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ABSTRACT

In vitro selection was used to sample snRNA-related sequences for ribozyme activities, and several 29,59-branch-

forming ribozymes were isolated. One such ribozyme is highly dependent upon an 11-nt motif that contains a

conserved U6 snRNA sequence (ACAGAGA-box) known to be important for pre-mRNA splicing. The ribozyme reac-

tion is similar to the first step of splicing in that an internal 29-hydroxyl of an unpaired adenosine attacks at the

59-phosphate of a guanosine. It differs in that the leaving group is diphosphate rather than a 59 exon. The finding that

lariat formation can be accomplished by a small RNA with sequences related to U6 snRNA indicates that the RNA

available in the spliceosome may be involved in RNA-catalyzed branch formation.
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INTRODUCTION

The constitution of the spliceosome catalytic center has
not been determined+ The finding that both group II
self-splicing RNA and spliceosomes generate lariat
RNAs has led to the speculation that the snRNA com-
ponents present in the spliceosome might be catalyti-
cally active (Sharp, 1985; Cech, 1986; Guthrie, 1991;
Steitz & Steitz, 1993)+ Because there are so few se-
quence and structural similarities between snRNAs and
self-splicing group II introns, an RNA-based mecha-
nism cannot be inferred from their comparison (for dis-
cussion, see Weiner, 1993; Michel & Ferat, 1995)+ On
the other hand, the striking similarity in the stereochem-
istry of these splicing reactions (Maschhoff & Padgett,
1993; Moore & Sharp, 1993; Padgett et al+, 1994) and
additional parallels to other RNA-catalyzed reactions
(Sontheimer et al+, 1999, 1997) argue for snRNA-based
catalysis in the spliceosome+

Significant progress has been made in defining the
snRNA and pre-mRNA interactions in the catalytically
competent form of the U2-type spliceosome (reviewed
in Madhani & Guthrie, 1994a; Umen & Guthrie, 1995;
Nilsen, 1998;Staley & Guthrie, 1998)+The current model

of snRNA and pre-mRNA interactions in the yeast splice-
osome is shown in Figure 1+ U2 and U6 snRNAs are
engaged in base pairing interactions to juxtapose the
splice site residues of the pre-mRNA substrate+ De-
spite initial evidence for an important role of the con-
served loop I of U5 snRNP in this process (reviewed in
Newman, 1997), the loop appears to be dispensable
(O’Keefe et al+, 1996; Segault et al+, 1999)+ Both U1
snRNA and U4 snRNA are released from the splice-
osome before RNA chemistry occurs+

U6 snRNA and the 59-terminal domain of U2 snRNA
are conserved across diverse species (Guthrie & Pat-
terson, 1988; Roiha et al+, 1989)+ Mutational analyses
of U2 and U6 snRNAs in yeast indicate that not all
conserved residues are absolutely critical+ Of the 29
phylogenetically conserved residues in yeast U6 snRNA,
only 14 show a phenotype when mutated singly and
even fewer residues are critical in the similarly highly
conserved 59-terminal domain of U2 snRNA+ In mam-
malian systems, these conserved regions appear even
more permissive to mutations (e+g+, Datta & Weiner,
1993; Wolff et al+, 1994)+ The most critical U6 snRNA
residues cluster in two regions and are named accord-
ing to their conserved sequences as the ACAGAGA-
box and the AGC-triad (Fabrizio & Abelson, 1990;
Madhani et al+, 1990; Datta & Weiner, 1993;Wolff et al+,
1994; McPheeters, 1996)+ Both elements have critical
functions in 59 splice site selection (Wassarman & Steitz,
1992; Kandels-Lewis & Seraphin, 1993; Lesser & Guth-
rie, 1993; Sun & Manley, 1995; Hwang & Cohen, 1996;
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Luukkonen & Seraphin, 1998a, 1998b) and have been
proposed to assist directly in catalysis of the splicing
reaction+ With inspiration from group II self-splicing in-
trons, it was further proposed that the entire active site
might be composed of RNA (Sharp, 1985; Cech, 1986;
Guthrie & Patterson, 1988)+ However, group II introns
are quite large; to date, even the smallest catalytically
active derivatives are larger than 500 nt+ Thus it has
been unclear whether the few critical snRNA residues
in the spliceosome could be sufficient for catalyzing the
splicing transesterification reactions+

We have identified a 29,59-branch-forming ribozyme
with intriguing similarities to pre-mRNA splicing and
snRNA function+ The ribozyme activity is dependent
on a conserved U6-like sequence (ACAGAGA-box),

and branch formation occurs with similar sequence
specificity as in pre-mRNA splicing; an internal aden-
osine 29-hydroxyl group attacks the a-phosphate of a
59-terminal guanosine triphosphate, releasing diphos-
phate and forming a 29,59-branched lariat+

RESULTS

Selection of new lariat-forming ribozymes

Previously, we developed a combinatorial approach to
explore the catalytic abilities of the U2 and U6 snRNA
components in a protein-free environment (Tuschl et al+,
1998)+ More than 1014 U2/U6 snRNA variants were
subjected to an in vitro selection protocol to isolate

FIGURE 1. Model of the assembled spliceosome illustrating U2, U6, and pre-mRNA interactions (reviewed in Moore et al+,
1993; Madhani & Guthrie, 1994a; Umen & Guthrie, 1995; Nilsen, 1998; Staley & Guthrie, 1998)+ Sequences and numbering
refer to Saccharomyces cerevisiae U2 (1,171 nt) and U6 (107 nt) snRNAs+ Phylogenetically conserved nucleotides (in-
cluding trans-splicing trypanosomatidae sequences) are represented by uppercase letters+ The intron–exon structure of the
pre-mRNA is represented in blue+ Letters in red indicate nucleotides where mutations cause a growth phenotype or a
splicing defect in a biochemical reconstitution assay in yeast+ Boxed nucleotides are important for step 2; mutants accu-
mulate lariat intermediate in yeast+ The pre-mRNA consensus sequences are derived from statistical analysis of yeast and
human introns (Burge et al+, 1999)+A capital letter indicates a frequency.75%; yeast splice signals are however much more
conserved than are human splice signals+ Watson–Crick base pairs are symbolized by dashes+ A bold dash indicates that
the phenotype of a disruption can be partially or fully rescued by a compensatory change in yeast or human genetic
systems, dashed lines represent base pairs that might fluctuate, and a double arrow indicates the suggested base-pairing
interaction of helix 2-6 III+ Spark arrows indicate crosslinks; the green double arrow depicts a tertiary base-pairing inter-
action, and the pins with the circle head mark critical RP-phosphorothioate substitutions that affect splicing (large purple
circle, complete block of splicing; small purple circle, partial block; black circle, block of second step only; letter ‘a’ in circle,
effect only in yeast; letter ‘b’ in circle, effect only in nematode+
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ribozymes that catalyze reactions similar to the second
step of splicing, the exon ligation reaction+ Although
four different ribozyme activities were selected, the
catalyzed reactions did not directly relate to the
spliceosome-catalyzed reaction (Tuschl et al+, 1998)+

The most interesting ribozyme catalyzed the attack
of an internal 29-hydroxyl group at the a-phosphate of
a 59-triphosphate, and as with the spliceosome reac-
tion, the reactive phosphate was 59 to a G residue
(Tuschl et al+, 1998)+ However, the reaction differed
from splicing in that the branch nucleotide was a gua-
nosine, not an adenosine, and the leaving group was
diphosphate, not an oligonucleotide+ It was the inten-
tion to further analyze this ribozyme as a new example
of a 29,59-branch-forming activity+A library of sequence
variants of the 29,59-branch-forming ribozyme was syn-
thesized at 20% partial mutagenesis (Tuschl et al+,
1998)+ The parent construct contained an 18-nt seg-
ment based on human U6 sequence (positions 30–47
in human or positions 36–53 in yeast, Fig+ 1) that in-
cluded the critical ACAGAGA-box+ The complexity of
the starting library was 2 3 1014 different sequences,
with 104 partially mutagenized positions (including the
U6 segment) flanked by constant sequences at the 59
and 39 termini, used for primer binding+

Catalytically active sequences were isolated by iter-
ative in vitro selection (Fig+ 2)+ Linear starting material
was separated from lariat product RNA by denaturing
gel electrophoresis+ Lariat-forming activity was first de-
tected after three selection cycles, at which point about
half of the pool 3 RNA reacted at an apparent rate of
0+002 min21+ The selection was then continued under
increasingly stringent conditions by adjusting the incu-
bation time such that not more than 0+5% of lariat prod-
uct was formed+ After a total of seven rounds, the
average activity approached 0+03 min21, and 73% of
the input RNA formed lariats+ PCR DNA from round 7
was cloned and sequenced (Fig+ 3)+ Activities of 27
different isolates ranged between 0+004 and 0+5 min21,

corresponding to a 40- to 5,000-fold rate enhancement
relative to the parent sequence+

Comparative sequence analysis indicated that at least
two different classes of lariat-forming RNAs were se-
lected+ These were identified by segments of invariant
sequence surrounding characteristic changes from the
parent sequence (Fig+ 3)+ Eight isolates could not be
categorized and may not be related in structure and
function to the major classes or to each other+ Surpris-
ingly, neither of the two major classes represented the
parent; an important helix of the parent ribozyme (pair-
ing segments 71–76 and 81–86) was disrupted in both
classes+

A conserved 15-nt region of one of the major classes
(Fig+ 3, red shading) corresponded to a highly con-
served and biochemically important region of U6 snRNA
(ACAGAGA-box) present at the heart of the splice-
osome+ The importance of this motif in this class of

ribozymes and in U6 snRNA raised the question of
whether the ribozymes catalyze a branch-forming
reaction similar to that of the first step of pre-mRNA
splicing+ The isolate DL7+18, one of the more active
representatives of this class of lariat-forming ribozymes,
was chosen for further characterization+

As suggested by the comparative analysis, large seg-
ments of isolate DL7+18 could be deleted without dis-
rupting branching activity+ A 37-nt loop (positions 18–
54) at the end of a putative stem was removed and
replaced by a C(UUCG)G-tetraloop (Molinaro & Ti-
noco, 1995)+ Second, a 36-nt segment (positions 102–
137) including the 39 primer-binding sequence was
removed from the 39 end+ Combining both changes
resulted in a 70-nt ribozyme, DL7+18+d (Fig+ 3), with
activity (0+036 min21) comparable to that of full-length
DL7+18 (0+064 min21)+

The branch point of the deletion derivative, DL7+18+d,
was mapped by partial alkaline hydrolysis and compar-
ison of the hydrolysis ladder to a partial RNase T1
digest (Fig+ 4)+ The branched product was generated
by a trans reaction in which a 59-32P-labeled RNA con-
taining the branch site (positions 55–107 from isolate
DL7+18, Fig+ 3) was reacted with unlabeled 59-triphos-
phate-containing substrate (positions 1–17 from isolate
DL7+18)+ RNA hydrolysis requires the presence of a

FIGURE 2. In vitro selection scheme for lariat-forming ribozymes+
Abbreviations: PT7: T7 RNA polymerase promoter; ppp: 59-terminal
nucleotide triphosphate; pp: diphosphate; OH: hydroxyl function;
yDbr1: yeast debranching enzyme+ Constant promoter and primer-
binding sequences are depicted as boxes; arrows above or below
those boxes symbolize the primer oligonucleotides+ A single line rep-
resents single-stranded DNA or RNA, a double line represents double-
stranded DNA+

RNA-catalyzed branch formation 31



free 29-hydroxyl so that the last unshifted band in the
lane of branched product corresponds to the nucleo-
tide 59 to the branch site+ The branch-site hydroxyl was
that of the adenosine within the conserved 4-nt seg-
ment CUCA+ This position is 1 nt upstream relative to
the branched guanosine identified in the parent se-
quence (Tuschl et al+, 1998)+ The different branch-site
residue can be considered additional evidence that a
new class of lariat-forming ribozymes had been isolated+

Important sequence and structural features
of the new ribozyme

It was intriguing that the ribozyme contained a con-
served U6 segment and, like the spliceosome, formed
a lariat involving an adenosine 29-hydroxyl and a gua-
nosine 59-phosphate+ To further test the sequence re-
quirements of this ribozyme, an in vitro selection protocol
was used to generate a large number of active ribo-

FIGURE 3. Comparative analysis of cDNAs of lariat-forming variants+ The constant 59 T7 promoter and 39 primer-binding
sequences are not shown+ Residues that differ from the parent sequence are boxed in dark blue+ Sequences that share a
common motif (green and red boxes) and some specific nucleotide changes are grouped together and ranked by reaction
rates+ Eight sequences could not be classified+ The sequence DL7+18+d is a deletion construct of DL7+18 in which the
segment between positions 17 and 52 was replaced by a C(UUCG)G tetraloop+ The frequency at which a clone was isolated
is indicated (freq+), as is its rate constant for lariat formation and the fraction of molecules active; for slowly reacting isolates,
the active fraction was not determined (n+d+) and assumed to be 70%+
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zyme variants+ This protocol was designed to permit
variation of every ribozyme residue—even the 59-
terminal residues, which cannot be varied in a typical
selection protocol (Fig+ 5)+ Ideally, the conservation of a
particular residue among selected variants will reflect
the importance of this residue for branch-forming ac-
tivity+ It should be noted, however, that despite initial

randomization throughout the ribozyme, sequence pref-
erences of protein enzymes required during amplifica-
tion steps might impose additional sequence bias at

FIGURE 4. Mapping of the branch site+ Partial alkaline hydrolysis
(OH2) was performed on linear (lin+) and 29,59-branched (br+) sub-
strates+ A reference ladder was generated by partial RNase T1 di-
gestion, which cleaves 39 to guanosines leaving a 39-phosphate and
a free 59-hydroxyl+Alkaline hydrolysis requires the presence of a free
29-hydroxyl and generates 29,39-cyclic phosphates+ The first missing
band in the hydrolysis ladder of the branched substrate corresponds
to that of the branch-point nucleotide (arrow)+

FIGURE 5. In vitro selection scheme for lariat-forming ribozymes
with unconstrained 59 sequence+ To generate amplifiable cDNA with
constant primer sequences at both ends, the pool RNA that had been
selected and debranched was circularized, then reverse transcribed
using a primer that hybridized to only the 59 half of the constant
sequence (open box)+ The remainder of the constant sequence (filled
box), which corresponded to the T7 promoter sequence, was thus
the last RNA to be reverse transcribed+ Following PCR, DNA could
be transcribed using this repositioned T7 promoter+ The 39-terminal
T7 primer/promoter sequence was added by digestion of the PCR
DNA with BanI restriction endonuclease, followed by DNA ligation+
Abbreviations: p: terminal 59-phosphate; for other symbols, see Fig-
ure 2+
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certain residues+ For example, T7 RNA polymerase ini-
tiates transcription preferentially with templates encod-
ing a guanosine and tends to abort transcription when
attempting early incorporation of uridines (Milligan &
Uhlenbeck, 1989)+ The substrate preference of the de-
branching enzyme Dbr1, used in our protocol to linear-
ize selected ribozymes,might also favor ribozymes that
branch using the 59-triphosphate of a purine rather than
that of a pyrimidine nucleoside (Nam et al+, 1994)+

After four and five rounds of selection, PCR DNA was
cloned and individual isolates were sequenced and as-
sayed for their activities (Fig+ 6)+ Sequences of all lariat-
forming ribozymes were aligned to the parent ribozyme+
The majority of isolates (45/50) related to the parent
structure by virtue of their invariant U6-like motif and
branch-site sequence (Fig+ 6A)+ Their reaction rates
ranged between 0+12 to 0+005 min21+ The most active
isolate was three times faster than the starting se-
quence+ Five isolates could not be classified (Fig+ 6B)+
Their rates ranged between 0+04 and 0+02 min21+ They
have four to eight changes in the residues conserved
in the main class, and two of these isolates do not
appear able to form a 39-terminal stem present in the
main class, supporting the idea that these isolates are
not related to the main class+ They were not examined
further+

The 45 isolates of the major class contained 26 con-
served residues, which were concentrated in three re-
gions+ The first is a 4-nt segment, pppGGAA, at the
59-triphosphate-containing terminus+ About half of the
active sequences showed a single-nucleotide insertion
between the T7 promoter and the conserved GGAA 59
end of the template DNA (Fig+ 6, brown shading)+ Such
insertions were an anticipated artifact of the selection
protocol, and the additional nucleotide was most likely
not transcribed in catalytically active molecules (Fig+ 6
legend)+ The second conserved segment, AACTACA
GAGA, includes the ACAGAGA U6-like sequence+ The
third invariant segment,ACUCAGA, includes the branch-
site adenosine (underlined)+ This motif was also present
in 7 of the 10 founding members of this class (Fig+ 3);
the three nonmatching sequences from the first selec-
tion differed by a change of the first A or by a U inser-
tion after the branch-site A+ The 7-nt branch-site motif

is flanked by an additional four interspersed conserved
residues+

Sequence analysis strongly supports a 4-bp stem
(Fig+ 6A, violet shading) surrounding the branch-point
adenosine; numerous covariations were found in the
third and fourth loop-closing base pairs+ The adjacent
second base pair (positions 52 and 68) was generally
conserved, although one U/G covariation and six mis-
matches were found+ The loop-closing base pair (po-
sitions 53 and 67) was always a G/C pair and flanked
by a conserved U at position 54+ We also identified an
unusual covariation (Fig+ 6A, green shading) between
positions 5 and 35 (23 A:A, 15 G:C, 5 A:G, 1 A:T, and 1
C:G pair)+ Position 35 is immediately upstream of the
conserved U6-like segment+An interaction between res-
idues 5 and 35 might position the reactive 59 end of the
ribozyme near the conserved U6-like sequence+

Sequence comparison indicates a 28-nt variable re-
gion flanked by the unusual A5/A35 interaction+ Poten-
tially base-paired regions are located in this segment,
but were not conserved in strength or position+ This
suggested that deletions might be active as long as the
covarying A/A pair was not perturbed+ Two isolates
were examined (Fig+ 7A)+ When the 17-nt loop region
at the end of a potential 3-bp stem of isolate 5+33 was
replaced by a stable UUCG tetra-loop (5+33+d3, Fig+ 7B)
the activity was unaffected+ As expected, extension of
the stem by one more base pair (5+33+d4) had no effect+
Similarly, reduction of the internal stem-loop region of
isolate 5+64 to a stable 3-bp plus a tetra-loop element
(5+64+d3) did not affect the rate of lariat formation+ De-
letion of the 39 half of the pairing segment (5+33+d1)
caused a more than 40-fold loss in activity and resulted
in a branched dimer product formation without detect-
able intramolecular lariat formation+ Dimerization is ex-
plained by the fortuitous ability to form an intermolecular
6-bp stem after the internal deletion+ In summary, the
fully active deletion variants 5+33+d3 and 5+64+d3 were
only 58 and 55 nt long, respectively+ The 5+33+d3 vari-
ant was chosen as the prototype ribozyme that forms
an RNA branch using the 29-hydroxyl of an A and the
59-phosphate of a G+ It was renamed the 29-59AG1
lariat-forming ribozyme (Fig+ 7B) and characterized
further+

FIGURE 6 ( facing page). Comparative analysis of cDNAs of selected lariat-forming variants+ A: Sequences with the
conserved U6-like motif+ B: Sequences without U6-like motif+ Conserved regions are indicated (red bars on top of the
alignment)+ The branch site (A62) is indicated with an arrow+ An unusual covariation between positions 5 and 35 is
highlighted in green+ A paired region is highlighted in violet+ Bases that covary are marked with dark blue vertical bars and
G/U wobble pairs that maintain the predicted pairing are shaded orange+ Nucleotides that differ from the parent sequence
(DL7+18+d) and do not maintain pairing are boxed in dark blue+ If such a change creates a mismatch within the paired
segment, then the nonmutated partner is boxed in light blue+ Single-nucleotide insertions between the T7 promoter and the
conserved GGAA 59 end are shaded in brown+ These are an artifact of the selection-amplification protocol, generated as a
consequence of an untemplated nucleotide added to the 39 terminus of many T7 polymerase run-off transcripts (Milligan &
Uhlenbeck, 1989)+ The inserted nucleotide is absent in the catalytically active RNA fraction (data not shown)+ Such
inaccuracies of T7 RNA polymerase near the 59 end have been observed previously (Helm et al+, 1999)+All sequences were
represented by a single isolate, except sequences 4+9, 5+22, and 5+47, which were isolated twice+
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FIGURE 6. See caption on facing page.
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Importance of the ACAGAGA segment,
branch-site adenosine, and 59 guanosine

The ACAGAGA-box is a phylogenetically conserved
and functionally important region of U6 snRNA (Fig+ 1)+
For comparison to the spliceosome, the importance of
each nucleotide in the ACAGAGA-motif of the lariat-
forming ribozyme (Fig+ 7B, A29–A35) was tested by
assaying the activity of each of the 21 single-nucleotide
substitutions within this segment (Table 1)+ As ex-
pected, all mutants were less active than the unmodi-
fied 29-59AG1+ The most critical positions for mutations
within the ACAGAGA segment were A29, G32, and
A33, where each single mutation reduced the reac-
tion rate at least 400-fold+ At the remaining positions,
only the G34C and A35C mutations reduced the rate
more than 400-fold, whereas other mutations were less
consequential+

To test for the specificity of branch formation, the
branch-site adenosine, A48 in 29-59AG1, was mutated+
Mutation of this position to any other nucleotide dimin-
ished lariat formation to an undetectable level, corre-
sponding to more than a 20,000-fold rate reduction+
The activation or use of a cryptic branch site was not
detected+Therefore, the ribozyme is specific for an aden-
osine branch site+

Specificity of the recognition of the 59-terminal gua-
nosine in ribozyme 29-59AG1 was tested by replacing
this guanosine with adenosine+ Branch formation was
assayed by TLC analysis of diphosphate release from
g-32P-ATP-labeled transcripts (Tuschl et al+, 1998)+ No
diphosphate was detected over a 45-h incubation pe-
riod, in contrast to the rapid diphosphate release seen
with g-labeled 29-59AG1+ Although C and U substitu-
tions were not tested, the marked discrimination against
an A substitution indicates that the 59 G residue is spe-
cifically recognized during branch formation+

Thiophosphate substitutions

Thiophosphate interference studies have identified three
sites in the ACAGAGA-box of U6 snRNA where sub-
stituting a pro-RP oxygen with sulfur can partially inhibit
splicing (Fig+ 1)+ For the 29-59AG1 ribozyme, no thio-
phosphate interference has been detected for pro-RP

substitutions within the ACAGAGA segment, although
at 13 sites outside this segment, substitution interfered
with branching activity (59-phosphates of G1-A3, A7-
G9, C21, U22,A24,A25, C47-G49, our unpubl+ results)+
A strict correlation would not necessarily be expected
because substitution within U6 only partially inhibits

FIGURE 7. Truncation analysis of two ribozyme variants+ A: The truncated sequences are aligned relative to the parent
sequence (DL7+18+d) from the second selection+ Red bars indicate conserved regions, green boxes highlight putative paired
segments (P1) residing within the variable region, and the violet shaded areas mark the conserved paired region (P2)+ A
change in a P2 base pair is indicated for construct 5+33+d7 and was tested because the A/U base-pair transversion was
frequently found in selected variants+ A terminal A/G mismatch in P2 is also indicated for 5+64 variants+ The asterisks for
variant 5+33+d1 indicate formation of a dimer rather than a lariat+ B: 29-59AG1 lariat-forming ribozyme+ Construct 5+33+d3 of
A was renamed 29-59AG1 when it was chosen as the prototype lariat-forming ribozyme+ Invariant residues are indicated in
red, and the unusually covarying residues are in green+ P1 and P2 denote paired regions; base pairs are symbolized by
vertical lines, which are bold when covariation or additional experiments support base pairing+

36 T. Tuschl et al.



splicing, and only one of the three sites is the same in
the two systems studied, yeast and nematode+

Replacement of the reacting terminal 59-triphosphate
of 29-59AG1 by either the RP or SP a-thiotriphosphate
reduced the branching reaction rate at least 500-fold
(our unpubl+ results)+ These thio effects were at least
eight times greater than the 60-fold elemental effect
expected solely from the decreased chemical reactivity
of the triphosphate upon sulfur substitution at either of
these nonbridging oxygens (Herschlag et al+, 1991;
Wong et al+, 1991)+ Thus the magnitude of the thio
effects suggests that the nonbridging oxygens at the
reaction center each make important contacts to either
a metal ion or ribozyme residue+ No 29-deoxy interfer-
ence was observed within the ACAGAGA segment fol-
lowing incorporation of dA, dC, or dG thiophosphate
(our unpubl+ results)+

DISCUSSION

A lariat-forming catalytic RNA has been isolated that
promotes 29,59-branch formation between adenosine
and guanosine, a reaction similar to that of the splice-
osome and group II self-splicing introns+ The prototype
sequence (29-59AG1) is many times smaller than a
group II intron (58 nt compared to .500 nt), the only
other characterized ribozyme that promotes this reac-
tion+ The finding that an RNA of this size can promote
branch formation supports the idea that the snRNA
available in the spliceosome might be sufficient for cat-
alyzing lariat formation+ Indeed, the 29-59AG1 ribozyme
contains a conserved and functionally important region
of U6 snRNA+With this motif in common with U6 snRNA,
the small 29,59-branch-forming ribozyme appears to
share more sequence similarity with the spliceosomal

TABLE 1+ Effects of point mutations of the ribozyme and spliceosome ACAGAGA motif+

Splicing in cells Splicing in vitro

Mutant Rel+ rate
Active

fraction Yeasta Humanb Yeastc Humand

Unmodified 1+0 0+65 v splicing 11 11

A29C ,0+00005 n+d+ l splicing 1 11

A29G 0+00017 n+d+ ts splicing 11 11

A29U 0+00005 n+d+ v (cs) inhibition 11 11

C30A 0+080 n+d+ l inhibition 2 1

C30G 0+0066 n+d+ l splicing 1/2 11

C30U 0+0036 n+d+ l splicing 1/2 n+d+

A31C 0+26 0+46 l inhibition 1 11

A31G 0+012 n+d+ l splicing 1 n+d+

A31U 0+0025 n+d+ l inhibition 11 11

G32A 0+00010 n+d+ cs, ts (l) splicing 1 1

G32C 0+00007 n+d+ v (ts) inhibition 1 1

G32U 0+00018 n+d+ ts (l) inhibition 1 11

A33C 0+00012 n+d+ l inhibition 22 22

A33G 0+0024 n+d+ l inhibition 22 11

A33U 0+00007 n+d+ l splicing 22 22

G34A 0+0032 n+d+ l splicing 21 1

G34C 0+00012 n+d+ l splicing 21 11

G34U 0+048 n+d+ ts inhibition 11 11

A35C 0+0014 n+d+ v splicing 11 11

A35G 0+17 0+22 v splicing 11 1/2

A35U 0+041 0+15 n+d+ (cs, ts) splicing 11 11

The effects of mutations within the ACAGAGA segment of the lariat-forming ribozyme compared to published data of
U6 snRNA mutants in vitro or within yeast or human cells+ The numbering of point mutants refers to the prototype con-
struct 29-59AG1 (Fig+ 7B); the corresponding U6 snRNA ACAGAGA-box is segment A47-A53 in yeast (Fig+ 1) or segment
A41-A47 in human+ Ribozyme rates are reported relative to the unmodified rate (0+12 min21)+ If a plateau could not be
reached during the incubation interval, an active fraction of 0+65 was assumed and used for fitting the rate constant+
Abbreviations: n+d+: not determined; v: viable; cs: cold-sensitive; ts: temperature-sensitive; l: lethal; 11: 50–100% splicing;
1: 10–50% splicing; 1/2: ,10% splicing; 2: no splicing; 21: partial block of the second step of splicing; 22: complete
block of the second step+

a In vivo phenotype of yeast U6 snRNA mutants according to Madhani et al+ (1990) and McPheeters (1996)+ Data given
in parenthesis indicate differences of the second study from the first+

bSplicing complementation system in human cells (Datta & Weiner, 1993)+
c In vitro splicing with reconstituted yeast U6 snRNP (Fabrizio & Abelson, 1990)+
d In vitro splicing with reconstituted human U6 snRNP (Wolff et al+, 1994)+
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RNAs than does the much larger group II intron+ How-
ever, it is important to note that the sequence similar-
ities between the 29-59AG1 ribozyme and the snRNA
are limited and might simply reflect fortuitous rather
than functional similarities+ The extent to which the con-
served motifs of U6 snRNA and the isolated ribozyme
might have similar functions is discussed below+

Function of the ACAGAGA segment in the
29-59AG1 ribozyme and the spliceosome

Site-specific mutagenesis of the seven positions within
the ACAGAGA segment of the 29-59AG1 ribozyme re-
sulted in dramatic decreases in activity (Table 1), show-
ing that these residues are critical for 29-59AG1 ribozyme
folding, catalysis, or both+ In U6 snRNA, the ACAGAGA-
motif plays at least two roles, one in spliceosome as-
sembly and one associated with catalysis of the two
splicing phosphodiester transfer reactions (Fig+ 1)+

During spliceosome assembly, the ACA-part of the
U6 snRNA sequence base pairs, at least transiently,
with positions 4, 5, and 6 of the intron (Kandels-Lewis
& Seraphin, 1993; Lesser & Guthrie, 1993; Hwang &
Cohen, 1996)+ This interaction is conserved in the evo-
lutionary distant minor U12-type spliceosome where
the GGA-part of the U6atac snRNA GGAGAGA-motif
base pairs with complementary residues of the U12-
type 59 splice site (Incorvaia & Padgett, 1998)+ The
interaction is less pronounced in the mammalian U2-
type spliceosome because the mammalian 59 splice-
site sequences of the U2-type introns are much more
degenerate+ Sequence analysis of the 29-59AG1 ribo-
zyme indicates that the ACA of the ribozyme ACAGAGA
segment is not involved in a canonical pairing inter-
action to present the reactive 59 end at the active site+
However, the possibility that these residues utilize non-
Watson–Crick interactions to position the reactive 59
terminus has not been ruled out+

The AGAGA part of the U6 ACAGAGA-motif is con-
served between the U2- and U12-type spliceosomes
and its function appears more complex, as different
mutant phenotypes are observed in different experi-
mental systems (reviewed in Luukkonen & Seraphin,
1998a)+Crosslinking studies (Sontheimer & Steitz, 1993;
Kim & Abelson, 1996) and genetic studies in yeast
(Luukkonen & Seraphin, 1998a) suggest that the cen-
ter GAG-part is involved in non-Watson–Crick recog-
nition of the 59-most GU of the intron 59 splice site+
Genetic studies indicate that the AGAGA residues are
also critical for catalysis of the first step of splicing (Li &
Brow, 1996; Luukkonen & Seraphin, 1998a) and for
catalysis of the second step, or alternatively, a proof-
reading activity prior to the second step (Fabrizio &
Abelson, 1990; Madhani et al+, 1990; Datta & Weiner,
1993; Kandels-Lewis & Seraphin, 1993; Lesser & Guth-
rie, 1993;Wolff et al+, 1994)+ An RNA-based active site
in the spliceosome is supported by the observation

that U2-U6 helix Ib and a tertiary contact between U6-
G52 and the bulged U2-A25 between helix Ia and Ib
contribute to catalysis (Fig+ 1) (Madhani & Guthrie,
1994b; Luukkonen & Seraphin, 1998b)+As in the splice-
osome, the 29-59AG1 ACAGAGA segment is flanked by
paired regions (P1 and P2; Fig+ 7B), which resemble
the spliceosomal U2/U6 helices Ia and III (Fig+ 1)+ He-
lix Ia is 4 or 5 bp long and required for splicing inde-
pendent of its sequence composition (Madhani &
Guthrie, 1992)+ Helix III is less critical and contributes
in human (Sun & Manley, 1995) but not in yeast splic-
ing (Yan & Ares, 1996)+

ACAGAGA sequences of other
natural ribozymes

An ACAGAGA segment is also found in particular ver-
sions of the hairpin and RNase P ribozymes, but it is
not as highly conserved in these other catalytic RNAs
as it is in the 29-59AG1 ribozyme or U6 snRNA+ In the
case of the sTobRV hairpin ribozyme, the first 4 nt of
the segment participate in canonical base pairing to
form helix I, and the identities of only the last 2 nt are
critical for catalysis (Burke et al+, 1996)+ Three residues
of the ACAGAGA sequence of Escherichia coli RNase
P RNA are not conserved in bacteria and archaea (Haas
et al+, 1996; Haas & Brown, 1998), and RNase P de-
letion variants that lack this region retain catalytic ac-
tivity (Pan & Jakacka, 1996)+ Group II introns do not
include an ACAGAGA or AGAGA segment+ Instead,
analogy is made between domain V of group II introns,
a bulged helix with a conserved AGC trinucleotide mo-
tif, and a domain of the spliceosome that comprises the
intramolecular U6 helix and adjacent the U2/U6 he-
lix Ib, which also contains a conserved AGC segment
(Michel & Ferat, 1995; Pyle, 1996; Qin & Pyle, 1998)+

Combinatorial approaches to understanding
complex biological enzymes

The frequency of new lariat-forming ribozymes in RNA
sequence space is unknown, but an estimate based on
the number of conserved positions in the 29-59AG1
ribozyme suggests that this catalyst should be present
in typical libraries used to isolate new ribozymes from
totally random sequences (Sabeti et al+, 1997)+ Several
lariat-forming ribozymes that did not conserve the
ACAGAGA segment were also isolated during the
course of our experiments (Fig+ 3)+ These ribozymes
have not been characterized and are probably struc-
turally unrelated to the family of ribozymes exemplified
by 29-59AG1+ The parent ribozyme used for the library
construction is probably also unrelated to the 29-59AG1
ribozyme as it uses a G branch site and has a 5-bp
helix located 4 nt upstream of the branch site that is
absent from the 29-59AG1 ribozyme (Tuschl et al+, 1998)+
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Basing an RNA library on sequences presumed to
be catalytically important in ribonucleoprotein com-
plexes might be better than randomly sampling se-
quence space when seeking to access an ancestral-
like RNA-based activity+ Here, the approach resulted in
a focus on a ribozyme with a sequence relationship to
U6 snRNA+ However, it is interesting that a peptidyl-
transferase ribozyme isolated from a totally random
sequence library resembles the peptidyl-transfer region
of 23S ribosomal RNA in sequence and structural con-
text (Zhang & Cech, 1998)+ Similar observations were
made of sequence similarity with 23S rRNA in an RNA
aptamer selected from random sequence to bind to
CCdApPuromycin, a high-affinity ligand to the peptidyl-
transferase center of the ribosome (Welch et al+, 1997)+
The importance of individual residues within the aptamer/
ribozyme motifs has not yet been tested by site-directed
mutagenesis or by rerandomization and selection+ Nev-
ertheless, these examples and the lariat-forming ribo-
zyme illustrate the potential of combinatorial methods
to create model systems with functional and possibly
structural similarities to complex ribonucleoproteins+

Differences between the 29-59AG1 ribozyme
and the spliceosome

The lariat-forming reaction of the 29-59AG1 ribozyme is
different from nuclear splicing in that the spliceosome
catalyzes a transesterification reaction, whereas the
ribozyme catalyzes an esterification, that is, the leaving
group in the ribozyme reaction is diphosphate rather
than a 59 exon with a free 39-hydroxyl+ This difference
in chemistry could suggest a fundamentally different
active site in the small ribozyme, despite the necessary
U6-like segment+ However, it is interesting to note that
group II introns can also catalyze an esterification re-
action with diphosphate release (Mörl et al+, 1992)+ The
catalytic center for the first step of splicing is thought to
execute this reaction (Mörl et al+, 1992)+ Diphosphate
release has not yet been observed in a nuclear splicing
reaction, and the smallest 59 exon leaving group yet
observed is a 1-nt 59 exon (Hertel & Maniatis, 1999)+
The thermodynamic driving force for branch formation
via diphosphate release is small and must be similar to
the free energy change observed when a nucleotide is
added during RNA polymerization, which is within a
range of 21+0 to 23+0 kcal/mol (reviewed in Kahn &
Hearst, 1989)+

There are probably several structural differences be-
tween the 29-59AG1 ribozyme and RNA interactions in
the spliceosome+ For example, the branch-site adeno-
sine appears to be within a terminal loop in the 29-
59AG1 ribozyme, whereas it is typically a bulged
nucleotide in the splicing complex+ Another difference
between the 29-59AG1 ribozyme and the spliceosome
is the strict requirement for an adenosine at the branch
site and a guanosine at the 59 terminus+ In contrast to

the 29-59AG1 ribozyme, mutations at the branch site of
introns only reduce the efficiency of the first step of
splicing but do not block it completely (McPheeters,
1996; Query et al+, 1996)+ At the 59 splice site, the
59-most intron nucleotide is almost always a guano-
sine, but it can also be an adenosine, as seen in a
subclass of U2-type and U12-type introns (reviewed in
Sharp & Burge, 1997)+ Although G to A substitution is
tolerated in the spliceosomes, it is not in the 29-59AG1
ribozyme+ The differences in specificity could indicate
that the RNA network of the spliceosome and the 29-
59AG1 ribozyme are different, but it is also possible that
branch site, splice site, or snRNA mutations are sup-
pressed by protein components of the spliceosome that
stabilize the catalytic site+ In addition, more extreme
preferences within the spliceosome active site would
be obscured if chemistry were not the rate-limiting step
in splicing+

CONCLUSIONS

The conserved sequences in the ribozyme and the U6
snRNA could have a common function but the results
summarized above are far from being conclusive+ Re-
cent evidence indicates that the protein Prp8 is also
closely associated in the spliceosome with the 59 splice
site, branch site, and 39 splice site (Collins & Guthrie,
1999; Luo et al+, 1999; Reyes et al+, 1999; Siatecka
et al+, 1999)+ It is possible that this or another protein
could be a component of the active site for the first step
in splicing, perhaps in conjunction with U2 and U6
snRNA+ These possibilities are difficult to investigate
because the conformations of snRNAs change during
the splicing process and the heart of the spliceosome
is relatively inaccessible to probes+ In the near term, it
will be important to determine the structure of the 29-
59AG1 ribozyme to gain insight into the specific func-
tion of the ACAGAGA sequence in lariat formation+ It
may then be possible to test if the analogous residues
in U6 snRNA have a related function in the spliceosome+

MATERIALS AND METHODS

Pool constructions

RNA pool for first selection

A 20% degenerate oligodeoxynucleotide library of the origi-

nal lariat-forming ribozyme was synthesized as previously

described (Tuschl et al+, 1998)+ The degenerate oligodeoxy-

nucleotide, GGAAATGCCCAACTGCTTCGGGCCTCGTCA

TAGCACCGCCCCACTGCACATAGCGTCACTGGAACGCT

ACAGAGACTTCGGTCTCTCAGGTATCGGGTGTATGTGT

CGTGCGGATCCTTATTTGATGTCATCCGA, contained the

114-nt ribozyme sequence (Tuschl et al+, 1998) followed by a

2-nt spacer and a 19-nt 39 primer-binding sequence (primer-

binding sequences underlined)+ The degenerate oligonucle-
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otide was amplified by large-scale PCR (Ekland & Bartel,

1995) using a 59 primer that appended the T7 RNA poly-

merase promoter sequence (TACTAATACGACTCACTATA

GGAAATGCCCAA; bold, T7 promoter; underline, segment

hybridizing to pool second-strand product)+ The PCR product

was transcribed with T7 RNA polymerase to yield the degen-

erate RNA pool+ The RNA was gel purified on a 5% denatur-

ing gel, which does not discriminate between linear and lariat

forms of the parent ribozyme, and thus lariats that form dur-

ing transcription were not expected to be lost+ Traces of co-

purified template DNA were hydrolyzed with RQ1 DNase

(Promega)+

RNA pool for second selection

An oligodeoxynucleotide library was synthesized with the

entire DL7+18+d sequence (Fig+ 3) mutagenized to 20% de-

generacy, TACTAATACGACTCACTATAGGAAATGCCCAAG

CGCTCUUCGGAGCGCCACTGGAAAACTACAGAGACGCC

AGTCACTCAGATATCCTGGACGGCACCTTATGCGTACTT

(bold, T7 promoter; underline, heterologous 39-primer-binding

sequence; italic, BanI restriction site)+ After large-scale PCR

amplification, the product was digested with the restriction

endonuclease BanI and ligated (3-mL reaction, 1 mM each

duplex, 60,000 U T4 DNA ligase from NEB, 16 h, 22 8C) to a

pre-annealed DNA duplex with an additional T7 promoter

segment (top strand, pGCACCTTATGCGTACTTTACTAATA

CGACTCACTATA; bottom strand, TATAGTGAGTCGTATT

AGTAAAGTACGCATAAG)+ Half of the ligation mix was tran-

scribed with T7 RNA polymerase (2-mL reaction, 20mCi a-32P-

UTP) to yield the degenerate RNA pool+ The RNA pool was

gel purified on a 6% denaturing gel, which does not discrim-

inate between linear and lariat forms of DL7+18+d+

First selection and amplification

Lariat-forming incubation

Pool RNA (1 mM) and 39 primer (2 mM) were incubated at

30 8C in ribozyme buffer (100 mM KCl, 25 mM MgCl2, 0+25 mM

EDTA, 30 mM Tris, pH 7+6); the 39 primer was added to

prevent the 39 constant region from interacting with the ribo-

zyme+ The initial round of the selection used 0+35 mg of pool

RNA and was incubated for 22 h+ In subsequent rounds, the

amount of input RNA was reduced 10-fold+ Once lariat for-

mation was apparent, the incubation period was shortened to

allow only 0+1% product formation+The incubation was stopped

with EDTA and then ethanol precipitated+

Gel selection

RNA from the incubation steps was run on 15-cm 10% de-

naturing acrylamide gels to separate unreacted linear RNA

from lariat product+ The region of the gel corresponding to the

lariat form of the parent ribozyme was excised and soaked

overnight in 0+3 M NaCl and 1 mM 39 primer as carrier+ Eluted

RNA was ethanol precipitated and dissolved in water+At round

3, an additional gel-purification step was introduced, in which

samples were repurified on 40-cm 10% sequencing gels+

Lariat debranching

Debranching was performed using Dbr1 (a generous gift of

Jef Boeke; Chapman & Boeke, 1991; Nam et al+, 1994), the

yeast debranching enzyme (40-mL reaction, ,20 nM lariat,

,1 mM 39 primer, 20 mM HEPES/KOH, pH 7+6, 125 mM KCl,

0+5 mM MgCl2, 1 mM DTT, 10% (v/v) glycerol, 20 U enzyme,

30 8C, 16 h)+ Before adding buffer and debranching enzyme,

the RNA solution was heat-treated for 1 min at 90 8C+ For the

first two rounds, the debranching reaction was stopped by

phenol and chloroform extraction, followed by ethanol pre-

cipitation+ In subsequent rounds, the reaction was stopped by

the addition of an equal volume of 8 M urea/50 mM EDTA

and directly loaded onto a 15-cm 10% denaturing gel+ The

linear product band was excised, soaked overnight in 0+3 M

NaCl and 1 mM 39 primer as carrier, and ethanol precipitated+

The gel-purification step after debranching is useful for pre-

venting enrichment of noncatalytic RNAs with unusual mo-

bility in denaturing gels (data not shown)+

Amplification

Following reverse transcription (20-mL reaction, 5mM 39 primer,

200 U Superscript II from Gibco, 48 8C, 30 min), RNA was

hydrolyzed by adding 40 mL of 150 mM KOH/20 mM Tris

base and incubating for 10 min at 90 8C+ The pH was then

adjusted to 8+5 with HCl+ The cDNA was amplified by PCR

with a hot start (80 8C) (Tuschl et al+, 1998)+ The PCR product

was ethanol precipitated and directly used for transcription+

Transcription reactions were typically 200 mL, using the tem-

plate from a 400-mL PCR aliquot and 20 mCi of a-32P-UTP for

body labeling+RNA for the next round of selection-amplification

was gel purified on a 5% denaturing gel+ After seven rounds

of selection-amplification, cDNA was cloned (T-Vector kit,

Novagen) and individual clones were tested and sequenced+

Second selection and amplification

Starting pool (0+35 mg) was incubated for 14 h under condi-

tions identical to the first selection+ After precipitation, lariat

product was separated from linear starting material on a 15%

denaturing gel and repurified on a 12% denaturing gel+ After

debranching, linear RNA was directly gel purified on a 12%

denaturing gel+ The linear product band was excised, the

RNA eluted in 0+3 M NaCl in the absence of carrier DNA, and

ethanol precipitated+ Debranching generates 59 phosphory-

lated linear RNA that was circularized using T4 RNA ligase

(Pan & Uhlenbeck, 1992)+ The circularization reaction (20-mL

reaction, 12 U T4 RNA ligase from Pharmacia Biotech, 50 mM

Tris, pH 7+6, 10 mM MgCl2, 10 mM b-mercaptoethanol, 0+2 mM

ATP, 0+1 mg/mL acetylated BSA, 15% dimethyl sulfoxide, 1 h,

37 8C) was stopped by phenol and chloroform extraction, and

ethanol precipitated in the presence of 1 mM 39 primer as

carrier DNA+ Reverse transcription employed RNase H-active

reverse transcriptase to cleave the RNA circle during tran-

scription (40-mL reaction, 16 U AMV reverse transcriptase

from Pharmacia Biotech, 10 mM 39 primer GTAAAGTACGC

ATAAGGTG, 0+5 mM each dNTP, 50 mM Tris, pH 8+3, 50 mM

KCl, 10 mM MgCl2, 10 mM DTT, 0+5 mM spermidine, 1 h,

42 8C)+ The remaining RNA was base hydrolyzed and the

cDNA was amplified by PCR+ A 50-mL aliquot of the PCR
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reaction was gel purified on a 4% NuSieve low-melt agarose

gel and the DNA re-amplified in a 2-mL PCR+ One milliliter of

the PCR was used as template for a single PCR amplification

cycle done manually in an 8-mL volume+ The PCR product

was ethanol precipitated and digested with BanI (200-mL re-

action, 200 U BanI from NEB, 15 h)+ The digestion was in-

activated (65 8C for 20 min), phenol and chloroform extracted,

and ethanol precipitated+ After ligation to the synthetic pre-

annealed 39 primer/T7 promoter duplex (0+5-mL reaction,

2,000 U T4 DNA ligase from NEB, 1 mM each DNA fragment,

1 mM ATP, 1+5 h, 22 8C), the DNA was ethanol precipitated+

Transcription was as described for the first selection, and

RNA was gel purified on 6% denaturing gels+Activity was first

detected after three rounds of selection, where more than

10% of the pool 3 RNA reacted at an apparent rate of 0+002

min21+ After two more rounds of stringent selection, the pool

5 RNA reacted at an apparent rate of 0+03 min21 with an

active fraction of 40%+ An alternative strategy for regenerat-

ing the T7 promoter that involved an intermolecular RNA

ligation was also tested but found to have unacceptable vari-

ation in ligation efficiency among ribozyme variants+

Characterization of 29,59-branch-forming
ribozymes

RNA preparation

Transcription templates for lariat-forming ribozymes were pre-

pared by amplifying the ribozyme inserts of plasmid clones,

using the PCR primers of the preceding selection+ The PCR

DNA was transcribed for 5 min (20-mL reaction, 200 U T7

RNA polymerase, 1 mM of each NTP, 4 mCi a-32P-UTP (3,000

Ci/mmol), 10 mM MgCl2, 1 mM spermidine, 5 mM DDT, 0+1%

Triton X-100, 40 mM Tris, pH 7+9, 0+3 mM template DNA,

37 8C), and reactions were quenched by addition of 30 mL of

6+7 mM EDTA and freezing; no lariat formation was detect-

able after transcription+ The crude solution was diluted five-

fold for kinetic studies+ Templates for truncation and internal

deletion constructs were also generated by PCR using ap-

propriate primer pairs+ All RNA sequences shorter than 60 nt

were prepared by run-off transcription from synthetic DNA

templates (Milligan & Uhlenbeck, 1989)+ (During the course

of this study it was noticed that transcription of lariat-forming

ribozymes could also be performed under standard condi-

tions without detectable lariat formation after a 30-min tran-

scription+ The RNA could also be gel purified, eluted and

ethanol precipitated without detecting lariats+)

Reaction kinetics for lariat formation

The lariat-forming ribozyme (,1 mM) was incubated in water

for 1 min at 90 8C and then equilibrated at 30 8C for 15 min+ If

the 39 primer-binding sequence was not deleted, 39 primer

(1 mM) was added prior to the 90 8C incubation+ The reaction

was initiated by the addition of ribozyme buffer+Aliquots were

removed from the reaction at appropriate time points,

quenched by the addition of 1 vol 8 M urea/50 mM EDTA stop

solution, and analyzed by denaturing PAGE+ Reaction rates

were determined by fitting fraction of product, f, at a given

time, t, to the equation f 5 ft0 1 ft`(1 2 e2kt), where ft0 is the

fraction of lariat present at zero time, ft` the fraction of lariat

at the endpoint of the reaction, and k the rate constant for

lariat formation (Stage-Zimmermann & Uhlenbeck, 1998)+ In

many cases, the endpoint of reaction was not determined

(n+d+ in Figs+ 3 and 7 and Table 1) and ft` was assumed to be

0+7, the value for efficiently reacting variants+

It is interesting to note that ribozymes isolated from the

second selection reacted efficiently only when either the 39

primer-binding sequence was removed or hybridized to the

complementary 39 primer oligodeoxynucleotide+The 39 primer-

binding sequence appears to interfere with catalysis when

unpaired (Ekland et al+, 1995; Robertson & Ellington, 1999)+

Mapping of the branchpoint

Branched RNA was prepared from incubation of triphosphate-

containing RNA (pppGGAAAUGCCCAAGCGCUC, derived

from DL7+18) with 59-32P-labeled branch site-containing RNA

(GGAGCGCCACUGGAAAACUACAGAGACGCCAGUCAC

UCAGAUAUCCUGG, derived from DL7+18) under standard

selection conditions+ Partial alkaline hydrolysis was per-

formed as described previously (Tuschl et al+, 1998)+
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