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Abstract. Fitting of data points by parametric curves and surfaces is demanded
in many scientific fields. In this paper we review and analyze existing least
squares orthogonal distance fitting techniques in a general numerical optimiza-
tion framework. Two new geometric variant methods (GTDM and CDM) are pro-
posed. The geometric meanings of existing and modified optimization methods
are also revealed.
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1 Introduction

Effective and accurate curve/surface fitting plays an important role and serves as a basic
module in CAGD, computer graphics, computer vision and other scientific and engi-
neering fields. We consider a common problem which occurs often in practical appli-
cations: fit a parametric curve/surface C(P; t) (whose parametric form is known but the
parameter values are to be determined) to a set of given data points {X j}n

j=1 ⊂ R
s. Here

P are the shape parameters and t = (τ1, . . . ,τm) are location parameters (For instance, t
of a 3D parametric surface C(u,v) is (u,v)). This problem is usually stated as a standard
nonlinear least squares problem:

min
P,t1,...,tn

n

∑
j=1

‖C(P; t j)− X j‖2 (1)

Where t j is associated with the data point X j.
There exists vast literature about this problem in mathematics, statistics and com-

puter science. Despite the differences of existing methods in variant contexts, The basics
of most methods are the classical optimization theory and the optimization techniques
such as decent methods and Gauss-Newton methods [1] appear in different forms.

First we introduce the traditional way of fitting a parametric curve/surface to a given
data set in CAGD [2] [3] [4]. The first step is the parametrization which associates the
location parameter t j to each data point X j. After substituting t j into (1), the second step
is solving a linear least squares problem if the shape parameters occur in linear form;
for instance, P are the control points of the B-spline curve/surface. By executing these
two steps iteratively, improved location parameters and shape parameters are obtained.
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This approach has been widely used because of its simplicity. However its convergence
rate is slow and is proven to be linear [5]. On the other hand, without separating P
and t1, . . . , tn, the general optimization techniques of course can be applied. One can
optimize P, t1, . . . , tn simultaneously [6] [7]. Moreover if P are in the linear form, the
separable nonlinear least squares method (variable projection) can be employed and is
better than the simultaneous method [5] [8] [9]. But the size of corresponding nonlin-
ear least squares problem becomes larger when n increases. Therefore these methods
are not suitable for fitting a large number of data points. In the metrology and pattern
recognition communities people prefer the least squares orthogonal distance technique
which is an iterative method and considers the relationship between shape parameters
and location parameters. We refer the reader to the papers [10] [11] for detailed refer-
ences. In [12] a curvature-based squared distance minimization(SDM) is proposed for
orthogonal distance fitting for B-spline curve fitting. In this paper we consider general
parametric curve/surface fitting problems, which are not limited in 2D, 3D curves and
surfaces.

Contributions: Inspired by the approaches in [10] [12], we aim to analyze the ex-
isting orthogonal distance techniques by rephrasing them into a general optimization
framework. We propose two modified methods CDM and GTDM based on geometric
and optimizational analysis. We reveal that the existing and our proposed methods have
clear geometric meanings. This better understanding will benefit the general parametric
models fitting.

The paper is organized as follows: the basic concepts and necessary optimization
techniques are introduced in Section 2; In Section 3 the detailed analysis of orthogonal
distance fitting is presented including the derivation of the geometric meanings and the
modified methods; in Section 4, we illustrate the effectiveness of different methods by
numerical examples; finally we close the paper by the conclusion in Section 5.

2 Preliminary

2.1 Notations

Let C(P; t) ⊂ R
s represent a family of parametric curves or surfaces. A set of points

{X j}n
j=1 ⊂ R

s are to be approximated by C(P; t). Here t = (τ1, . . . ,τm) ∈ R
m is the

location parameter and P = (p1, . . . , pr) is the shape parameter. For instance, if m = 1,
C(P; t) represents a parametric curve. We assume that C(P; t) has C2 continuity. In
this paper vectors and matrices are denoted by bold face and vectors are in the column
format. The first-order partial derivatives of C(P; t) are denoted as follows:

∂C(P; t)
∂P

=
[

∂C(P; t)
∂ p1

, . . . ,
∂C(P; t)

∂ pr

]
,

∂C(P; t)
∂ t

=
[

∂C(P; t)
∂τ1

, . . . ,
∂C(P; t)

∂τm

]

∇Pt =

⎡
⎢⎢⎢⎢⎣

∂τ1

∂ p1
· · · ∂τm

∂ p1
...

. . .
...

∂τ1

∂ pr
· · · ∂τm

∂ pr

⎤
⎥⎥⎥⎥⎦ .
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In many curves and surfaces fitting applications, the initial positions of data points
and the model are not aligned well. The data points or the model is allowed to be trans-
formed in the fitting process. By introducing proper transformation, the fitting process
can be accelerated and overcome some local minimum cases. The most common trans-
formation is rigid transformation[10], [11]. Combined with rigid transformation, we
have shown in [13] that the convergence speed of the fitting algorithm can be faster and
high accuracy also can be achieved. Although the transformation can be applied to the
data points or the model, for unifying our analysis we assume the transformation is ap-
plied on the parametric model, i.e. the shape parameter P can contain the transformation
parameters if needed.

2.2 Nonlinear Least Squares

We consider a standard nonlinear least squares problem which minimizes the objective
function F(X):

min
X

1
2

n

∑
i=1

f 2
i (X) � F(X) (2)

The residual vector is defined as r(X) = ( f1(X), f2(X), . . . , fn(X))T . The first derivative

of F(X) can be expressed in terms of the Jacobian of r: J(X) =

⎛
⎜⎝

∇ f1(X)
...

∇ fn(X)

⎞
⎟⎠, where

∇ fi(X) is the gradient of fi with respect to X. The gradient and Hessian of F(X) have
the following forms

∇F(X) = J(X)T r(X); H = ∇2F(x) = J(X)T J(X)+
n

∑
i=1

fi(X)∇2 fi(X)

The Gauss-Newton method approximates the Hessian by J(X)T J(X). In practice the
line search strategy or the Levenberg-Marquardt method

(
J(X)T J(X)+ λ I

)
δX = −J(X)T r(X)

is incorporated with the Gauss-Newton method. The Quasi-Newton type method ap-
proximates the Hessian or the inverse of the Hessian by a positive-definite matrix which
is updated at each iteration with some specified schemes such as BFGS [1]. But in this
paper we mainly focus on Gauss-Newton type methods.

2.3 Principal Directions and Curvatures of Parametric Curves and Surfaces

For a smooth parametric curve/surface C(t), its first-order derivatives ∂τ1C(tp), . . .,
∂τmC(tp) at point C(tp) span a tangential space �pC. Its orthogonal complement de-
fines the normal space ⊥pC. For a given unit normal vector np ∈ ⊥pC, we can de-
fine the principal vectors and curvatures with respect to np. The details can be found in
Section 2.2 of [14]. Let T1, . . . ,Tm be the principle vectors which span �pC and κ1, . . . ,
κm be the corresponding principle curvatures with respect to np. The orthonormal basis



A Revisit to Least Squares Orthogonal Distance Fitting 387

of ⊥pC are Nm+1, . . . ,Ns. One identity about the orthonormal basis will be useful in the
paper:

Is = T1TT
1 + · · ·+ TmTT

m + Nm+1NT
m+1 + · · ·+ NsNT

s . (3)

Where Is is a s× s identity matrix.

Remark: For a 3D parametric curve, the curvature K and curvature direction N0 are
well defined from differential geometry. Since in our discussion N is not necessarily
coincident with N0, we have κ = K· < N,N0 >. < �,� > is the inner product of two
vectors.

3 Orthogonal Distance Fitting

The optimization process of orthogonal distance fitting contains two steps which are
executed repeatedly:

1. Reparametrization: compute the foot-point of X j on C(P; t), i.e, minimize the dis-
tance from X j to C:

min
t j

‖C(P; t j)− X j‖, j = 1, . . . ,n (4)

2. minimize one of the following objective functions by applying one step of opti-
mization techniques such as Gauss-Newton methods:

min
P

∥∥∥(‖C(P; t1(P))− X1‖ , . . . ,‖C(P; tn(P))− Xn‖)T
∥∥∥ (5)

or

min
P

∥∥∥∥
(

C(P; t1(P))T − XT
1 , . . . ,C(P; tn(P))T − XT

n

)T
∥∥∥∥ (6)

Since (5) minimizes the l2 norm of the residual vector rd :

rd = (‖C(P; t1(P))− X1‖ , . . . ,‖C(P; tn(P))− Xn‖)T , (7)

the corresponding method is called Distance-based method; also since (6) minimizes
the l2 norm of the residual vector rc:

rc =
(

C(P; t1(P))T − XT
1 , . . . ,C(P; tn(P))T − XT

n

)T
, (8)

the corresponding method is called Coordinate-based method. By applying nonlinear
least squares optimization technique these two methods produce different results. Atieg
and Watson present their analysis on Distance-based and Coordinate-based Gauss-
Newton approaches in [10]. We will show the geometry behind these two methods and
their variations.

Orthogonality: Because t j is the minimizer of (4), the orthogonality condition (9) be-
low always holds in each step, except when the foot-point is at the boundary of C.〈

C(P; t j)− X j,
∂C(P; t j)

∂τk

〉
= 0, j = 1, . . . ,n; k = 1, . . . ,m (9)
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The orthogonality condition (9) plays an important role in parametrization correction
and optimization. Many effective foot-point computation methods are available in lit-
erature [3] [15] [16]. If the explicit foot-point formula is not available, one can apply
Newton-like optimization methods on (9) to obtain the foot-point and corresponding
location parameter. But the initial guess t0 is a key issue in foot-point computation. For
complex parametric curves/surfaces, one good strategy is to build a k-D tree from the
sample points {C(P; tk),k = 1, . . . ,L} then find the nearest point for X j which serves as
the initial foot-point.

3.1 Distance-Based Gauss-Newton Method

Distance-based methods are widely used in metrology. Here the l2 norm of residual vec-
tor rd is to be minimized. Depending on whether considering the association between
the shape parameter P and the local parameter t, Gauss-Newton distance-based methods
can be categorized to two types: the separated method and the standard method.

(1) Separated distance-based Gauss-Newton method

The residual vector rd in the separated distance-based Gauss-Newton method is de-
fined as

rd = (‖C(P; t1)− X1‖ , . . . ,‖C(P; tn)− Xn‖)T ,

where each t j is fixed. The first-order total derivative of
∥∥C(P; t j)− X j

∥∥ with respect
to P is

∇P
∥∥C(P; t j)− X j

∥∥=
C(P; t j)T − XT

j∥∥C(P; t j)− X j
∥∥ ∂C(P; t j)

∂P
, (10)

where it must be assumed that C(P; t j) �= X j such that the derivative exists. Numerical
computation can be unstable when C(P; t j) approaches X j. Notice that if C is a 2D

parametric curve or a 3D parametric surface, the vector
C(P; t j)− X j∥∥C(P; t j)− X j

∥∥ := N j actually

is the unit normal at C(t j) whose sign may be positive or negative. Thus the instability
can be eliminated if we replace it with the unit normal. The Jacobian of rd at C(P; t j)
can be written as

J1 =

⎛
⎜⎜⎜⎜⎝

NT
1

∂C(P; t1)
∂P
...

NT
n

∂C(P; tn)
∂P

⎞
⎟⎟⎟⎟⎠ .

From the normal equation JT
1 J1 ·δP = −JT

1 rd , we can derive that

n

∑
j=1

∂C(P; t j)T

∂P
N jNT

j
∂C(P; t j)

∂P
·δP = −

n

∑
j=1

∂C(P; t j)T

∂P
(C(P; t j)− X j) , (11)

where δP is the increment of the shape parameter P.
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Now we show the geometric meaning behind (11). the right hand side of (11) can be
rewritten as:

∂C(P; t j)
T

∂P
(C(P; t j)− X j) =

∂C(P; t j)
T

∂P
N j ·NT

j (C(P; t j)− X j) (12)

Now Eqn.(11) actually minimizes the squared distance from data points to their tangent
planes at the foot-points:

min
P

n

∑
j=1

[
NT

j · (C(P; t j)− X j)
]2

(13)

It is easy to verify the normal equation of Eqn.(13) is Eqn.(11) just by applying the
Gauss-Newton method on Eqn.(13). We call this kind of geometric minimization TDM
(Tangent Distance Minimization) [12].

As we have pointed out, there is no numerical problem for 2D parametric curves
and 3D parametric surfaces if we replace N j with curves/surfaces’ normals. For high
dimension parametric curves/surfaces (m < s − 1), TDM is not suitable when the data
points are almost contained in a low dimension space R

l , l < s. For instance, fitting a
3D parametric curve to a set of points in a plane causes the ill-conditioning of Jacobian
matrix [10]. We use a simple example to illustrate this problem. Assume that a 3D curve
has the following parametric form (at2,bt3,c), where a,b,c are shape parameters and
the data points lie in the x-y plane. The third component of N j will be always zero. It
means that c does not appear in NT

j · (C(P; t j)− X j). Therefore the normal equations
will be singular.

(2) Standard distance-based Gauss-Newton method

With the consideration of the association between t and P, in the standard distance-
based Gauss-Newton method the residual vector rd is defined as in (7). The first-order
total derivative of each element of rd with respect to P is

∇P
∥∥C(P; t j(P))− X j

∥∥=
C(P; t j)T − XT

j∥∥C(P; t j)− X j
∥∥∇PC(P; t j(P))

=
C(P; t j)T − XT

j∥∥C(P; t j)− X j
∥∥
[

∂C(P; t j)
∂P

+
∂C(P; t j)

∂ t
∇Pt j

]

= NT
j

∂C(P; t j)
∂P

, (14)

where the term
(

C(P; t j(P))T − XT
j

)
· ∂C(P; t j)

∂ t
∇Pt j is eliminated due to the orthog-

onality condition. The result (14) is the same as (10), which means that both sepa-
rated and standard distance-based approaches produce the same geometric minimization
scheme – TDM.

3.2 Coordinate-Based Gauss-Newton Method

Now we consider the coordinate-based Gauss-Newton method based on the objective
function (6), which is widely used in pattern recognition community.
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(1) Separated coordinate-based Gauss-Newton method

In the separated coordinate-based Gauss-Newton method the residual vector rc is
defined as

rc =
(

C(P; t1)
T − XT

1 , . . . ,C(P; tn)T − XT
n

)T
.

The first-order total derivative of C(P; t j)T − XT
j with respect to P is

∂C(P; t j)
T

∂P
. So

the Jacobian J2 of rc is
⎛
⎜⎜⎜⎜⎝

∂C(P; t1)
∂P
...

∂C(P; tn)
∂P

⎞
⎟⎟⎟⎟⎠ .

Still from the normal equation JT
2 J2 ·δP = −JT

2 rc, we obtain

n

∑
j=1

∂C(P; t j)
T

∂P
∂C(P; t j)

∂P
·δP = −

n

∑
j=1

∂C(P; t j)
∂P

(C(P; t j)− X j) (15)

The normal equation actually represents a geometric minimization

min
P

n

∑
j=1

[C(P; t j)− X j]
2 (16)

which penalizes the squared distance from data points to foot points, we call this method
PDM (Point Distance Minimization). It is widely used in CAGD community because
of its simplicity. Especially when P is in the linear form in C, one just needs to solve
a linear equation and the ‖rc‖ always decreases. However PDM only exhibits linear
convergence [12].

(2) Standard coordinate-based Gauss-Newton method

In the standard distance-based Gauss-Newton method the residual vector rc is (8),
where t j is associated with P through (9). The first-order total derivative of each element
with respect to P is

∇P (C(P; t j(P))− X j) =
∂C(P; t j)

∂P
+

m

∑
k=1

∂C(P; t j)
∂τ j,k

∇Pτ j,k(P) (17)

In general the explicit expression of τ j,k(P) with respect to P is not always available.
So we use the implicit procedure presented in [10]. Since the orthogonality condition (9)
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holds and it is an identity in P, its total derivative with respect to P is still 0. Therefore
we have

0 = ∇P

〈
C(P; t j)− X j,

∂C(P; t j)
∂τ j,k

〉

=

〈
∂C(P; t j)

∂P
+

m

∑
l=1

∂C(P; t j)
∂τ j,l

∇Pτ j,l(P),
∂C(P; t j)

∂τ j,k

〉
+

〈
C(P; t j)− X j,

∂ 2C(P; t j)
∂τ j,k∂P

+
m

∑
l=1

∂ 2C(P; t j)
∂τ j,k∂τ j,l

∇Pτ j,l(P)

〉

Without loss of generality, suppose C(P; t j) is a local regular parametrization such that
τ j,1-, . . ., τ j,m- direction vectors are unit principle direction vectors T j,1, . . . ,T j,m with
respect to N j (see Section 2.3). The above equation can be simplified as

0 =

〈
∂C(P; t j)

∂P
+

m

∑
l=1

T j,l∇Pτ j,l(P),T j,k

〉
+

〈
C(P; t j)−X j,

∂ 2C(P; t j)
∂τ j,k∂P

+
∂ 2C(P; t j)

∂τ j,k
2 ∇Pτ j,k(P)

〉

= TT
j,k

∂C(P; t j)
∂P

+
m

∑
l=1

TT
j,kT j,l∇Pτ j,l(P)+(C(P; t j)−X j)

T ∂ 2C(P; t j)
∂τ j,k∂P

+d jNT
j κ j,kN j∇Pτ j,k(P)

= TT
j,k

∂C(P; t j)
∂P

+(1+d jκ j,k)∇Pτ j,k(P)+(C(P; t j)−X j)
T ∂ 2C(P; t j)

∂τ j,k∂P
,

where d j = ‖C(P; t j)− X j‖, κ j,k is the principle curvature along T j,k with respect to
N j. Then we obtain

∇Pτ j,k = −
TT

j,k
∂C(P; t j)

∂P
+(C(P; t j)− X j)

T ∂ 2C(P; t j)
∂τ j,k∂P

1 + d jκ j,k
(18)

We can rewrite (17) as

∇P (C(P; t j(P))− X j) =
∂C(P; t j)

∂P
−

m

∑
k=1

T j,kTT
j,k

∂C(P; t j)
∂P

+ d jT j,kNT
j

∂T j,k

∂P
1 + d jκ j,k

(19)

In the degenerate case when 1 + d jκ j,k ≈ 0, one can modify the denominator to 1 +
d j|κ j,k| to improve the condition number of the normal equation. We note that this
degenerate case is not addressed in the literature of orthogonal distance fitting, such
as [10], [11]. But it can happen in practice. For example, let a parametric circle be
(r cost,r sin t) and one data point X j be near to the origin. We have 1 + d jκ j,k ≈ 1 + r ·
−1
r = 0.
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(3) Modified standard coordinate-based Gauss-Newton methods

The computational cost of the second-order derivatives
∂ 2C(P; t j)

∂ t2 and
∂ 2C(P; t j)

∂P∂ t
may be high in some applications. So we shall derive two kinds of modified standard
Gauss-Newton methods with less computation cost and clear geometric meanings.

First we recall the notations in Section 2.3. At the point C(t j), T j,1, . . . ,T j,m span
a tangent vector space � j,pC and N j,m+1, . . . ,N j,s denote the orthonormal basis of
� j,pC’s orthogonal complement space ⊥ j,pC. The following identity always holds

I = T j,1TT
j,1 + · · ·+ T j,mTT

j,m + N j,m+1NT
j,m+1 + · · ·+ N j,sNT

j,s. (20)

We will use this identity in our following derivation. By dropping the second-order
derivatives from Eqn. 19, we will derive two methods.

1. Drop
∂ 2C(P; t j)

∂P∂ t
. This leads to

∇P (C(P; t j(P))− X j) ≈ ∂C(P; t j)
∂P

−
m

∑
k=1

T j,kTT
j,k

∂C(P; t j)
∂P

1 + d jκ j,k

= I · ∂C(P; t j)
∂P

−
m

∑
k=1

T j,kTT
j,k

∂C(P; t j)
∂P

1 + d jκ j,k

=

(
m

∑
k=1

d jκ j,kT j,kTT
j,k

1 + d jκ j,k
+

s

∑
k=m+1

N j,kNT
j,k

)
∂C(P; t j)

∂P

Substituting the above result into the normal equation JT J ·δP = −JT rc, we obtain

∂C(P; t j)
T

∂P

(
m

∑
k=1

(
d jκ j,k

)2 T j,kTT
j,k(

1 + d jκ j,k
)2 +

s

∑
k=m+1

N j,kNT
j,k

)
∂C(P; t j)

∂P
δP =

∂C(P; t j)T

∂P

(
m

∑
k=1

d jκ j,kT j,kTT
j,k

1 + d jκ j,k
+

s

∑
k=m+1

N j,kNT
j,k

)
(C(P; t j)− X j) .

The normal equation represents the following geometric minimization

min
P

n

∑
j=1

{
m

∑
k=1

(
d jκ j,k

)2

(
1 + d jκ j,k

)2

[
TT

j,k · (C(P; t j)− X j)
]2 +

s

∑
k=m+1

[
NT

j,k · (C(P; t j)− X j)
]2

}
(21)

We will call it CDM (Curvature Distance Minimization).

2. Drop
∂ 2C(P; t j)

∂P∂ t
and

∂ 2C(P; t j)
∂ t2 . It is easy to verify in this case that the normal

equation corresponds to the following geometric minimization

min
P

n

∑
j=1

{
s

∑
k=m+1

[
NT

j,k · (C(P; t j)− X j)
]2

}
(22)
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Since (22) only penalizes the squared distance from data point X j to the tangent
space T j,p(C) we call it GTDM (Generalized Tangent Distance Minimization).
This scheme does not suffer from the ill conditioning problem of high dimension
parametric curves/surfaces (m < s − 1) which is mentioned before. Still using the
same example at the end of the last subsection, let one normal be N j and another
normal be Nz = (0,0,1)T . The variable c will appear in NT

z (C(P; t j)− X j), so that
rank deficiency of the normal equation is avoided.

3.3 SDM - Modified Hessian Approximation

So far our discussion is based on Gauss-Newton methods. Now we look at the Hessian
directly. Wang et al. [12] proposed a curvature based squared distance minimization
method called SDM where the Hessian is modified to be definite-positive. We do not go
into the details and just describe the basic idea here. For each C(P; t j)−X j, its second-

order derivatives
∂ 2C(P; t j)

∂P2 and
∂ 2C(P; t j)

∂P∂ t
are dropped. So the modified Hessian is

H̃ =
n

∑
j=1

∂C(P; t j)T

∂P

[
m

∑
k=1

d jκ j,k

1 + d jκ j,k
T j,kTT

j,k +
s

∑
k=m+1

N j,kNT
j,k

]
∂C(P; t j)

∂P
. (23)

The corresponding geometric minimization is

min
P

n

∑
j=1

{
m

∑
k=1

d jκ j,k

1 + d jκ j,k

[
TT

j,k · (C(P; t j)− X j)
]2

+
s

∑
k=m+1

[
NT

j,k · (C(P; t j)− X j)
]2

}
.

(24)

Remark: If, besides
∂ 2C(P; t j)

∂P2 and
∂ 2C(P; t j)

∂P∂ t
, we also drop

∂ 2C(P; t j)
∂ t2 from the

Hessian, SDM will become GTDM. Thus GTDM also is an approximation of the Hes-
sian.

3.4 Comparisons

We summarize the geometric minimization schemes introduced in previous sections in
Table 1 and compare them in several aspects.

Computational cost: The standard coordinate-based Gauss-Newton method (for short,
we call it GN) is the most expensive method because of computations of the second-

order derivatives
∂ 2C(P; t j)

∂ t2 and
∂ 2C(P; t j)

∂P∂ t
. Since CDM and SDM have similar ex-

pressions, their computational cost are the same. GTDM only involves computation of
∂C(P; t j)

∂ t
for constructing the normal space if m < s− 1. TDM and PDM do not need

to compute any derivative of C(P; t) with respect to t. thus they are more efficient than
the others in constructing the approximated Hessian.

Applicability: With proper step-size control or combining Levenberg-Marquardt meth-
ods, most methods are suitable for general parametric curve/surface fitting. Only TDM
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Table 1. Geometric minimization schemes

Method Geometric terms

PDM
[
C
(
P; t j

)
−X j

]2

TDM
[
NT

j ·
(
C
(
P; t j

)
−X j

)]2

GTDM
s
∑

k=m+1

[
NT

j,k ·
(
C
(
P; t j

)
−X j

)]2

CDM
m
∑

k=1

(
d jκ j,k

)2

(
1+d jκ j,k

)2

[
TT

j,k ·
(
C
(
P; t j

)
−X j

)]2
+

s
∑

k=m+1

[
NT

j,k ·
(
C
(
P; t j

)
−X j

)]2

SDM
m
∑

k=1

d jκ j,k

1+d jκ j,k

[
TT

j,k ·
(
C
(
P; t j

)
−X j

)]2
+

s
∑

k=m+1

[
NT

j,k ·
(
C
(
P; t j

)
−X j

)]2

may have problems in fitting high dimension parametric curves/surfaces, i.e, when
m < s− 1.

Convergence: Because GN and TDM are standard Gauss-Newton methods, they show
quadratic convergence for zero residual problems, super-linear convergence for small
residual problems and linear convergence in other cases. For our modified methods
CDM and GTDM, they also have the same convergence as TDM. One can see that
when ‖C(P; t j)− X j‖ approaches zero, the second-order derivatives in Eqn. (19) can
be ignored so that the Hessian is still well approximated. Unfortunately PDM is an
alternating method which is a typical optimization technique for solving a separable
nonlinear least squares problem and is known to have only linear convergence [5].

Remark: For high dimension curves/surfaces fitting, i.e. s > 3, the principle curvature
computation can be expensive. In this case GTDM is a good candidate under the con-
sideration of performance and effectiveness. Also when m = s − 1, GTDM is reduced
to TDM actually.

4 Numerical Experiments

Now we compare the methods introduced in Section 3: PDM, TDM, CDM, GTDM,
GN, SDM. For demonstrating the effectiveness of GTDM, we choose a planar ellipse
in 3D space as our parametric models and a point cloud with different scale noises(For
general comparison in 2D/3D curve and surface fitting, we refer the reader to the
references [10,11,13,12]). In our implementation the Levenberg-Marquardt method is
integrated.

Example: We consider fitting an ellipse to 200 data points sampled from an ellipse:
(cos 2π i

200 ,2sin 2π i
200 ,0), i = 0,1, . . . ,199 in 3D. The parametric ellipse has the following

form which involves rotation and translation⎛
⎝ x

y
z

⎞
⎠= Rx ·Ry ·Rz ·

⎛
⎝acost

bsin t
0

⎞
⎠+

⎛
⎝cx

cy

cz

⎞
⎠



A Revisit to Least Squares Orthogonal Distance Fitting 395

Y

Z

X

Fig. 1. The initial ellipse and data points of Case 4

Fig. 2. Comparisons of the six methods on a set of 200 data points. Upper left: Case 1; upper
right: Case 2; lower left: Case 3; lower right: Case 4
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Where Rx =

⎛
⎝1 0 0

0 cosα −sinα
0 sinα cosα

⎞
⎠, Ry =

⎛
⎝ cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎞
⎠, Rz =

⎛
⎝ cosγ −sinγ 0

sinγ cosγ 0
0 0 1

⎞
⎠.

The shape parameters are P = [a,b,cx,cy,cz,α,β ,γ]. We choose four cases to illustrate
the convergence of each method, with the following initial values for P

– Case 1: P = [3.1,1.0,1.0,2.0,0.2,4.0,1.0,6.0];
– Case 2: P = [0.1,4.0,2.0,0.0,1.0,1.0,−1.0,2.0];
– Case 3: same P as in Case 1 but perturb the data points with random noise dis-

tributed uniformly in [−0.001,0.001];
– Case 4: same P as in Case 1 but perturb the data points with random noise dis-

tributed uniformly in [−0.1,0.1]. (See Fig. 1)

Fig.2 shows that the the average error versus the number of iterations of the six

methods. The average error is defined as

√
∑n

j=1 ‖C(P;t j)−X j‖2

n . From the figure we find

the surprising fact that GTDM is much better than the other methods. It converges very
fast and only needs several iterations. The behaviors of TDM in the four cases are dif-
ferent. In Case 2 and 3 TDM is easy to be trapped in the local minimum. In Case 4,
since the data points are not nearly planar, TDM shows good performance. In all the
cases GN is a little better than CDM but is still slower than GTDM and SDM.

From our experience in 2D/3D curves and surfaces fitting [12,13], actually there is
no strong evidence and theoretical guarantee that shows which method (TDM, CDM,
GTDM, GN, SDM) is best for most fitting problems since the integrated step-control
strategy like line search or the Levenberg-Marquardt method affects the behavior and
unexpected local minimum may stop the optimization. Also for large residual prob-
lems all the methods exhibit linear convergence which is similar to PDM. For instance,
see Case 4 of the example. But in general GTDM is as good as the others at least
in most cases. By considering the computational cost and overall performance, we
strongly recommend GTDM for general parametric curve and surface fitting including
parametric sub-manifold fitting (i.e, when m < s − 1) due to its clear geometric mean-
ing and its simplicity since it does not need to compute the principle curvatures and
directions.

5 Conclusions

A systematic geometrical and optimizational analysis on least squares orthogonal dis-
tance fitting of parametric curves and surfaces is presented in this paper. We give the
geometric characterization of existing techniques and propose two modified versions
based on geometric meanings. We show how principle curvature and directions are
embedded in optimization methods. The presented geometric understanding of opti-
mization techniques will benefit efficient and effective curve/surface fitting. Also for
further research, it is interesting to study the geometry behind methods for implicit
curve/surface fitting.
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