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Abstract

We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic

(LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces,

finite traces appear naturally when testing and./or monitoring real applications that only run for limited

time periods. The presented algorithm is implemented in the Maude executable specification language

and essentially consists of a set of equations establishing an executable semantics of LTL using a simple

formula transforming approach. The algorithm is further improved to build automata on-the-fly from

formulae, using memoization. The result is a very efficient and small Maude program that can be used to

monitor program executions. We furthermore present an altemative algorithm for synthesizing provably

minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze

execution traces without the need for a rewriting system, and can hence be used by observers written in

conventional programming languages. The presented work is part of an ambitious mntime verification

and monitoring project at NASA Ames, called PATHEXPLORER,and demonstrates that rewriting can be

a tractable and attractive means for experimenting and implementing program monitoring logics.

1 Introduction

Future time Linear Temporal Logic (future time LTL, or LTL for short) was introduced by Pnueli in 1977

[26] for stating properties about reactive and concurrent systems. LTL provides temporal operators that

refer to the future/remaining part of an execution trace relative to a current point of reference. The standard

models of LTL are infinite execution traces, reflecting the behavior of such systems as ideally always being

ready to respond to requests. Methods, such as model checking, have been developed for proving programs

correct with respect to requirements specified as LTL formulae. Several systems are currently being devel-

oped that apply model checking to software systems written in Java, C and C++ [12, 31,4, 19, 3, 25, 7, 30].

However, for very large systems, there is little hope tha-t one can actually prove correctness, and one must

in those cases rely on debugging and testing. To further strengthen system reliability, one may therefore

want to monitor a program execution during operation and determine whether it conforms to its LTL spec-

ification. Any violation of the specification can then be used to guide the execution into a safe state, either

manually or automatically. We present a rewriting algorithm for efficiently evaluating LTL formulae on

finite execution traces online, that is, processing each event as it arrives, in contrast to storing all the events

and then analyzing them backwards, as in [28] (see also Subsection 3.3), which requires too much space to

be practical.

The important question is how to efficiently test LTL formulae of finite trace models, and the main

decision here is what data structure one should use to represent the formula such that it can be used to

efficiently analyze the trace as it is traversed. We will present such a data structure. We will present and



implement our logics and algorithms in Maude [1], a high-performance system supporting both membership

equational logic [23] and rewriting logic [22]. The current version of Maude can do up to 3 million rewritings

per second on 800MHz processors, and its compiled version is intended to support 15 miilion rewritings per

second I . The algorithm is expressed as a set of equations establishing an executable semantics of LTL using

a simple formula transforming approach. The result is a very efficient and small Maude program that can be

used to monitor program executions. The decision to use Maude has made it very easy to experiment with

logics and algorithms.

We furthermore present an alternative algorithm for generating a minimal special observer finite state

machine (FSM), or an automaton, from an LTL formula. Observer FSMs can be used to analyze execution

traces without the need for a rewriting system, and can hence be used by observers written in traditional

programming languages. The FSM-generator is implemented in Maude in about 200 lines of code.

The idea of using temporal logic in program testing is not new, and has already been pursued in the

commercial Temporal Rover tool (TR) [5], and in the MaC tool [21]. Both tools have greatly inspired

our work. In [27, 24] various algorithms to generate testing automata from temporal logic tbrmulae are

described. Our basic contribution in this paper is to show how a rewriting system, such as Maude, makes it

possible to experiment with monitoring logics very efficiently and elegantly, and furthermore can be used as

a practical program monitoring engine. This approach makes it possible to formalize ideas in a framework

close to standard mathematics. The formula transforming approach suggested is a new and efficient way of

testing LTL formulae.

In previous work we described a dynamic programming algorithm for checking LTL formulae on exe-

cution traces [28] (see also Subsection 3.3). This algorithm evaluates a formula bottom-up for each point

in the trace, going backwards from the final state, towards the initial state. Unfortunately, despite its linear

complexity this algorithm cannot be used online. In [17, 10] we dualize the dynamic programming tech-

nique and apply it to past time LTL, in which case the trace more naturally can be examined in a forward

direction, and show how future time and past time LTL formulae can be embedded as comments in code and

get expanded into Java code fragments to get executed whenever reached. [6] presents a Biichi automata

inspired algorithm adapted to finite trace LTL. The Maude rewriting implementation of LTL described in

this paper, besides its siml_licity, elegance and efficiency, offers a greater flexibility in experimenting with

temporal logics.

The work in this paper originates in [16] and some of it was presented at the Automated Software

Engineering conference [15]. What was not presented in [15] is a significant improvement to the main

rewriting algorithm which increases its efficiency by almost an order of magnitude (see Subsection 4.3).

Furthermore, this paper presents an algorithm for generating minimal observer automata from LTL formulae

(Section 5). This work constitutes part of the PATHEXPLORER project at NASA Ames, and in particular of

the Java PATHEXPLORER (JPAX) tool [13, 14] for monitoring Java program executions. JPAX facilitates

automated instrumentation of Java byte code, using JTREK [2], which then emits relevant events to an

observer during execution (see Figure 1). The observer can be running a Maude process as a special case,

hence Maude's rewriting engine can be used to drive a temporal logic operational semantics with program

execution events. The observer may run on a different computer, in which case the events are transmitted

over a socket. The system is driven by a specification, stating what properties to be proved and what parts of

the code to be instrumented. When the observer receives the events it dispatches these to a set of observer

rules, each rule performing a particular analysis that has been requested. In addition to checking temporal

logic requirements, rules have also been programmed to perform error pattern analysis of multi-threaded

programs, identifying deadlock and datarace potentials.

Section 2 contains preliminaries, including an introduction to Maude, propositional logic and the stan-

dard definition of propositional LTL with its infinite trace models. Section 3 presents a finite trace semantics

1Personal communication by Jos_ Meseguer.
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Figure 1: Overview of JPAX

for LTL, its implementation in Maude, as well as briefly a dynamic programming implementation that an-

alyzes the execution trace backwards. Although abstract and elegant, these implementations are either not

efficient or not practical; Section 4 presents an efficient and practical implementation using a formula trans-

formation approach, and an even more efficient implementation based on hashing. Section 5 presents an

algorithm for generating observer automata from LTL formulae. Such automata may be used in observers

written in traditional programming languages, and may in certain cases be more efficient than the rewriting

approach. Finally, Section 6 contains conclusions and a description of future work.

2 Preliminaries

This section briefly introduces Maude, a rewriting-based specification and verification system, then a rela-

tively standard procedure to reduce propositional formulae, and then reminds the propositional LTL with its

infinite trace models.

2.1 Maude and Logics for Program Monitoring

Maude [ 1] is a freely distributed high-performance system in the OBJ [9] algebraic specification family, sup-

porting both rewriting logic [22] and membership equational logic [23]. Because of its efficient rewriting

engine, able to execute 3 million rewriting steps per second on standard PCs, and because of its metalan-

guage features, Maude turns out to be an excellent tool to create executable environments for various logics,

models of computation, theorem provers, and even programming languages. We were delighted to notice

how easily we could implement and efficiently validate our algorithms for testing LTL formulae on finite

event traces in Maude, admittedly a tedious task in C++ or Java, and hence decided to use Maude at least

for the prototyping stage of our runtime check algorithms.

We very briefly and informally remind some of Maude's features, referring the interested reader to the

manual [1] for more details. Maude supports modularization in the OBJ style. There are various kinds of

modules, but we are using only functional modules which tbllow the pattern "fmod <name> is <body'>

endfm". The body of a functional module consists of a collection of declarations, of which we are using

importing, sorts, subsorts, operations, variables and equations, usually in this order.

We next introduce some modules that we think are general enough to be used within any logical en-

vironment for program monitoring that one would want to implement by rewriting. The next one simply

defines atomic propositions as an abstract data type having one sort, A:om and no operations or constraints:



fmod ATOM is sort Atom . endfm

The actual names of atomic propositions will be automatically generated in another module that extends

ATOM, as constants of sort Atom. These will be generated by the observer at the initialization of monitoring,

from the actual properties that one wants to monitor.

An important aspect of program monitoring is that of an (abstract) execution trace, which consists of

a finite list of events. We abstract a single event by a list of atoms, those that hold after the action that

generated the event took place. The values of the atomic propositions are updated by the observer according

to the actual state of the executing program and then sent to Maude as a term of sort Event:

fmod TRACE is protecting ATOM .

sorts Event Event* Trace , subsorts Atom < Event < Event* Trace .

ep nil : -> Event .

op_ : Atom Event -> Event [prec 23] .

op _* : Event -> Event* .

cp _,_ : Event Trace -> Trace [prec 25] .

endfra

The statement protecting ATOM imports the module ATOM. The above is a compact way to use m/x-

fi:fl and order-sorted notation to define an abstract data type of traces: a trace is a comma separated list of

events, where an event is itself a Iist of atoms. The subsorts declaration declares Atom to be a subsort of

Event, which in turn is a subsort of Event* as well as of Trace. Since elements of a subsort can occur as

elements of a supersort without explicit lifting, we have as a consequence that a single event is also a trace,

consisting of this one event. Likewise, an atomic proposition can occur as an event, containing only this

atomic proposition. Note that there is no definition of an empty trace. Operations can have attributes, such

as the precedences above, which are written between square brackets. The attribute prec gives a precedence

to an operator 3, thus eliminating the need for most parentheses. Notice the special sort Event* which stay

for terminal events, i.e., events that occur at the end of traces. Any event can potentially occur at the end

of a trace. It is often the case that ending events are treated differently, like in the case of finite trace linear

temporal logic; for this reason, we have introduced the operation _* which marks an event as terminal.

Syntax and semantics are basic requirements to any logic, in particular to those logics needed for mon-

itoring. The following module introduces what we believe are the basic ingredients of monitoring logics.

We found the following very useful for our logics, but of course, the user is free to change it if he/she finds

it inconvenient:

fmod LOGICS-BASIC is protecting TRACE .

sort Formula , subsort Atom < Formula .

ops true false : -> Formula .

op [_J : Formula -> Hool [strat (I 0)] .

eq [true] = true . eq [false] = false .

vats A A' : Atom . vat T : Trace .

vat E ; Event . var E* : Event* .

op _{_} : Formula Event* -> Formula [prec i0] .

eq true{E*} = true . eq false{E*) = false .

eq A{nil} = false .

eq A(A') = if A == A' then true else false fi .

eq A(A' E} = if A == A" then true else A{E} fi .

eq A(E *} = A{E} .

op _I =_ : Trace Formula -> Bool [prec 30] .

eq T I= true = 'true .

eq T I= false = false .

eq E I= A = [A[E]] .

eqE,T l=a=E I=A.
endfm

2Underscores are places for arguments.

3The lower the precedence number, the tighter the binding.
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Thefirstblockof declarationsintroducesthesortFormula which can be thought of as a generic sort for any

well-formed formula in any logic. There are two designated formulae, namely true and false, with the

obvious meaning, together with a "projection", denoted [_], of any formula into a boolean expression. The

only role of this operation is to check whether a logical formula is violated or not, each logic being allowed

to refine this operator according to its policy. Its attribute says that this operation should always be evaluated

eagerly; numbers in the strategy declaration stay for argument positions that are numbered from left to right,

0 staying for the operator itself. The sort Bool is built-in to Maude and has two constants true and false

which are different from those of sort Formula, and a generic operator if_then_else_f\. The second

block defines the operation _{_} which takes a tbrmula and an event and yields another formula. The

intuition for this operation is that it "evaluates" the formula in the new state and produces a proof obligation

as another formula for the subsequent events, if needed. If the returned formula is true or false then it

means that the formula was satisfied or violated, regardless of the rest of the execution trace; in this case, a

message can be returned by the observer. As we'll soon see, each logic will further complete the definition

of this operator. Finally, the satisfaction relation is defined. That is, two equations deal with the formulae

true and false and should be obvious. The last two equations state that a trace, consisting either of a

single event or of several, satisfies an atomic proposition if evaluating that atomic proposition on the event

yields true.

2.2 Propositional Calculus

A rewriting decision procedure for propositional calculus due to Hsiang [20] is adapted and presented. It

provides the usual connectives _/\_ (and), _++_ (exclusive or), _\/_ (or), !_ (negation), _->_ (implica-

tion), and _<->_(equivalence). The procedure reduces tautology formulae to the constant true and all the

others to some canonical form modulo associativity and commutativity. An unusual aspect of this procedure

is that the canonical forms consist of exclusive or of conjunctions. Even if propositional calculus is very

basic to almost any logical environment, we decided to keep it as a separate logic instead of being part of

the logic infrastructure of JPAX. One reason for this decision is that its semantics could be in conflict with

other logics, for example ones in which conjunctive normal forms are desired.

An OBJ3 code for this procedure appeared in [9]. Below we give its obvious translation to Maude

together with its finite trace semantics, noticing that Hsiang [20] showed that this rewriting system modulo

associativity and commutativity is Church-Rosser and terminates. The Maude team was probably also

inspired by this procedure, since the builtin BOOL module is very similar.

fmod PROP-CALC is extending LOGICS-BASIC .

*_* Constructors ***

op /\_ : Formula Formula -> Formula [assoc csmm prec 15]

op ++ : Formula Formula -> Formula [assoc comm prec 17]

vars X Y Z : Formula .

eq true /_ X = X .

eq false /\ X = false .

eq X /\ X = X .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ (Y ++ Z) = X /\ Y ++ X /\ Z .

*** Derived operators *_*

op \/_ Formula Formula -> Formula [assoc prec 19] .

op !_ Formula -> Formula [prec 13] .

op -> Formula Formula -> Formula [prec 21]

op <-> Formula Formula -> Formula [prec 23]

eq X \/ Y = x /\ Y ++ X ++ Y .

eq ! 1( = true ++ X .

eq X -> Y = true *+ X ++ X /\ Y .

eq X <-> Y = true ++ X ++ Y .

*** Finite trace semantics
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vat T : Trace . var E _ : Event* .

eq T I= X /\ Y = T I= X and T [= Y .

eq T I= X ++ Y = T I= X xor T i= Y .

eq (X /\ Y){E*} = X{E*} /\ Y{E*} .

eq (X ++ Y){E*} = X{E'} ++ Y{E*} .

eq [X /\ Y] = [X] and [Y] .

eq [X ++ Y] = IX] xor [Y] .

endfm

Operators are again declared in mix-fix notation and have attributes between squared brackets, such as

assoc, comm and prec <number>. Once the module above is loaded 4 in Maude, reductions can be done

as follows:

red a -> b /'_ c <-> (a -> b) /\ (a -> c) . ***> should be true

red a <-> ! b . ***> should be a +* b

Notice that one should first declare the constants a, b and c. The last six equations are related to the seman-

tics of propositional calculus. Since [_] is eagerly evaluated, Ix] will first evaluate x using propositional

calculus reasoning and then will apply one of the last two equations if needed; these equations will not be

applied normally in practical reductions, they are useful only in the correctness proof in Theorem 1.

2.3 Linear Temporal Logic

Classical LTL provides in addition to the propositional logic operators the temporal operators [ ]_ (always),

<>_ (eventually), _u_ (until), and o_ (next). An LTL standard model is a function t : N "+ --+ 2_' for

some set of atomic propositions 7_, i.e., an infinite trace over the alphabet 2_', which maps each time point

(a natural number) into the set of propositions that hold at that point. The operators have the following

interpretation on such an infinite trace. Assume formulae x and Y. The formula [ ] x holds if x holds in all

time points, while <>x holds if x holds in some future time point. The formula x v Y (x until Y) holds if Y

holds in some future time point, and until then x holds (so we consider strict until). Finally, o x holds for

a trace if x holds in the suffix trace starting in the next (the second) time point. The propositional operators

have their obvious meaning. As an example illustrating the semantics, the formula [ ] (x -> <>Y) is true

if for any time point ( [ ] ) it holds that ifx is true then eventually (<>) Y is true. Another similar property is

[ l (x -> o (Y u z) ), which states that whenever x holds then from the next state Y holds until eventually

z holds. It's standard to define a core LTL using only atomic propositions, the propositional operators !_

(not) and _/\_ (and), and the temporal operators o_ and _u_, and then define all other propositional and

temporal operators as derived constructs. Standard equations are <>x = true U x and [] x = ! <> !x.

3 Finite Trace Linear Temporal Logic

As already explained, our goal is to develop a framework for testing software systems using temporal logic.

Tests are performed on finite execution traces and we therefore need to formalize what it means for a finite

trace to satisfy an LTL formula. We first present a semantics of finite trace LTL using standard mathemat-

ical notation. Then we present a specification in Maude of a finite trace semantics. Whereas the former

semantics uses universal and existential quantification, the second Maude specification is defined using re-

cursive definitions that have a straightforward operational rewriting interpretation and which therefore can

be executed.

4Either by typing it or using the command "in < fi lename>".



3.1 Finite Trace Semantics

As mentioned in Subsection 2.1, a trace is viewed as a sequence of program states, each state denoting the

set of propositions that hold at that state. We shall outline the finite trace LTL semantics using standard

mathematical notation rather than Maude notation. Assume two total functions on traces, head : Trace --+

Event returning the head event of a trace and length returning the length of a finite trace, and a partial

function tail : Trace -+ Trace for taking the tail of a trace. That is, head(e, t) = head(e) = e, tail(e, t) =

t, and length(e) = 1 and length(e, t) = 1 + length(t). Assume further for any trace t, that ti denotes the

suffix trace that starts at position i, with positions starting at 1. The satisfaction relation _ C_ Trace x

Formula defines ,,,h_,, _ t .... + _';s_s a formula f, w_;tte " t _ f, and is a,,_,,_,_ ;,,,_,,,.,;,,oi,, ,ha

structure of the formulae as follows, where A is any atomic proposition and x and Y are any formulae:

t_A iff AEhead(t)

t _ true iff true,

t _ false iff false,

t_X /\ Y iff t_Xandt_Y,

t_X ++ Y iff tbxxort_Y,

........ let. ÷_ ÷3] ti .-

t > <>x iff (3 i <_Iewth(t)) ti > x

t_X U Y iff (3i<lewth(t))(ti>Yand(Vj<i)tj_x)

" - "" iff (if tail(t) is defined then tail(t) > X else t _ X)& _"-- k.) .,'k

Notice that finite trace LTL can behave quite differently from standard infinite trace LTL. For exam-

ple, there are formulae which are not valid in infinite trace LTL but valid in finite trace LTL, such as

<> ( [] A \/ [] !i), and there are formulae which are satisfiable in infinite trace LTL and not satisfiable in

finite trace LTL, such as the negation of the above. The tbrmula above is satisfied by any finite trace because

the last event/state in the trace either contains k or it doesn't.

3.2 Finite Trace Semantics in Maude

Now' it can be relatively easily seen that the following Maude specification correctly "implements" the finite

trace semantics of LTL described above. The only important deviation from the rigorous mathematical

formulation described above is that the quantifiers over finite sets of indexes are expressed recursively.

fmod LTL is extending PROP-CALC .

*** syntax

op []_ : Formula -> Formula [prec II] .

op <> : Formula -> Formula [prec !i].

op U : Formula Formula -> Formula [prec 14]

op o : Formula -> Formula [prec !I] .

*** semantics

vats X Y : Formula .

vat E : Event . var T : Trace .

eq E ] = [l X = E l= X .

eq E,T l= [] x = E,T 1= X and T [= [] X .

eq E 1= <> X = E I = X .

eq E,T [= <> X = E,T [= X or T [= <> X .

eqE I=XUY=E l=Y •

eq E,T [= X U Y = E,T I= Y or E,T [= X and T I= X U Y .

eqE I=ox =z I=x.
eq E,T i= o X = T 1= X .

endfm

Notice that only the temporal operators needed declarations and semantics, the others being already defined

in PROP-CALC and LOGZCS-BASIC, and that the definitions that involved the functions head and tail were

replaced by two alternative equations.



OnecannowdirectlyverifyLTLpropertiesonfinitetracesusingMaude'srewritingengine.Consider
asanexampleatrafficlightthatswitchesbetweenthecolorsgreen, yellow, and red. The LTL property that

after green comes yellow, and its negation, can now be verified on a finite trace using Maude's rewriting

engine, by typing commands to Maude such as (assuming that states can be repeated, making use of the

next-operator undesirable):

reduce green, yellow, red, green, yellow, red, green, yellow, red, red

I= [][green -> !red U yellow) .

reduce green, yellow, red, green, yellow, red, green, yellow, red, red

]= !([] (green -> !red U yellow))

which should return the expected answers, i.e., true and false, respectively. The algorithm above does

nothing but blindly follows the mathematical definition of satisfaction and even runs reasonably fast for

relatively small traces. For example, it takes 5 about 30ms (74k rewrite steps) to reduce the first formula

above and less than ls (254k rewrite steps) to reduce the second on traces of 100 events (10 times larger

than the above). Unfortunately, this algorithm doesn't seem to be tractable for large event traces, even if

run on very fast platforms. As a concrete practical example, it took Maude 7.3 million rewriting steps (3

seconds) to reduce the first formula above and 2.4 billion steps (1000 seconds) for the second on traces of

1,000 events; it couldn't finish in one night (more than 10 hours) the reduction of the second formula on a

trace of 10,000 events. Since the event traces generated by an executing program can easily be larger than

10,000 events, the trivial algorithm above can not be used in practice.

A rigorous complexity analysis of the algorithm above is hard (because it has to take into consideration

the evaluation strategy used by Maude for terms of sort Bool) and not worth the effort. However, a simplified

analysis can be easily made if one only counts the maximum number of atoms of the form event I = atom

that can occur during the rewriting of a satisfaction term, as if all the boolean reductions were applied after

all the other reductions: let us consider a formula x = [ ] ( [ ] (... ( [ ] A)... ) ) where the always operator

is nested m times, and a trace T of size 7z, and let T(n, m) be the total number of basic satisfactions event

[ = atom that occur in the normal form of the term T I = X if no boolean reductions were applied. Then,

the recurrence formula T(n, rn) = T(r_ - 1, ra) + T(n, rn - 1) follows immediately from the specification
rn--1

above. Since (nm) = (_-1) + (n-1), it follows that T(r_, ra) > (nm), that is, T(r_, ra) = 6)(rim), which is of

course unacceptable.

3.3 Traversing the Execution Trace Backwards

The satisfaction relation above for finite trace LTL can therefore be defined recursively, both on the structure

of the formulae and on the size of the execution trace. As is often the case for functions defined this way, an

efficient dynamic programming algorithm can be generated from any LTL formula. We only show such an

algorithm for a particular formula, referring the interested reader to [28] which shows how these algorithms

can be generated in linear time and space. The formula we choose below is artificial (and will not be used

later in the paper), but contains all four temporal operators.

Let []((p/at q) --+ ,_(q --+ or)) be an LTL formula and let _1, _02, ..., _10 be its subformulae, in

breadth-first order:

5On a 1.7GHz, lGb memory PC.



_1 = tz((pu q) -+ O(q -+ o,-)),
_2 = (pu q) --+O(q _ o,-),
_3 = P ?-,'/q,

.w4 = O(q -+ or),

_5 = P,

_P6 = q,

_o7 = q -+ or,

_8 = q,

_D9 : or,

(_10 : r.

Let also now[1.. 10] and next[1.. 10] be two arrays of bits (or boolean values); their length is exactly the size

of the LTL formula qa. Then the following algorithm can be generated in linear time. This algorithm will

take as input an execution trace _ and returns 0 or 1, saying whether the formula _y was or not violated by

the trace t.

INPUT: trace t = ele2...en

next[t0] _-- (r 6 en);

next[9] +- next[lO];

next[8] +-- (q E en);

next[7] +-- next[8] implies next[9];

next[6] +-- (q E en);

next[5] +-- (p 6 e,_);

next[4] +-- next[7];

ne..[3]+--,,e=I6];

next[2] +-- next[3] implies next[4];

next[l] +-- next[2];

for i = n- ldownto 1 do {

now[10]+--(,"• e_);

now[9] +-- next[lO];

now[8] +- (q e e,i);

now[7] +-- now[8] implies now[9];

,,ow[6]+- (q• e_);

now[4] +-- now[7] or next[4];

now[3] +- now[6] or (now[5] and next[3]);

now[2] +- now[3] implies now[4];

now[l] +- now[2] and next[l];

next +-- now }

output(next[i]);

The algorithm above can be further optimized, noticing that only the bits 10, 4, 3 and 1 are needed in the

vectors now and next, as we did for past time LTL in [17]. The analysis of this algorithm is straightforward.

Its time complexity is O(n • m) while the memory required is 2 • m bits, where n is the length of the trace

and m is the size of the LTL formula.



Thedynamicprogrammingtechniquepresentedin thissubsectionisasefficientasonecanhope,but,
unfortunately,hasamajordrawback:it needstotraversetheexecutiontracebackwards.Fromapractical
perspective,thatmeansthattheinstrumentedprogramisrunforsomeperiodoftimewhileitsexecutiontrace
issaved,andthen,aftertheprogramwasstopped,itsexecutiontraceistraversedbackwardsand(efficiently)
analyzed.Besidestheobviousinconveniencedueto storingpotentiallyhugeexecutiontraces,thismethod
cannotbeusedto monitorprogramsonlineinpractice,synchronously,thatis,toissueawarningexactly at

the time when the event violating the formula was observed.

4 An Efficient Rewriting Algorithm

In this section we shall present a more efficient rewriting semantics for LTL, based on the idea of consuming

the events in the trace, one by one, and updating a data structure (which is also a formula) corresponding

to the effect of the event on the value of the formula. An important advantage of this algorithm is that it

often detects when a formula is violated or validated before the end of the execution trace, so, unlike the

algorithms above, it is suitable for online monitoring. Our decision to write an operational semantics this

way was motivated by an attempt to program such an algorithm in Java, where such a solution would be

natural. The presented rewriting-based algorithm is linear in the size of the execution trace and worst-case

exponential in the size of the monitored LTL formula.

4.1 The Main Algorithm

We implement this algorithm by extending the definition of the operation _(_} : Formula Event* -

> Formula to temporal operators, with the following intuition. Assuming a trace E, T consisting of an event

_: followed by a trace T, then a formula x holds on this trace if and only if x{v.} holds on the remaining trace

T. If the event E is terminal then x { E * } holds if and only if x holds under standard LTL semantics on the

infinite trace containing only the event E.

fmod LTL-REVISED is protecting LTL .

vars X Y : Formula .

vat E : Event . vat T : Trace .

eq ([] X){E} = [] X /\ X(E} .

eq {[] X) (E *] = X[E *]

eq (<> X) [E} = <> X \/ X{E} .

eq (<> X){E *} = X[E *} .

eq (o X) [E} = X .

eq (o X){E *} = X{E *}

eq (X U Y) (E} = Y(E] \/ X(E} /\ X U Y .

eq (X U Y) {E *} = Y{E *} .

op -I --

eq E

eq E,T

endfm

: Trace Formula -> Bool [strat (2 0)]

r- x = [x{E *}] .

J- x : T I- X(E}

The rule for the temporal operator [ ] x should be read as follows: the formula x must hold now (x {E } ) and

also in the future ( [ ] x). The sub-expression x ( E } represents the formula that must hold for the rest of the

trace for x to hold now. As an example, consider the formula [ ] <>A. This formula modified by an event

B c (so g doesn't hold) yields the rewriting sequence ([]<>A){B C} --+ []<>A /\ (<>A){B C} --+

[]<>A /\ (<>A \/ A{B C}) -+ []<>A /\ (<>A \/ false) --+ []<>A /\ <>A, while the same

formula transformedby A c(soAholds) yields([]<>A){A C} -+ []<>A /\ (<>A){A C} --} []<>A

/\ (<>A \/ A{A C}) -+ []<>A /\ (<>A \/ true) -+ []<>A /\ true -+ []<>A,i.e.,thesarne

formula. Note that these rules spell out the semantics of each temporal operator. An alternative solution

would be to define some operators in terms of others, as is typically the case in the standard semantics for
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LTL.Forexample,wecouldintroduceanequationof theform:<>x = true u x,andtheneliminatethe
rewritingrulefor <>xin theabovemodule.Thisturnsoutto belessefficientbecausemorerewritesare
needed.

Thismoduleeventuallydefinesanewsatisfactionrelation_t-- betweentracesandformulae.Theterm
T t- Xisevaluatednowbyaniterativetraversaloverthetrace,whereeacheventtransformstheformula.
NotethatthenewformuIathatisgeneratedineachstepisalwayskeptsmallbybeingreducedto normal
formviatheequationsin thePROP-CALC module in Subsection 2.2. In fact, the new formula consists of

boolean combinations of sub-formulae of the initial formula, kept in a minimal canonical form. Therefore,

the algorithm is linear in the size of the trace, and worst-case exponential in the size of the formula. However,

it seems that this exponential complexity in the size of the formula is more of theoretical importance than

practical, since in general the size of the formula grew only twice or less in our experiments.

Verification results are very encouraging and show that this optimized semantics is orders of magnitudes

faster than the first semantics. Traces of less than 10,000 events are verified in milliseconds, while traces of

100,000 events never needed more than 3 seconds. This technique scales quite well; we were able to monitor

even traces of hundreds of millions events. As a concrete example, we created an artificial trace by repeating

10 million times the 10 event trace in Subsection 3.2, and then checked it against the formula [] (green

-> ! red U yellow). There were needed 4..9 billion rew._'ting steps for a total of about !,500 seconds. In

Subsection 4.3 we will see how this algorithm can be made even more efficient, using memoization.

4.2 Correctness and Completeness

In this subsection we prove that the algorithm presented above is correct and complete with respect to the

semantics of finite trace LTL presented in Section 3. The proof is done completely in Maude, but since

Maude is not intended to be a theorem prover, we actually have to generate the proof obligations by hand.

However, the proof obligations below could be automatically generated by a proof assistant like KUMO [8]

or a theorem prover like PVS [29] 6.

Theorem: For any trace T and any formula x, T t = X if and only if T I - X.

Proof: By induction, both on traces and formulae. We first need to prove two lemmas, namely that the

following two equations hold in the context of both LTL and LTL-REVISED:

(V E : Event, X : Formula) E ]= X = g 1- X,

(V E : Event, T : Trace, X : Formula) E T ]= X----T I= X[E}.

We prove them by structural induction on the formula x. Constants e and x are needed in order to prove

the first lemma via the theorem of constants. However, since we prove the second lemma by structural

induction on x, we not only have to add two constants e and t for the universally quantified variables E and

T, but also two other constants y and z standing for formulas which can be combined via operators to give

other formulas. The induction hypothesis for the second lemma is added to the following specification as

equations. Notice that we merged the two proofs to save space. A proof assistant like KUMO or PVS would

prove them independently, generating only the needed constants for each of them.

fmod PROOF-OF-LEMHAS is

extending LTL .

extending LTL-REVISED .

op e : -> Event . op t : -> Trace .

ops a b c : -> Atom . ops y z : -> Formula .

eq e i= y = e [- y .

eq e I= z = e I- z .

eq e,t {= y = t [= y{e} .

6We've already done it in PVS, but we prefer to use only Maude in this paper.
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eq e,t I= z : t I= z(e} .

eq b(e} = true .

eq c(e} = false .

endfm

It is worth reminding the reader at this stage that the functional modules in Maude have initial semantics,

so proofs by induction are valid. Before proceeding further, the reader should be aware of the operational

semantics of the operation _= =_, namely that the two argument terms are first reduced to their normal forms

which are then compared syntactically (but modulo associativity and commutativity); it returns true if and

only if the two normal forms are equal. Therefore, the answer true means that the two terms are indeed

semantically equal, while false only means that they couldn't be proved equal; they can still be equal.

red (e I= a == e i- a)

and (e I= true == e ]- true)

and (e I= false == e I- false)

and (e }= y /\ z == e I- Y /\ z)

and (e I= y ++ z == e I- Y ++ z)

and (e I= [J y == e I- [] Y)

and (e I= <> y == e }- <> y)

and (e I= y U z == e I- Y U z)

and (e I= o y == e I- o y)

and (e,t I = true == t I= true(e})

and (e,t I = false == t I= false(e})

and (e,t I = b == t [= b{e})

and (e,t I= c == t I= c{e})

and (e,t I= y /\ z == t I= (y /\ z)(e})

and (e,t I= y ++ z == t 1= (y ++ z)[e}}

and (e,t I= [] y == t I= ([] y] {e})

and (e,t I= <> y == t I= (<> y) {e})

and (e,t }= y U z =: t I= (y U z}[e}}

and (e,t I= o y == t I= (o y) {e}) .

It took Maude 129 reductions to prove these laminas. Therefore, one can safely add now these laminas as

follows:

fmod LEMMAS J-s

protecting LTL .

protecting LTL-REVISED .

var E : Event .

var T : Trace . var X : Formula .

eq E I= X = E I- X .

eq E,T I= X = T I= X(E)

endfm

We can now prove the theorem, by induction on traces. More precisely, we show:

_P(E), and

7)(T) implies 7V(E, T), for all events E and traces T,

where 7_(T) is the predicate "for all formulas x, T [= X lifT I - X". This induction schema can be easily

formalized in Maude as follows:

fmod PROOF-OF-THEOREM is protecting LEMMAS .

op e : -> Event .

op t : -> Trace . op x : -> Formula .

var X : Formula .

eq t I= X = t I- X .

endfm

red e I= x == e I- x .

red e,t I= x == e,t I- x .
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Notice the difference in role between the constant x and the variable x. The first reduction proves the base

case of the induction, using the theorem of constants for the universally quantified variable x. In order to

prove the induction step, we first applied the theorem of constants for the universally quantified variables

E and T, then added 7:'(:) to the hypothesis (the equation "eq t I= x = t I- x ."), and then reduced

_(e :) using again the theorem of constants for the universally quantified variable x. Like in the proofs of

the lemmas, we merged the two proofs to save space.

4.3 Further Optimization by Memoization

Even though the formula transforming algorithm in Subsection 4. i can process 100 million events in about

25 minutes, which is relatively reasonable for practical purposes, it can be significantly improved by adding

only 5 more characters to the existing Maude code presented so far. More precisely, one can replace the

operation declaration

op _{_} : Formula Event* -> Formula [prec I0]

in module LOGICS-BASIC by the operation declaration

_ ___j : Formula Event _ -> Formula [memo prec i0]

The attribute memo added to an operation declaration instructs Maude to memorize, or cache, the normal

forms of terms rooted in that operation, i.e., those terms will be rewritten only once. Memoization is im-

plemented by hashing, where the entry in the hash table is given by the term to be reduced and the value

in the hash is its normal form. In our concrete example, memoization has the effect that any LTL formula

will be transformed by a given event exactly once during the monitoring sequence; if the same formula and

the same event occur in the future, the resulting modified formula is extracted from the hash table without

applying any rewriting step. If one thinks of LTL in terms of automata, then our new algorithm corresponds

to building the monitoring automaton on thefly. The obvious benefit of this technique is that only the needed

part of the automaton is built, namely that part that is reachable during monitoring a particular sequence of

events, which is practically very. useful because the entire automaton associated to an LTL formula can be

exponential in size, so storing it might become a problem.

The use of memoization brings a significant improvement in the case of LTL. For example, the same

sequence of 100 million events, which took 1500 seconds using the algorithm presented in Subsection 4.1,

takes only 185 seconds when one uses memoization, for a total of 2.2 rewritings per processed event and

540,000 events processed per second! We find this numbers amazingly good for any practical purpose we

can think of and believe that, taking into account the simplicity, obvious correctness and elegance of the

rewriting based algorithm (implemented basically by 8 rewriting rules in LTL-REVISED), it would be hard

to argue for any other implementation of LTL monitoring. One should, however, be careful when one uses

memoization because hashing slows down the rewriting engine. LTL is a happy case where rnemoization

brings a significant improvement, but there might be monitoring logics where memoization could be less

efficient. Experimentation is certainly needed if one designs a new logic for monitoring and wants to use

memoization.

4.4 Synchronous versus Asynchronous Monitoring

There are many safety critical applications in which one would want to report a violation of a requirement

as soon as possible, and to not allow the monitored program take any further action once a requirement

is violated. We call this desired functionality synchronous monitoring. Otherwise, if a violation can only

be detected after the monitored program is stopped and its entire execution trace is needed to perform the

analysis, then we call it asynchronous monitoring. Notice that the dynamic programming algorithm in [28]
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(seealsoSubsection3.3)is not synchronous, because one can detect a violation only after a program is

stopped and its execution trace is available for backwards traversal.

The algorithm presented in this section is also asynchronous because there are universally false formulae

which are detected so only at the end of execution trace. Consider, for example, that one monitors the finite

trace LTL formula ! <> ( [ ] A \ / [ ] !A), which is false because at the end of any execution trace A either

holds or not. However, in order for a monitor to detect such violation, it should implement a validity checker

for finite trace LTL, such as the one in Subsection 5.2, and call it on the current formula after each event

is processed. Checking validity of a finite trace LTL formula is very expensive (we are not aware of any

theoretical result stating its exact complexity, but we believe that it is PSACE-complete, like for standard

infinte trace LTL). We are currently considering providing a fully synchronous LTL monitoring module

within .IPAX, at the expense of calling a validity checker after each event, and let the user of the system

choose either synchronous or asynchronous monitoring.

There are, however, many practical LTL formulae for which violation can be detected synchronously

by the presented formula trasnforming rewriting-based algorithm presented in this section. Consider for

example the sample formula of this paper, [ ] (green -> [ red U yellow), which is violated if and only

if a red event is observed after a green one. The monitoring requirement of our algorithm, which initially

is the fo..rm_u!a itself, wi!! not be changed unless a green event is received, in which case it will change

to (!red U yellow) \/ [] (green -> !red U yellow). A yellow event will turn it back into the

initial formula, a green event will keep it unchanged, but a red event will turn it into false. If this is the

case, then the monitor declares the formula violated and appropriate actions can be taken. Notice that the

violation was detected exactly when it occured, and in general, that this formula can be monitored by our

algorithm synchronously. A very interesting, practical and challanging problem is to find criteria that say

when a formula can be synchronously monitored without the use of a validity checker.

5 Generating Efficient Monitors

Even though the rewriting based monitoring algorithm presented in the previous section performs quite well

in practice, there can be situations in which one wants to minimize the monitoring overhead as much as

possible. Additionally, despite its simplicity and elegance, the procedure above requires an efficient AC

rewriting engine which may not be available or may not be desirable on some monitoring platforms, such

as, for example, within an embedded system. In this section we present an algorithm built on the ideas in

the previous section, also based on rewriting, which takes as input an LTL formula and generates a special

finite state machine (FSM), called binary transition treefinite state machine (BTLFSM), that can be then

used as an efficient monitor. An example of a BTT-FSM for the traffic light control requirements formula

[ ] (green -> !red U yellow) discussed previously in the paper can be seen in Figure 2 (see Figure 3

for a more formal representation). One should think of transitions using BTTs as naturally as possible; for

example, if the BTT-FSM in Figure 2 is in state 1and a non-terminal event is received, then: first evaluate the

predicate yellow; if true then stay in state 1 else evaluate green; if false then stay in state 1 else evaluate

red; if true then report "formula violated" else move to state 2. These FSMs can be either stored as data

structures or generated as source code (case statements) which are further compiled into actual monitors.

Our FSMs can be exponential in the number of states (as function of the size of the initial LTL formula)

but they only need to evaluate at most all the atomic state predicates in order to proceed to the next state

when a new event is received, so the runtime overhead is actually linear at worst. The size of our FSMs

can become a problem when storage is a scarce resource, so we pay special attention to generating optimal

FSMs. Interestingly, the number of state predicates to be evaluated tends to decrease with the number of

states, so the overall monitoring overhead is also reduced. The drawback of generating an optimal BTT-FSM

statically, i.e., before monitoring, is the exponential time/space required at startup (compilation). Therefore,
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Figure 2: A BTT-FSM for the formula [ ] (green -> ! red U ye__ low)

we recommend the algorithm below in situations where the I_TL formulae to monitor are relatively small in

size but the runtime overhead is desired to be minimal.

5.1 The Main Algorithm

Informally, our algorithm to generate minimal FSMs from LTL formulae uses the rewriting based algorithm

presented in the previous section statically on all possible events, until the set of formulae to which the initial

LTL formula can "evolve" stabilizes. More precisely, it builds a FSM whose states are formulae and whose

transitions are the "events"; events are regarded here as boolean formulae describing the next (abstract) state

of the monitored program in terms of the atomic predicates, i.e., formulae of the form al A ... A akl A

-"akl+l A ... A -,ak where al, ..., ak are all the atomic state predicates occurring in the LTL formula; we let

sl, ..., s2_ denote all these state boolean formulae in no particular order. Since the size of any formula into

which an LTL formula may evolve during an execution sequence is bounded (exponentially in the size of

the initial formula; see the previous section), it follows that this algorithm will eventually terminate.

We use the notation qo[Pz?_l, ...,pjT._j] to state that the formula (or state in the FSM) _ changes to

<pi when an event satisfying the boolean formula pi is received, for each i between 1 and some j smaller

than or equal to 2k. For a given newly generated formula/state (p, we generate the next potential formulae

_1, .-., _2_ by generating and analyzing qO[Sl?_1, ..., s2_ ?_o2k], where _i is the formula _{si} obtained from

_y after consuming the event si as described in the previous section, for each i E (1, ..., 2k}. To keep the

number of states minimal, we rewrite _[..., Pil ?_Pil, ..-,Pi_ ?_i_,, ...] to p[..., (Pi_ V pi_.)?_i_, .-.] whenever

¢Pil and cPi2 are equivalent formulae under finite trace LTL semantics. In order to check this semantical

equivalence we have implemented a validity checker that we call on the formula cpit ++ _i2. Once the term

_Pl?_I,...,Pj 7._ojJ cannot be further simplified using the validity checker, the process of generating new

formulae/states is iterated sequentially for the formulae _Yl, ..., _;j. This procedure will terminate. Notice

that each formula/state and its transitions thus generated, say g_[pl?q_t, ...,pj?_j], has the property that
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exactly one of pz, ..., pj is true for any newly received event, that at most one of qoz, ..., _j can be qo, true or

false, and that if cp is true or false then j = 1, Pz = true and _1 = _.

Obviously, this algorithm is exponential in the size of the initial LTL formula, so one should not expect

it to terminate in reasonable time on large formulae. Once it terminates, the terms _[...] contain all those

formulae _ to which the initial LTL formula can evolve during any monitoring session. What is left to

do now is to say what happens when a monitoring session is terminated; according to our semantics for

finite trace LTL described in Section 3, we assume that the last event is repeated infinitely. To faithfully

implement this semantics, we extend the notation _o[...J to _[...][sz ?c;_, ..., s2k?co_], where _,_ is the truth

value _{si *} obtained from _ considering that the event si is the last monitored event, as described in the

previous section, for each i E {1, ..., 2k}. Then the same simplification technique as in the first step of the

algorithm is used, reducing these terms to terms of the form _[...J[pt?true, pj?false]. Note that this second

step takes much less than the previous step because validity is checked only for trivial formulae, and that

exactly one of the boolean formulae Pt,Pf holds for any event claimed to be the last; since pf = -'Pt, we

ignore pf in what follows.

The two steps above therefore generate a special FSM encoded via terms _;[Pl ?c;1,-.., Pj ?_j] _vt?true].

At monitoring time, this FSM is used as follows: if it is in state cy and a non-terminal event is received that

makes Pi true (for ! < i < j) then the FSM moves into state Pi; if a ter__m_inalevent is received then either

true or false is output, depending on whether Pt or pf holds, respectively. Notice that the transitions for the

nodes true and/or false are true[true?true][true?true] and false[true?false][true?false], respectively, so once

the FSM gets into a true or false state it will remain there forever and it will return the appropriate output

when the monitoring is stopped (one can slightly improve our algorithm by removing the true/false states

and giving appropriate messages before entering them). The main computational component at runtime of

our algorithm is therefore to evaluate the state formulae Pl, ...,Pj which are boolean combinations of the

atomic state propositions al, ..., ak occurring in the monitored LTL formula. Since some of these atomic

propositions can be expensive to evaluate (for example one can question if an array is sorted), one would

like to also minimize the amount of work needed to decide to which of _;_, ..., cyj to go from c;. To achieve

this, we have also implemented a method that takes a generalized transition Pl?_ 1, ..., Pj ?_oj and generates

a binary transition tree (BTT), that is, a binary tree whose nodes are atomic predicates and whose leaves

are formulae/states (Figure 2 shows some BTTs in flowchart notation). BTTs encode the transitions in our

FSMs, reason for which we call our FSMs binary transition tree finite state machines (BTT-FSMs). We

actually generate optimal BTTs, where our optimality criterion at this stage is the size of the BTT.

Once the steps above terminate, the formulae c;, Cyl, etc., are not needed anymore, so we replace them by

unique labels in order to reduce the amount of storage needed to encode the BTT-FSM. This algorithm can

be relatively easily implemented in any programming language. We have, however, found Maude again a

very elegant system, implementing this whole algorithm in about 200 lines of Maude code. We next describe

our implementation in more detail.

5.2 The Validity Checker

Our implementation for the validity checker is simple and exponential. It follows closely the implementa-

tion of the main algorithm described in the previous subsection, except, of course, the minimization step

that uses the validity checker; a boolean validity checker is used instead to keep the number of gener-

ated formulae small. For a given LTL formula, we therefore obtain a FSM also given by terms of the

form _[Pz ?_z,-.-,Pj ?qoj]_?true]; this FSM will almost certainly have more states than the minimal BTT-

FSM described above, but it can be generated faster (because the expensive validity checks for formulae

_iz ++ _i2 are not needed anymore). Then we just check that for any state in this FSM it is the case that

Pt = true. The intuition for this check is that a formula is valid under finite trace LTL semantics if and
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onlyif any(finite)monitoringsequencesatisfiesthatformula;sinceanygeneratedformula/statein theFSM
correspondstoavalidformulatowhichtheinitialformulacanevolve,weneedtomakesurethateachof
theseformulaebecometrue under any possible last monitored event.

5.3 A lVlinimal FSM

As mentioned earlier, minimality of the monitor is not crucial for obtaining a small runtime overhead, in the

same way in which a smaller program is not necessarily faster than a larger program. However, it seems to

be an interdependence between the size of a FSM monitor and the size of the BTTs associated to its states,

namely the smaller the FSM in number of states the smaller the BTTs, so the lower the monitoring overhead.

A rigorous proof of this interdependence seems to be hard; we only show that our FSMs are minimal with

respect to the number of states.

Theorem: The special FSM presented in this section has minimal number of states in the class of deter-

ministic (total) FSMs in which transitions are activated by any boolean combination of atomic state predi-

cates.

Proof: It follows by standard results in the theory of deterministic finite state automata (DFA), noticing

that our rewriting decision procedure for propositional calculus gives a canonical form for any transition

(i.e., boolean formula) and that the usual language equivalence in DFA's becomes trace equivalence in our

special FSMs, which is nothing but semantical equivalence of formulae in our finite trace LTL setting. The

rest follows by the fact that qo and _ are semantically equivalent if and only if _ ++ _ is valid.

5.4 Binary Transition Trees

In order to keep the runtime overhead of our FSMs minimal, it is crucial to do as little computation as

possible in order to proceed to the next state. When in a state _[Pl ?_1, ..-, Pj ?_Pj] [-.-], a naive implementation

would start to sequentially evaluate Pl ..... pj on the new event until a first one, say Pi, holds and then move

to state _Pi. Fortunately, one can do much better by making use of what we call binary transition trees

(BTTs), which are binary trees associated to each state of a FSM having atomic propositions as nodes and

states in the FSM as leaves. We use the notation (condition) ? (BTT) : (BTI) borrowed from C and Java

to denote BTTs. For example, the BTT el ? a2 .9 1 : a3 ? 2 : 1 : a3 ? 3 : 2 says "eval al; if al then (eval

a2; if a2 then go to state 1 else (eval a3; if a3 then go to state 2 else go to state 1)) else (eval a3; if a3 then

go to state 3 else go to state 2". When the transitions of a FSM are all encoded as BTTs (one associated to

each state), then we call it a bina_ transition treefinite state machine (BTT-FSM). Notice that, in the worst

possible case, one just has to evaluate all the atomic predicates in order to proceed to the next state of a

BTT-FSM. We have implemented a procedure that takes a generalized transition and returns a BTT. More

BTTs can encode the same generalized transition, so one needs to develop some criteria to select the better

ones. A most natural criterion would be to minimize the average amount of computation. For example, if

all atomic predicates are equally probable to hold and if an atomic predicate is very expensive to evaluate,

then one would select that BTT that places that predicate as deeply as possible, so its evaluation is delayed

as much as possible. Based on the above, we believe that the following is an important theoretical problem

in runtime monitoring:

Problem: Optimal BTT

Input: A set of atomic predicates al: ..., ak that hold with probabilities 7rl, ..., 7I"k and have

costs cl, ..., ck, respectively, and a generalized transition P17_1, ...,Pj?_j where Pt, ...,Pj are

boolean formulae over al, ..., ak.
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Output:A BTT encoding the generalized transition that probabilistically minimizes the amount

of computation to decide the next state.

We do not know how to solve this interesting problem yet, but we conjecture the following result that

we currently use in our implementation:

Conjecture: If rq ..... rrk and el - - ck then the solution to the problem above is the BTT of

minimal size.

Our current generalized transition to BTT algorithm is exponential in the number of atomic predicates;

it simply enumerates all possible BTrs recursively and then sm_ots_._the minimal one _,,,_;"_,L,,j._""_G-'_"_'_';--e

the BTTs takes significantly less then generating the FSM, so we do not regard it as a problem yet.

5.5 Evaluation

The algorithm presented in this section, despite its overall startup exponential time, can be very useful when

formulae are relatively short. For the traffic light controller requirement formula discussed in the paper,

[] (green -> {!red) U yellow), the algorithm presented in this section generates in about 0.2 seconds

the optimal BTT-FSM in Figure 3 (also shown in Figure 2 in flowchart notation):

State Non-terminal event I Terminal event

yellow ? 1 • green ? red ?false : 2 : 1 [ yellow ? true " green ?false : true

yellow ? 1 : red ?false " 2 p yellow ? true :false

Figure 3: An optimal BTT-FSM for the formula [ ] (green -> ! red U yellow)

For simplicity, the states true and false do not appear in the table above. Notice that the atomic predicate

red does not need to be evaluated on terminal events and that green does not need to be evaluated in state

2. In this example, the colors are not supposed to exclude each other, that is, the traffic controller can

potentially be both green and red.

The LTL formulae on which our algorithm has the worst performance are those containing many nested

temporal operators (which are not frequently used in specifications anyway, because of the high risk of

getting them wrong). For example, it takes our algorithm 2.5 seconds to generate the minimal 3-state

(true andfatse states are not counted) BTT-FSM for the formula a u (b V (c U d) ) and 25.8 seconds to

generate the 7-state minimal BTT-FSM for the formula ( (a u b) U c } u d. The generated BTT-FSMs are

monitored most efficiently on RAM machines, due to the fact that case statements are usually implemented

via jumps in memory. Monitoring BTT-FSMs using rewriting does not seem appropriate because it would

require linear time (as a function of the number of states) to extract the BTT associated to a state in a BTT-

FSM. An interesting experiment would be use memoization to avoid multiple searches for the same BTT.

However, we believe that the algorithm presented in Section 4 is satisfactory in practice if one is willing to

use a rewriting engine for monitoring.

6 Conclusions

We presented a finite trace semantics of LTL in the Maude logic together with a much more efficient version

based on formula transforming state changes. We then went a step further and improved the efficient version

by hashing rewriting results, thereby reducing the number of rewritings performed during trace analysis.

The hashing corresponds to building an observer automaton on-the-fly, having the advantage that only the
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partof theautomatonthatisneededfor analyzingagiventraceis generated.Theresultingalgorithmis
veryefficient.However,in certaincasesonewouldwantto generateanobserverfinitestatemachine(or
automaton)apriori,forexampleif arewritingsystemcannotbeusedformonitoring,orif minimalruntime
overheadisneededbyanymeans.Forthiscase,wepresentedanalgorithmforgeneratingminimalautomata
fromLTLformulae.

All algorithmsarewritteninsurprisinglyfewlinesofMaudecode,illustratingthestrengthof rewriting
forthisparticulardomain.Inspiteof thereducedsizeofthecode,theimplementationsseemtobeefficient
for practicalpurposes.As aconsequence,wehavedemonstratedhowrewritingcanbeusednotonlyto
experimentwith runtimemonitoringlogics,butalsoasanimplementationlanguage.Asanexampleof
futurework,thatweanticipatetobeveryeasy,is theextensionof LTLwithreal-timeconstraints.Since
Maudebyitselfprovidesahigh-levelspecificationlanguage,onecanarguethatMaudein itsentiretycanbe
usedforwritingrequirements.Furtherworkwillshowwhetherthisavenueis fruitful.
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