	�

��

�k1, . . . ,kd 	 �0, . . . ,0 .

The Corana function is defined by

� �x� � � 1 � � i�1
d ci� xi 	 1�2, for x � � 	 � ,

1 � � � i�1
d ci� zi 	 1�2, for x � � ,

where

zi � � kisi � ti , if ki � 0,
0, if ki � 0,

kisi 	 ti , if ki � 0,
� for i � 1, . . . , d .

The initial point is given by x1 � [2, . . . , 2], and the optimal
function value �* � 1 is achieved at the point x* � [1, . . . , 1].
We used si � 0.2, ti � 0.05 for i � 1, . . . , d, and � � 0.15 as
is usually done in applications of the Corana function. Table
II specifies the coefficients {ci�1 � i � d} used in our exper-
imentation with the Corana function. Figure 6 depicts the
Corana function for the case that d � 2 and c1 � c2 � 1. Note
that a value of c2 � 1000 (as is used in our analysis, but not
shown in Figure 6) causes the response surface to be ex-
tremely steep in the second coordinate direction.

3.2 Summary of Experimental Results
In the experimental performance evaluation, we sought to
include “low,” “medium,” and “high” levels of dimension-
ality and noise variability. For the “low” level of dimension-
ality, d � 2 is the natural choice. Since the literature indicates
that simplex-search type procedures tend to perform well

Table I. Optimal Points of Brown’s Almost-Linear
Function (Test Problem 5)

d Optimal Points

2 x*1 � [1, 1], x*2 � [1/2, 2]

10 x*1 � [1, . . . , 1],
x*2 � [0.9794304, . . . , 0.9794304, 1.2056959]

18 x*1 � [1, . . . , 1],
x*2 � [0.9937218, . . . , 0.9937218, 1.1130085]

Figure 5. Test problem 5: Brown’s almost-linear function
for d � 2.

Table II. Coefficients {ci�1 � i � d} of Corana Function
(Test Problem 6)

i ci i ci i ci i ci

1 1 6 10 11 100 16 1000
2 1000 7 100 12 1000 17 1
3 10 8 1000 13 1 18 10
4 100 9 1 14 10 19 100
5 1 10 10 15 100 20 1000
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for d � 10 (Nelder and Mead 1965, Barton and Ivey 1996), we
took d � 10 as the “medium” level of dimensionality for all
test problems except problem 4, where we took d � 8 to
satisfy the requirements of the extended Powell singular
function. Based on our previous computational experience
with the Nelder-Mead procedure in a wide variety of statis-
tical-estimation problems involving minimization of func-
tions of up to 20 independent variables (Wagner and Wilson
1996, Kuhl and Wilson 2000), we took d � 18 as the “high”
level of dimensionality for all test problems except problem
4, where we took d � 16.

To gauge the effect of increasing levels of noise variability
on the selected simplex-search-type procedures, we took
each sampled response to have the form �̂(x) � �(x) � �,
where �(�) is one of the selected test functions described in
Section 3.1 and � is randomly sampled from a normal dis-
tribution with a mean of zero and a standard deviation of
0.75, 1.0, or 1.25 times the magnitude of the optimal response
��*�. This arrangement provided “low,” “medium,” and
“high” levels of variation around the true underlying re-
sponse surface relative to the optimal function value �* � 1
that was common to all six test problems.

Our study of the ith problem (1 � i � 6) constituted a
complete factorial experiment in which there were three
factors each at three levels as defined below:

Pj � jth level of optimization procedure

� � NM for j � 0,
RSS for j � 1,

RS�S9 for j � 2;

Qk � kth level of problem dimensionality

� � 2 �4 in problem 4� for k � 1,
10 �8 in problem 4� for k � 2,

18 �16 in problem 4� for k � 3;

and

Nl � lth level of noise standard deviation

� � 0.75 ��* � for l � 1,
1.00 ��* � for l � 2,
1.25 ��* � for l � 3.

Within the ith experiment and for each of the selected per-
formance measures that were observed on the mth replica-
tion of the treatment combination (Pj, Qk, Nl), we postulated
a statistical model of the form

Zijklm � �0 � �PWPj � �QWQk � �NWNl

� �PQWPjWQk � �PNWPjWNl � �QNWQkWNl � � ijklm ,

(22)

where 1 � i � 6, 1 � m � 9, and the “coded” independent
variables WPj

, WQk
, and WNl

are defined as follows:

WPj � � 	1, for j � 0,
0, for j � 1,

�1, for j � 2;

WQk � � 	1, for k � 1,
0, for k � 2,

�1, for k � 3;
and WNl � � 	1, for l � 1,

0, for l � 2,
�1, for l � 3.

We used the statistical model (22) to perform analysis of
variance (ANOVA) and appropriate follow-up multiple
comparisons procedures for each of the performance mea-
sures L, D, B, and A; and for these performance measures,
the dependent variable Zijklm is given by Lijklm, Dijklm, Bijklm,
or Aijklm, respectively.

To assess the validity of the statistical model (22) on
which our experimental performance evaluation is based,
we examined the estimated residuals for this model using
normal probability plots and the Shapiro-Wilk test for nor-
mality (Shapiro and Wilk 1965). Figures 7 to 10, respectively,
display normal probability plots for the residuals corre-
sponding to the performance measures L, D, B, and A in test
problem 1. The P-values for the Shapiro-Wilk test statistics
corresponding to Figures 7 through 10 are 0.99, 0.98, 0.99,

Figure 6. Plot of Corana function (test problem 6) for d �
2.

Figure 7. Normal probability plot of estimated residuals
in the ANOVA model (22) for performance measure L of
test problem 1.
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and 0.98, respectively. These results are representative of the
other 20 cases discussed in Humphrey (1997). We believe
these results provide substantial visual and statistical evi-
dence that the residuals associated with the ANOVA model
(22) are approximately normally distributed with a constant
variance across all levels of the independent variables Pj, Qk,
and Nl. For a more detailed discussion of the validation of
(22) including formal statistical tests for homogeneity of the
response variances, see Humphrey and Wilson (2000).

We computed average performance measures for each
problem i (1 � i � 6) and optimization procedure j (0 � j �
2) as follows:

L� ij �
1

81 �
k�1

3 �
l�1

3 �
m�1

9

Lijklm ;

and D� ij, B� ij, and A� ij are defined similarly. For problem i
separately (1 � i � 6), we used the ANOVA procedure of
SAS (SAS Institute 1989) to compare L� i0, L� i1, and L� i2 via a
Ryan-Einot-Gabriel-Welsch multiple comparisons F-test
(Einot and Gabriel 1975) with level of significance 0.05. This
test looks for significant differences among the means, and

groups the means accordingly (where means not signifi-
cantly different from each other are placed within the same
group). This type of test was performed 24 times so that each
of the three optimization procedures was compared against
the other two procedures with respect to each of the four
performance measures on all six test problems. It should be
recognized that the overall level of significance 0.05 for the
multiple-comparisons tests discussed in the next section ap-
plies to each combination of test problem and performance
measure separately. Because the performance of the selected
optimization procedures differed so drastically between test
problems, it was necessary to analyze the results for each
test problem as a separate experiment. Table III summarizes
the results of these F-tests, and Section 3.3 below contains an
analysis of these results.

3.3 Analysis of Experimental Results
Most of the analysis of this section is based directly on the
information presented in Table III. We consider each of the
performance measures separately over the six problems
studied. Humphrey (1997) provides complete details on the
analysis of the experimental results.

3.3.1 ANOVA Results

The ANOVA results provide additional evidence of the
adequacy of the statistical model (22) for the purposes of this
study. All R2 values are above 0.93, and most are above 0.99.
For each test problem, the ANOVA reveals two significant
main effects—problem dimensionality and optimization
procedure. As the dimensionality of each test problem in-
creased, optimization of the associated function became
more difficult; and this phenomenon resulted in large F-
values for the dimensionality factor (Qk).

For each test problem, the corresponding ANOVA for (22)
also reveals that optimization procedure (Pj) is a highly
significant main effect. As suggested by Table III and elab-
orated in the next four subsections, the principal source of
this significant effect was the generally superior perfor-
mance of procedure RSS versus procedures NM and RS�S9
with respect to the performance measures A, B, and D.

Figure 9. Normal probability plot of estimated residuals
in the ANOVA model (22) for performance measure B in
test problem 1.

Figure 8. Normal probability plot of estimated residuals
in the ANOVA model (22) for performance measure D of
test problem 1.

Figure 10. Normal probability plot of estimated residuals
for ANOVA model (22) of performance measure A in test
problem 1.
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Of the two-factor interactions represented in (22), the only
significant effect is the interaction of problem dimensional-
ity with search procedure. Unfortunately, we have been
unable to draw any general conclusions about the relative
advantages or disadvantages of the three search procedures
with increasing dimensionality. We believe that this issue
should be the subject of future investigation.

3.3.2 Number of Function Evaluations

In terms of the logarithm of the number of function eval-
uations performed, Table III shows that procedures RSS
and RS�S9 were roughly comparable, while procedure
NM required significantly less work than RSS or RS�S9 to
deliver a final answer. If we take the number of function
evaluations for procedure NM as a baseline, then from
Table IV we see that procedures RSS and RS�S9 generally

required about four times as many function evaluations as
procedure NM.

3.3.3 Final Function Value at Estimated Optimum

The results presented in Table III for the performance mea-
sure D warrant further discussion. In every test problem
except problem 2, procedure RSS yielded an average value
of D that is significantly smaller than the average D-values
produced by either NM or RS�S9. In problem 2 (that is, the
trigonometric function with the lattice (20) of optimal
points), procedures RSS and RS�S9 yielded results that are
not statistically distinguishable from each other but are sig-
nificantly better than the results of procedure NM. More-
over, notice that with respect to the performance measure D,
procedure RSS performed much better than either RS�S9 or
NM on two of the six problems (namely, problems 1 and 4).

3.3.4 Maximum Relative Component Deviation from
Global Optimum

With respect to the performance measure B, Table III shows
that procedure RSS significantly outperformed both proce-
dures NM and RS�S9. In problem 1, procedure RSS has a
B� -value of about 0.38 while the corresponding B� -values for
procedures RS�S9 and NM are each about 1.28. The results
are less dramatic for problems 2–5, but they still clearly favor

Table IV. Relative Computational Effort of Procedures

Procedure

Problem

Avg1 2 3 4 5 6

NM 1 1 1 1 1 1 1
RSS 3.2 3.6 3.1 4.5 3.1 3.9 3.6
RS�S9 3.6 4.7 3.3 3.5 3.8 4.3 3.8

Table III. Results of Multiple Comparisons Tests on Procedures NM, RS�S9, and RSS for Level of Significance 0.05

Prob
i

Performance Measure

L� ij D� ij B� ij A� ij

Proc j Value Gr* Proc j Value Gr* Proc j Value Gr* Proc j Value Gr*

1 RS�S9 6.86 1 NM 5.10 1 NM 1.28 1 NM 0.41 1
RSS 6.68 2 RS�S9 4.94 2 RS�S9 1.28 1 RS�S9 0.40 1
NM 5.57 3 RSS 0.48 3 RSS 0.38 2 RSS 0.19 2

2 RS�S9 7.06 1 NM 0.22 1 NM 0.47 1 NM 0.29 1
RSS 6.83 2 RSS 0.12 2 RS�S9 0.39 2 RS�S9 0.24 2
NM 5.56 3 RS�S9 0.10 2 RSS 0.35 3 RSS 0.20 3

3 RS�S9 6.69 1 NM 20.2 1 NM 2.01 1 RS�S9 1.04 1
RSS 6.68 1 RS�S9 20.0 1 RS�S9 2.01 1 NM 1.04 1
NM 5.50 2 RSS 18.2 2 RSS 1.74 2 RSS 0.96 2

4 RSS 7.25 1 NM 11.0 1 NM 1.66 1 NM 0.84 1
RS�S9 7.02 2 RS�S9 10.1 2 RS�S9 1.59 2 RS�S9 0.79 2
NM 5.78 3 RSS 3.76 3 RSS 0.95 3 RSS 0.41 3

5 RS�S9 6.89 1 NM 1.85 1 RS�S9 0.78 1 RS�S9 0.32 1
RSS 6.68 2 RS�S9 1.56 1 NM 0.78 1 NM 0.30 1
NM 5.57 3 RSS 0.53 2 RSS 0.55 2 RSS 0.29 1

6 RS�S9 6.98 1 RS�S9 245.2 1 RSS 1.75 1 NM 0.99 1
RSS 6.91 2 NM 238.3 2 NM 1.53 2 1 RS�S9 0.92 1
NM 5.60 3 RSS 229.8 3 RS�S9 1.40 2 RSS 0.92 1

*Grouping of procedures with nonsignificant differences in performance based on Ryan-Einot-Gabriel-Welsch multiple
comparison procedure.
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RSS. In problem 6, however, there is no clear-cut distinction
between the performances of the three procedures.

3.3.5 Average Relative Component Deviation from
Global Optimum

With respect to the performance measure A, Table III shows
that procedure RSS significantly outperformed procedures
NM and RS�S9 in the first four problems. In problems 5 and
6 there are no significant differences in the performances of
the three procedures.

4. Conclusions and Recommendations for Future Research

4.1 Conclusions
The results of our experimental performance evaluation of
procedures NM, RS�S9, and RSS show that in the six test
problems, procedure RSS required roughly as much work as
procedure RS�S9 and about four times as much work as
procedure NM. However, in four of the six test problems,
procedure RSS significantly outperformed RS�S9 and NM
with respect to all measures of convergence to the optimum;
and in the other two test problems, RSS consistently deliv-
ered results at least as good as the results for procedures NM
and RS�S9. Although such experimental results are ex-
tremely difficult to generalize, they do suggest that signifi-
cant improvements in the performance of simplex-search-
type procedures can be achieved by exploiting the principal
features of procedure RSS—namely, a multiphase approach
in which (a) the search is restarted in the second and sub-
sequent phases; (b) in successive phases the size of the initial
simplex is progressively reduced while the shrink coefficient
is progressively increased to provide adequate protection
against premature termination; and (c) in the end the best
solution is taken over all phases of the search procedure.

4.2 Recommendations for Future Research
The analysis in Section 4 raises questions and issues that
merit consideration for future work. The suite of six test
problems should be enlarged to provide for analysis on a
collection of test problems that encompasses an even
broader range of the following factors: degree of difficulty,
dimensionality, and response surface geometry. The exper-
imental performance evaluation should also be expanded to
include other variants of procedure NM.

Another promising area for future research is a more
detailed study of the effects of dimensionality on the per-
formance of procedure RSS. While our study looked at di-
mensionalities d � 2, 10, 18 (d � 4, 8, 16 for test problem 4),
a more detailed examination of dimensionalities within and
above this range could probably provide additional insight
into how procedure RSS performs as the number of design
variables changes.

Finally, an effort should be made to formulate some rules

of thumb for the use of procedure RSS in general applica-
tions. Particular issues of interest are how to set the starting
point x1 and the initial step size parameter � for the search
procedure. We believe that future progress in the develop-
ment of effective and efficient simplex-search-type proce-
dures will depend critically on the development of generally
applicable, robust techniques for adjusting these quantities
to the problem at hand.
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Moré, J.J., B.S. Garbow, K.E. Hillstrom. 1981. Testing unconstrained
optimization software. ACM Transactions on Mathematical Software
7 17–41.

Nelder, J.A., R. Mead. 1965. A simplex method for function mini-
mization. Computer Journal 7 308–313.

J.M. Parkinson, D. Hutchinson. 1972. An investigation into the
efficiency of variants on the simplex method. F.A. Lootsma, ed.
Numerical Methods for Non-linear Optimization. Academic Press,
London. 115–135.

SAS Institute, Inc., 1989. SAS/STAT User’s Guide, Version 6, Fourth
Edition. SAS Institute Inc., Cary, NC.

Shapiro, S.S., M.B. Wilk. 1965. An analysis of variance test for
normality. Biometrika 52 591–611.

Wagner, M.A.F., J.R. Wilson. 1996. Using univariate Bézier distri-
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