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Abstract

Much research effort on Automatic Image Annotation
(AIA) has been focused on Generative Model, due to its well
formed theory and competitive performance as compared
with many well designed and sophisticated methods. How-
ever, when considering semantic context for annotation, the
model suffers from the weak learning ability. This is mainly
due to the lack of parameter setting and appropriate learn-
ing strategy for characterizing the semantic context in the
traditional generative model. In this paper, we present a
new approach based on Multiple Markov Random Fields
(MRF) for semantic context modeling and learning. Dif-
fering from previous MRF related AIA approach, we ex-
plore the optimal parameter estimation and model infer-
ence systematically to leverage the learning power of tra-
ditional generative model. Specifically, we propose new
potential function for site modeling based on generative
model and build local graphs for each annotation keyword.
The parameter estimation and model inference is performed
in local optimal sense. We conduct experiments on com-
monly used benchmarks. On Corel 5000 images [3], we
achieved 0.36 and 0.31 in recall and precision respectively
on 263 keywords. This is a very significant improvement
over the best reported result of the current state-of-the-art
approaches.

1. Introduction

Automatic Image Annotation (AIA) becomes increas-
ingly important due to its potential in many interesting ap-
plications, such as keyword based image and video retrieval
and browsing. However, a major bottleneck of AIA is the
so-called semantic gap problem due to the mismatch be-
tween visual perception and high-level semantics. To deal
with this challenge, various AIA models, mostly based on
the discriminative models and the generative probabilistic
models, have been proposed in the current literature. Dis-

criminative model treats AIA as a classification problem, by
treating each semantic concept or keyword as a class. Ear-
lier studies were devoted to develop binary classifiers, while
most recent works viewed the problem as a multi-class clas-
sification. Generative model, on the other hand, focuses
on learning the correlations between visual features and se-
mantic concepts. An influential work is the Cross-Media
Relevance Model (CMRM) [5], which estimates the joint
probability of visual-based keywords and text-based seman-
tic keywords from training samples. CMRM was subse-
quently improved by Continuous Relevance Model (CRM)
[8] and Multiple Bernoulli Relevance Model (MBRM) [4],
which are recognized as the state-of-the-art approaches in
AIA.

In addition to learning from visual features, the context
relationship among semantic concepts is another vivid clue
which could be employed for inferring the semantics of im-
ages. For instance, bird and tree co-occur frequently as se-
mantic labels of images. Intuitively this provides strong hint
of labeling a new image as “bird” with higher confidence if
we also know that there is a high probability for “tree” to
be present in the image. Such context relationship has in-
deed been exploited in both discriminative and generative
models. The former extends AIA as a multi-label classifi-
cation problem [13], while the later exploits the correlations
between keywords [11][16].

While generative models such as CRM and MBRM have
shown very competitive performance, the learning ability,
specifically when context relationship being considered, re-
mains limited. The weak learning ability is mainly due to
the lack of proper parameter setting for modeling semantic
context. On one hand, most approaches emphasize model
simplicity by using fewer parameters [8][4], resulting in
over abbreviation of the model for context modeling. On
the other hand, it becomes natural to expect that parame-
ter optimization can pose serious computational problem if
more parameters are included. While there is a trade-off
between model simplicity and annotation effectiveness, ex-
isting approaches, such as CLM [6] and DCMRM [11] de-
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veloped based upon CRM for modeling semantic context,
adopt simple parametric model and offer only limited per-
formance improvement as compared to CRM and MBRM.

Different from previous studies [11][6][13][14], we re-
visit the generative model by addressing the learning of se-
mantic context when more parameters mandatory for mod-
eling the relationship are considered. We adopt Multiple
Markov Random Field (MRF) to boost the potential of tra-
ditional generative model for AIA problem. Specifically,
we model the context relationship among semantic con-
cepts with keyword subgraphs generated from training sam-
ples for each keyword. We present new site potential func-
tion based on generative model for adaptively label predic-
tion. The model parameters are learnt by maximum pseudo-
likelihood with Gaussian prior for regularization. In addi-
tion, our model determines the number of semantic labels of
an image automatically and is robust to the inherent data im-
balance problem – a challenge often comes alongside with
most training sets with semantic labels.

Differing from previous MRF related AIA, such as CML
[13] which focuses on global keyword graph building and
ignores the parameter estimation of MRF, our main contri-
bution is that we fully explore the learning ability of Multi-
ple MRFs to realize the full potentials of the widely studied
traditional generative models for AIA. Our approach pro-
vides a better mean of modeling when more parameters are
indeed mandatory for characterizing the underlying seman-
tic context. Therefore, we achieved very significant im-
provement on annotation performance. In our experiment
on Corel dataset [3] we achieved 0.36 and 0.31 respectively
in recall and precision, which is a significant improvement
over the best reported results. We also reported very en-
couraging results on TRECVID dataset.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 presents the model set-
ting for MRF, while sections 4 and 5 outline our approaches
for parameter estimation and model inference respectively.
Section 6 details the AIA procedure using MRF. Section 7
presents the experimental results, and Section 8 concludes
this paper.

2. Related Work
A significant amount of research efforts have been de-

voted to the problem of AIA. Generative model based meth-
ods attempt to estimate the joint probability of image and
keywords. Duygulu et al. [3] used a machine transla-
tion model to link keywords and image regions. Jeon et
al. [5] proposed cross-media relevance model (CMRM)
to estimate the joint probability of keywords and image
using discrete blobs to represent regions. It was subse-
quently improved by continuous relevance model (CRM)
[8] and multiple Bernoulli relevance model (MBRM) [4].
Liu et al. [11] proposed a dual cross-media relevance model

(DCMRM), which integrates keyword relationship, image
retrieval, and web search techniques together to infer the
semantics of image. Wang et al. [14] proposed a Markov
model-based image annotation (MBIA) method, in which
keywords are treated as the states of a Markov chain. Dis-
criminative model based methods apply classification tech-
niques to train classifiers for image labeling. Yang et al.
[15] proposed an asymmetrical support vector machine for
region-based image annotation. Carneiro et al. [2] proposed
a supervised multi-class labeling (SML) approach, which
estimates the class density based on image-level and class-
level Gaussian mixtures. To utilize keyword correlation in
the annotation process, multi-label classification techniques
receive more attentions nowadays. Kang et al. [7] extended
the standard label propagation algorithms to propagate mul-
tiple labels.

Markov random fields are widely used in many com-
puter vision problems, such as image segmentation [12],
object detection [10], etc. In these applications, MRFs are
used for modeling the spatial relationships between pixels.
Recently, Cao et al. [1] applied conditional random fields
(CRF) based on event and scene model for photo annota-
tion. Qi et al. [13] proposed a correlative multi-label (CML)
annotation framework which simultaneously classifies con-
cepts and models their correlations for video annotation. It
is related to MRF, but is limited to global keyword graph
building while lacking focus on MRF model estimation.

3. Multiple Markov Random Fields Based Au-
tomatic Image Annotation

In this section, we first give a brief introduction to MRF
theory, and then detail the construction of our MRFs for
image annotation.

3.1. Markov Random Field

A set of random variables F = {f1, f2, · · · , fm} is said
to be a Markov random field on sites S = {1, 2, · · · ,m}
with respect to a neighborhood system N = {Ni|i ∈ S},
where Ni is the set of sites neighboring i, if and only if the
following two conditions are satisfied:

P (f) > 0,∀f ∈ F, (1)

P (fi|fS−{i}) = P (fi|fNi), ∀i ∈ S, (2)

where f = (f1, f2, · · · , fm)T is a random variable vector
and fA = {fi|fi ∈ F and i ∈ A}. Equ. 2 indicates that
a random variable only interacts with its neighboring vari-
ables. The Hammersley-Clifford theorem states that every
MRF obeys the following distribution:

P (f) = Z−1 × e−U(f), (3)

1154



where
Z =

∑
f

e−U(f) (4)

is a normalizing constant called partition function, and U(f)
is the energy function. It is the sum of clique potentials
Vc(f) over all possible cliques C. In this paper, we only
consider cliques of order up to two. So the energy function
can be reduced to

U(f) =
∑
i∈S

V1(fi) +
∑
i∈S

∑
i′∈Ni

V2(fi, fi′). (5)

Detailed introduction of MRFs and their applications in
computer vision can be found in [9].

3.2. Keyword Graph

In our framework, the construction of the graph struc-
ture of MRF is based on the keyword correlations extracted
from training set T =

{
(dk, fk)

}K

k=1
, where dk is the fea-

ture vector of the kth image, fk is the corresponding la-
bel vector, and K is the size of the training set. fk =
(fk

1 , fk
2 , · · · , fk

|V|)
T , where fk

i ∈ {−1,+1} indicates the
absence or presence of keyword wi in a pre-defined vocab-
ulary set V . In the training set, each image is associated
with a set of keywords, which is similar to the so called
“bag-of-words” text representation model in text retrieval.
We consider each training image as a document, and the
associated keywords as the words in the document. Thus
the training set can be viewed as a corpus. We then use
keyword co-occurrence in the corpus to define the corre-
lations between keywords. Specifically, if two keywords
co-occur in the corpus, we consider them to be correlated.
Based on the so-defined correlations between keywords, we
build a keyword graph as follows. Let the keyword set be
S = {1, 2, · · · ,m}, where i ∈ S corresponds to keyword
wi in vocabulary V . We construct a graph G = (S, E) on
keyword set S , where (i, i′) ∈ E if and only if i and i′ are
correlated.

3.3. Generative Model based Potential Function

Instead of building a single MRF on the keyword graph
G as in [13], we construct one MRF for each keyword
in the vocabulary V to capture different semantics among
keywords. In order to define the sites and neighborhood
system of the MRF for keyword wi, we extract a sub-
graph Gi = (Si, Ei) from G, where Si = {i} ∪ Ni, and
Ei = {(i, j)|i, j ∈ Si and (i, j) ∈ E}. We treat the key-
words in Si as the sites, and two sites are neighbors to each
other if there is an edge between them. Thus the MRF takes
into account all the keywords correlated with wi. In the rest
of this section, we discuss the MRF for a single keyword
wi. We still use S to denote the sites of the single keyword
MRF for clarity.

For image annotation task, we employ random variable
fi which takes value from {−1,+1} to indicate the absence
or presence of keyword wi for an image, ∀i ∈ S. The value
of fi is said to be the label of site i. We define the site
potential as:

V1(fi) = fi(λi + αiP (d, wi)), (6)

where P (d, wi) is the joint probability of image feature d
and keyword wi, which can be obtained from a generative
model based image annotation method. And λi, αi are the
parameters to be estimated. The motivation of Equ. 6 is, if
αi < 0, the more probable label for high P (d, wi) is +1,
which corresponds to lower site potential. We define the
edge potential as:

V2(fi, fi′) = βii′fifi′P (d, wi′), (7)

where βii′ is the parameter to be estimated. The edge po-
tential incorporates the joint probability of image feature d
and the correlated keyword wi′ . By substituting Equ. 6 and
Equ. 7 into Equ. 5, we get the energy function:

U(f |θ) =
∑
i∈S

fi (λi + αiP (d, wi)) +∑
i∈S

∑
i′∈Ni

βii′fifi′P (d, wi′), (8)

where θ denotes the parameters of the MRF. Note that in
Equ. 8, we assume the image feature d has been observed.

Most existing approaches based on generative model can
be directly incorporated into the proposed MRF framework.
In our case, we employ MBRM [4] to estimate P (d, w),
which is the expectation computed over the images in the
training set. Since each keyword appears in an image only
once, it is more appropriate to describe annotation keywords
with Bernoulli distribution. Meanwhile, a beta prior (con-
jugate to a Bernoulli) is applied for smoothing. For details
please refer to [4].

Up to now, we have outlined the construction of the MRF
for depicting the semantic context of keywords. We will
further present the estimation of parameters in the energy
function in next section.

4. Parameter Estimation

4.1. Pseudo-likelihood

The widely used technique for parameter estimation in
MRFs is maximum likelihood, which chooses the parame-
ters that maximize the joint probability (Equ. 3) of labels
(likelihood of parameters). However, evaluating the parti-
tion function (Equ. 4) is intractable in practice, because the
number of configurations is exponential to the size of the
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sites. So we adopt an approximation scheme called pseudo-
likelihood to avoid the evaluation of the partition function
[9]. The pseudo-likelihood is defined as

PL(f) =
∏
i∈S

P (fi|fNi) =
∏
i∈S

e−Ui(fi,fNi
)∑

fi
e−Ui(fi,fNi

)
, (9)

where

Ui(fi, fNi) = V1(fi) +
∑

i′∈Ni

V2(fi, fi′), (10)

is the energy introduced by site i. Because fi and fNi are
not independent, the pseudo-likelihood is not the true like-
lihood. Substituting Equ. 6 and Equ. 7 into Equ. 10, we
can get:

Ui(fi, fNi) = fi (λi + αiP (d, wi)) +∑
i′∈Ni

βii′fifi′P (d, wi′). (11)

Let

θi = (λi, αi, βii′∀i′∈Ni)
T , (12)

xi = (1, P (d, wi), fi′P (d, wi′)∀i′∈Ni)
T , (13)

then we can rewrite Equ. 11 to

Ui(fi, fNi) = fiθ
T
i xi, (14)

where θi is the parameter associated with site i, and xi is
the training data constructed for site i. Substituting Equ. 14
into Equ. 9, the pseudo-likelihood is given by

PL(f) =
∏
i∈S

e−fiθ
T
i xi

e−θT
i xi + eθT

i xi
. (15)

The parameters θ = (θT
1 , θT

2 , · · · , θT
|S|)

T are estimated by
maximizing the pseudo-likelihood with regularization on
the training images.

4.2. Maximum Pseudo-likelihood with Regulariza-
tion

Suppose we have constructed a training data set
T = {(xk, fk)}K

k=1 for the working MRF, where xk =
{xk

1 ,xk
2 , · · · ,xk

|S|}, xk
i is defined as in Equ. 13 for the kth

image, and fk = (fk
1 , fk

2 , · · · , fk
|S|)

T , fk
i is the label of

site i for the kth image. Then the pseudo-likelihood on the
training set T is

K∏
k=1

PL(fk) =
K∏

k=1

∏
i∈S

P (fk
i |fk

Ni
)

=
∏
i∈S

K∏
k=1

P (fk
i |fk

Ni
) =

∏
i∈S

PLi, (16)

where

PLi =
K∏

k=1

P (fk
i |fk

Ni
) (17)

is the pseudo-likelihood on site i. Because there is no
shared parameter between any PLi, the maximum pseudo-
likelihood estimation θ = (θT

1 , θT
2 , · · · , θT

|S|)
T of Equ. 16

can be obtained by maximize PLi to obtain the parameters
θi (Equ. 12) for each sites. Note that this property not only
speeds up the parameter estimation process significantly,
but also enables us to estimate the parameters on different
sites with their own training data sets. With the specific
training set for each site of the MRF, the problem of data
imbalance can be mitigated in some extent. Now we con-
centrate on maximizing PLi to get the pseudo-likelihood
estimation of θi.

Suppose we have constructed a training set Ti =
{(xk

i , fk
i )}Ki

k=1 for site i, then the log pseudo-likelihood on
site i is

lnPLi =
Ki∑
k=1

ln P (fk
i |fk

Ni
)

=
Ki∑
k=1

{
(1 − fk

i )θT
i xk

i − ln(1 + e2θT
i xk

i )
}

. (18)

The excessive number of parameters can cause over-fitting
problem when there is insufficient training examples avail-
able. To deal with this problem, we penalize the log pseudo-
likelihood Equ. 18 with a spherical Gaussian weight prior:

Li(θi) =
Ki∑

k=1

{
(1− fk

i )θT
i xk

i − ln(1 + e2θT
i xk

i )
}
− ‖θi‖2

2σ2
,

(19)
where the value of σ is chosen empirically and constrained
to be the same for all the sites. To maximize Equ. 19, we
set its derivatives to zero. These score equations are

∂Li(θi)
∂θi

=
Ki∑
k=1

{
xk

i

(
1 − fk

i − 2P (xk
i ; θi)

) }
− θi

σ2
, (20)

where

P (xk
i ; θi) =

e2θT
i xk

i

1 + e2θT
i xk

i

. (21)

To solve the score equations in Equ. 20, we employ the
Newton-Raphson algorithm, which requires the Hessian
matrix

∂2Li(θi)
∂θi∂θT

i

= −4
Ki∑
k=1

{
xk

i x
kT

i P (xk
i ; θi)

(
1 − P (xk

i ; θi)
) }

− I
σ2

,

(22)
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where I is the identity matrix. Starting with θold
i , a single

Newton-Raphson update is

θnew
i = θold

i −
(

∂2Li

∂θi∂θT
i

)−1
∂Li

∂θi
, (23)

where the derivatives are evaluated at θold
i . The Newton-

Raphson algorithm will converge, because the penalized log
pseudo-likelihood Equ. 19 is concave.

5. Model Inference
The inference problem in MRFs is to find the most prob-

able configuration of the sites:

f∗ ← arg max
f

P (f), (24)

where P (f) is given by Equ. 3. We employ an algo-
rithm called iterative conditional modes (ICM) for infer-
ence, which maximizes local conditional probabilities se-
quentially. In the (k + 1)th iteration step, given the image
feature d and the other labels f

(k)
S−{i}, the algorithm sequen-

tially updates each f
(k)
i into f

(k+1)
i by maximizing the con-

ditional probability P (fi|d, f
(k)
S−{i}). Because in a MRF,

fi only depends on the labels in its neighborhood, we can
equivalently maximize

P (fi|d, f
(k)
Ni

). (25)

Maximizing Equ. 25 is equivalent to minimizing the corre-
sponding potential using the following rule

f
(k+1)
i ← arg min

fi

Ui(fi, fNi), (26)

which is equivalent to

f
(k+1)
i =

{
1, if θT

i xi ≤ 0
−1, if θT

i xi > 0 , (27)

where θi is the estimated parameter of site i, and xi is the
training data constructed for site i based on the image fea-
ture. Starting from an initial configuration, the iteration
continues until convergence, and then we can get the most
probable labels of the sites.

6. Image Annotation
In this section, we outline the algorithms for MRF learn-

ing and image annotation.

6.1. Training Set Construction

In order to perform parameter estimation, we construct
the training data for each site of the MRF from training data
set T . Suppose we want to build a training set Ti for site

i, which corresponds to keyword wi. We first sample the
training set T to get a new set T ′

i of size Ki with a more bal-
anced positive and negative samples for keyword wi, where
the positive samples are images labeled with keyword wi.
Sampling is helpful to deal with the data imbalance problem
in the training set, because in practical systems, there are far
more negative samples than the positive ones. We utilize
all the positive samples of a keyword and randomly select a
subset of negative samples whose size is larger than the pos-
itive sample set by a small factor δ, where δ = 1 in our ex-
periments. The reason is that if we have sufficient positive
samples, the additional negative sample would have little ef-
fect on the built model. On the other hand if the semantic is
hard to capture because of the lack of enough positive sam-
ples, then the extra negative sample can prevent the model
from generating excessive false positives. Second, for each
image dk in the training set T ′

i , we extract the labels corre-
sponding to site i and all its neighboring sites i′ ∈ Ni, and
calculate the joint probabilities P (dk, wi) and P (dk, wi′)
on these sites. Finally, we combine the labels and the joint
probabilities to form a training set Ti = {(xk

i , fk
i )}Ki

k=1,
where xk

i is defined as in Equ. 13 for the kth image, and fk
i

is the label of site i for the kth image. Algorithm 1 is the
procedure for training set construction.

Algorithm 1 Training Set Construction
1: Input: global training set T , working MRF MRF

2: Output: training set T
′′

for MRF
3: for each site i of MRF do
4: Sample T to get a much balanced data set T

′
i of size Ki

5: for each dk ∈ T
′

i do
6: Extract labels fk

i and fk
i′ , ∀i′ ∈ Ni

7: Calculate P (dk, wi) and P (dk, wi′), ∀i′ ∈ Ni

8: Calculate xk
i = (1, P (dk, wi), f

k
i′P (dk, wi′)∀i′∈Ni

)T

9: end for
10: Ti = {(xk

i , fk
i )}Ki

k=1

11: end for
12: T

′′
=

∪|S|
i=1 Ti

6.2. Annotation Algorithm

After parameter estimation on the constructed training
set, the annotation process is straightforward. For an input
image I , each MRF will output a label vector. But only the
corresponding label (label of wi for the ith MRF) will be
considered as the most confidential one and treated as the
label of I . After performing inference on all the MRFs, we
obtain the annotation of the image. Our Markov Random
Fields based Image Annotation method - MRFA is summa-
rized in Algorithm 2. Note that if we annotate a collection
of images, the construction of keyword subgraphs, the con-
struction of training sets and parameter estimation for each
MRF only need to be performed once.
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Algorithm 2 MRFA: Markov Random Field Image Anno-
tation Process

1: Input: an unlabeled image I , keyword vocabulary V , training
set T , constructed keyword graph G

2: Output: labels of image I
3: for each w ∈ V do
4: Extract a subgraph Gw from G for MRFw

5: Construct training set T
′′

w for MRFw by Algorithm 1
6: Estimate the parameters of MRFw based on T

′′
w

7: Perform inference of I on MRFw to get the label
8: end for

7. Experiment

7.1. Experimental Dataset and Evaluation

Corel Dataset: We use Corel image dataset [3] for ex-
periments. The dataset is widely used in AIA for perfor-
mance comparison. It consists of 5000 images, where 4500
images are used for training and the rest for testing. Each
image is labeled with 1-5 keywords, and a total of 374 dif-
ferent keywords are used in the dataset. Each image is seg-
mented into 1-10 regions, and a 36-dimensional feature vec-
tor is extracted for each region [3]. In addition to region-
based features, grid-based features are also used by CRM
and MBRM. Here we introduce a new type of grid features.
We partitioned each image into 26 rectangular grids (5 × 5
plus one extra center grid), and extracted a 528-dimensional
feature vector for each grid, namely 448 color features (in-
cluding local and global color histogram) and 80 edge fea-
tures extracted according to MPGE7. In the experiments,
we perform testing using both region-based and grid-based
features. We append the name of an approach with ‘-grid’,
if our grid-based features are used. For example, MBRM-
grid means MBRM using our grid-based features.

TRECVID Dataset: To evaluate our approach for video
annotation, we also conduct experiments on the benchmark
TRECVID 2005 dataset, which contains about 170 hours of
multi-lingual broadcast news. These videos are automati-
cally segmented into 61,901 shots. Each shot is further seg-
mented into 5 × 5 grids, and a 9-dimensional visual feature
vector is extracted for each grid. Thus each shot has a 225-
dimensional feature vector. There are 39 different keywords
in the dataset, and each shot is associated with 0-11 key-
words. We construct the training set with 9,000 randomly
sampled shots and the test set with another 1,000 randomly
sampled shots. Every sampled shot is labeled with at least
one keyword.

Evaluation Measures: Similar to previous work for im-
age annotation, we use recall and precision to measure the
annotation performance. Given a query word w, let |WG|
be the number of human annotated images with label w in
the test set, |WM | be the number of annotated images with
the same label of the annotation algorithm, and |WC | be

Table 1. Performance comparison with MBRM on Corel dataset
using region-based features

Models MBRM MRFA
#words with recall > 0 109 124
Average #words/image 5 4.3

Results on all 263 words
Mean Per-word Recall 0.20 0.23
Mean Per-word Precision 0.19 0.27

Results on 49 best words
Mean Per-word Recall 0.68 0.67
Mean Per-word Precision 0.64 0.76

the number of correct annotations of our algorithm, then
recall and precision are defined as recall = |WC |

|WG| and

precision = |WC |
|WM | .

7.2. Experiments Results

7.2.1 Comparison on Corel Dataset

Since MBRM is the representative generative model based
AIA approach with very competitive performance, we first
compare our proposed annotation framework, MRFA, with
MBRM on the Corel dataset using region-based features
[3]. Because most previous work can not automatically de-
termine the optimal annotation length, for MBRM, we fix
the size of each image annotation to 5 as in [4]. As our
MRFA approach can automatically decide the size of the
annotation, we let MRFA select the appropriate number of
keywords. The results are shown in Table 1. From the ta-
ble, we can see that as compared to MBRM, our proposed
MRFA method improves the annotation performance signif-
icantly. For all 263 words appearing in the test set, it gains
15% on average recall and 42% on average precision re-
spectively. For the best 49 keywords with largest F1 scores,
it gains 19% on average precision while the average recall is
nearly the same. Overall, our method labels 4.3 keywords
for each image on average, which is less than MBRM of
5. Also, our method has 124 keywords with recall larger
than 0 compared with 109 of MBRM, which means that our
method has better performance on labeling rare keywords
which are hard to annotate due to the small number of pos-
itive instances in the training set.

By using the grid-based visual features, both the perfor-
mance of MBRM and our MRFA improved significantly
compared to using region features. The results are shown
in Table 2. For all 263 keywords, our method has 172 key-
words with recall larger than 0, which is a significant 40%
improvement over MBRM. The average recall and average
precision of MRFA is 0.36 and 0.31 which again indicates
significant improvement of 44% and 35% respectively over
MBRM. For the best F1 49 words, our model also has sig-
nificant improvement on average recall and average preci-
sion. Overall, the experimental results demonstrate that our
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Table 2. Performance comparison with MBRM and single MRF
on Corel dataset using grid-based features

Models MBRM MRFA MRF-s
#words with recall > 0 123 172 136
Average #words/image 5 5.2 9.6

Results on all 263 words
Mean Per-word Recall 0.25 0.36 0.28
Mean Per-word Precision 0.23 0.31 0.20

Results on 49 best words
Mean Per-word Recall 0.75 0.79 0.69
Mean Per-word Precision 0.73 0.80 0.63

Figure 1. The annotation performance compared with other meth-
ods by Recall

Figure 2. The annotation performance compared with other meth-
ods by Precision

approach has strong ability to improve annotation accuracy
and label rare keywords. Our analysis shows that the per-
formance improvement of our method is mainly contributed
by our proposed new MRF model instead of our grid-based
visual features. To compare the performance of our multi-
ple MRF method with method that uses only global graph
MRF, we also show the annotation performance of using a
single MRF (denoted by MRF-s) for all the 374 keywords
in Table 2. The table clearly shows that by training multiple
MRFs, MRFA is able to avoid a global optimal parameter
setting which is hard to estimate, and hence achieves better
annotation performance.

Besides of MBRM [4], we also compare our approach to
five other different state-of-the-art AIA methods, including
generative model: CRM [8], CLM [6], DCMRM [11], and
discriminative model: MBIA [14], and SML [2]. Figure 1
and 2 show the comparative performance in terms of recall

Table 3. Performance comparison with MBRM on TRECVID
dataset

Models MBRM MRFA
#words with recall > 0 32 39
Average #words/image 5 3.62

Results on all 39 words
Mean Per-word Recall 0.39 0.47
Mean Per-word Precision 0.32 0.45

and precision respectively between our MRFA method and
the state-of-the-art approaches. Our method achieves the
best precision and recall, and the improvement is more than
24% as compared with the second best performing system.

Figure 3 gives some examples of annotation results of
our method and MBRM on Corel dataset. It shows that our
method not only covers the correct annotation keywords la-
beled by MBRM, but also labels more true keywords and
avoids some false alarms. For example, the annotation re-
sults of MRFA for the first and the last images are the same
as that of the ground-truth, while MBRM has false alarms.
For the third image, our MRFA even labeled a keyword cari-
bou, which should be the true keyword for this image, but
was ignored by the human annotators.

7.2.2 Comparison on TRECVID Dataset

For video data, we compare our method with MBRM on
TRECVID 2005 dataset. We fix the number of annotation
keywords per video shot for MBRM to be 5, which achieves
the best performance in our experiments. The experimen-
tal results are given in Table 3. From the table we can
see that as compared to MBRM, our method can predict all
the 39 words in the annotation vocabulary. And it achieves
improvement of 21% and 41% respectively on average re-
call and average precision, while labeling each shot with
fewer keywords. Figure 4 gives details of annotation perfor-
mance of each keyword compared to MBRM. It shows that
for most keywords our method has significant improvement
on precision as compared with MBRM. For recall, we have
14 keywords better than MBRM and 17 keywords equal to
MBRM. MRFA performs satisfactorily for rare keywords
such as “Mountain”, “Prisoner” and “Truck” that can not be
predicted by MBRM.

8. Conclusion
We have presented the formulation of Markov Random

Fields to empower the learning ability of generative model
for AIA problem. Such formulation is demonstrated to be
appropriate for learning the context relationship of semantic
concepts. The newly proposed potential function for opti-
mal parameter estimation and model inference shows sig-
nificant impact on the learning ability. Our approach also
offers great ability in labeling rare keywords and adaptive
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Figure 3. Some annotation examples on Corel dataset

Figure 4. Comparison of MRFA and MBRM on TRECVID dataset for 39 keywords. Please see color version for more clarity

determination of the number of keywords for image annota-
tion. We verified the performance of our approach through
extensive experiments on commonly used benchmarks. Par-
ticularly, we reported the state-of-the-art performance on
Corel dataset, which shows significant improvement over
six other existing approaches based on generative and dis-
criminative models.

For future work, we will focus on two directions. One
direction investigates the scalability issue when there are
thousands of keywords to be annotated. One possibility is
to explore the use of one keyword subgraph for a set of key-
words rather than one keyword as it is currently done with
great effectiveness. Another direction is to improve anno-
tation performance by leveraging on WordNet or Web re-
sources in building keyword graph.
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