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Abstract 

This study examines the impact of climate change on cropland in Africa, using a Ricardian 

cross-sectional approach. Relying on farm data from an 11-country survey of over 9500 farmers, 

annual net revenue is regressed on climate and other variables. The study confirms that current 

climate affects the net revenues of farms across Africa. Applying these results to possible future 

climates reveals that dryland farms are especially climate sensitive. Even as early as 2020, 

climate change could have strong negative impacts on currently dry and hot locations. By 2100, 

dryland crop net revenues could rise by 51% if future warming is mild and wet but fall by 43% if 

future climates are hot and dry. The crop net revenues of currently irrigated farms are likely to be 

least affected. 
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Résumé 

Cette étude examine l’impact du changement climatique sur les terres cultivées en Afrique, en 

utilisant une analyse transversale ricardienne. Se basant sur les données concernant des fermes 

et issues d’une étude regroupant 11 pays et plus de 9 500 fermiers, on note que le revenu annuel 

net est régressé sur les variables climat et autres. L’étude confirme que le climat actuel affecte 

les revenus nets des fermes dans toute l’Afrique. Lorsqu’on applique ces résultats à de futurs 

climats éventuels, on s’aperçoit que les fermes situées sur les terres sèches sont particulièrement 

sensibles au climat. Même à partir de 2020, le changement climatique pourrait influer de 

manière extrêmement négative sur les zones actuellement chaudes et arides. A partir de 2100, 

les revenus nets des cultures des terres sèches pourraient augmenter de 51% si le réchauffement 

est doux et humide mais chuteraient de 43% si les futurs climats s’avèrent chauds et secs. Les 

revenus nets des cultures provenant de fermes actuellement irriguées ont de grandes chances 

d’être moins affectés.  
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1. Introduction 

African agriculture is predicted to be especially vulnerable to climate change because the region 

already endures high heat and low precipitation, agriculture is a large fraction of the economy, 

and African farmers rely on relatively basic technology (Pearce et al., 1996; McCarthy et al., 

2001). Despite this dire prediction, there have been relatively few empirical studies of African 

agriculture (Kurukulasuriya & Rosenthal, 2003). There has been a handful of agronomic studies, 

largely of grains, that suggest that warming would have extensive harmful effects (see for 

example Rosenzweig & Parry, 1994). There have also been a few economic analyses of specific 

crops or specific regions (Molua, 2002; Gbetibouo & Hassan, 2005; Deressa et al., 2005). These 

studies all suggest that warming would have large effects. However, empirical analysis of farmer 

adaptation is limited in current research.  

This study is based on a cooperative research effort amongst 11 African countries: Burkina Faso, 

Cameroon, Egypt, Ethiopia, Ghana, Kenya, Niger, Senegal, South Africa, Zambia, and 

Zimbabwe. The sample of farmers was distributed across many different climate zones so that 

the study would cover a wide range of climate variation. A total of 9064 surveys of individual 

farmers were analyzed (Table 1). An earlier analysis of this data revealed that African crop net 

revenues are sensitive to climate (Kurukulasuriya et al., 2006). This study extends that research 

by exploring how these impacts are distributed across Africa depending on a set of future climate 

scenarios.  

Table 1: Useable surveys by country  

Country Dryland Irrigated Total

Burkina Faso 990 41 1031

Cameroon 646 105 751

Egypt 0 802 802

Ethiopia 874 66 940

Ghana 849 29 878

Kenya 675 79 754

Niger 849 48 897

Senegal 1037 31 1068

South Africa 199 87 286

Zambia 956 14 970

Zimbabwe 597 90 687

Total 7672 1392 9064

The study uses the Ricardian method to measure how climate affects current net revenues. This 

method is a cross-sectional technique that regresses net revenues on independent variables 

(Mendelsohn et al., 1994; Mendelsohn et al., 2001). It has been applied to selected countries in 

the low latitudes, namely Brazil and India (Sanghi, 1998; Mendelsohn et al., 2001), using district 

level data, and Sri Lanka and Cameroon (Molua, 2002; Seo et al., 2005; Kurukulasuriya & 

Ajwad, 2007), using household level data. 

The next section briefly reviews the theory behind the Ricardian method, the potential 

advantages and disadvantages of the method, and the empirical specification. Section 3 then 

discusses the empirical results for Africa, examining regression models for all farms in Africa, 

dryland farms and irrigated farms. In Section 4 we simulate the impacts implied by these 
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empirical results for a set of future climate scenarios in 2020 and 2100 from three different 

Atmospheric-Oceanic Global Circulation Models (AOGCMs). The paper concludes with a 

summary and general policy implications.  

2. Theory  

The Ricardian method is a cross-sectional approach to studying agricultural production. It was 

named after David Ricardo (1772–1823) because of his original observation that the value of 

land would reflect its net productivity. Farmland net revenues (V) reflect net productivity. This 

principle is captured in the following equation: 

V = Σ Pi Qi (X, F, H, Z, G) - Σ Px X        (1) 

 

where Pi is the market price of crop i, Qi is the output of crop i, X is a vector of purchased inputs 

(other than land), F is a vector of climate variables, H is water flow, Z is a vector of soil 

variables, G is a vector of economic variables such as market access and Px is a vector of input 

prices (see Mendelsohn et al., 1994). The farmer is assumed to choose X to maximize net 

revenues given the characteristics of the farm and market prices. The Ricardian model is a 

reduced form model that examines how several exogenous variables, F, H, Z and G, affect net 

revenues. 

The standard Ricardian model relies on a quadratic formulation of climate: 

V = Β0 + Β1F + Β2 F
2

 +Β3H +Β4 Z + Β5 G + u      (2) 

 

where u is an error term. Both a linear and a quadratic term for temperature and precipitation are 

introduced. The expected marginal impact of a single climate variable on farm net revenue 

evaluated at the mean is: 

E[dV/dfi]= b1,i + 2*b2,i *E[fi]        3) 

 

The quadratic term reflects the nonlinear shape of the net revenue climate response function 

(equation 2). When the quadratic term is positive, the net revenue function is U-shaped and when 

the quadratic term is negative, the function is hill-shaped. We expect, based on agronomic 

research and previous cross-sectional analyses, that farm value will have a hill-shaped 

relationship with temperature. For each crop, there is a known temperature at which that crop 

grows best across the seasons. The relationship of seasonal climate variables, however, is more 

complex and may include a mixture of positive and negative coefficients across seasons. 

The change in annual welfare, ΔU, resulting from a climate change from C0 to C1 can be 

measured as follows. 

)()( 01 CVCVU −=Δ          (4) 

If the change increases net income it will be beneficial and if it decreases net income it will be 

harmful. 
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Cross-sectional observations across different climates can reveal the climate sensitivity of farms. 

The advantage of this empirical approach is that the method includes not only the direct effect of 

climate on productivity but also the adaptation response by farmers to local climate. This farmer 

behavior is important because it mitigates the problems associated with less than optimal 

environmental conditions. Analyses that do not include efficient adaptation (such as the early 

agronomic studies) overestimate the damages associated with any deviation from the optimum. 

Adaptation can explain the more optimistic results found with the Ricardian method compared to 

more pessimistic results found in purely agronomic studies. 

Adaptation is clearly costly. The Ricardian model takes into account the costs of different 

alternatives. For example, if a farmer decides to introduce a new crop on his land as climate 

warms, the Ricardian model assumes the farmer will pay the costs normally associated with 

growing that new crop. That is, the farmer will have to pay for new seeds and new equipment 

specific to the crop. The Ricardian model does not, however, measure transition costs. For 

example, if a farmer has crop failures for a year or two as he learns about a new crop, this 

transition cost is not reflected in the analysis. Similarly, if the farmer makes the decision to move 

to a new crop suddenly, the model does not capture the cost of decommissioning capital 

equipment prematurely. Transition costs are clearly very important in sectors where there is 

extensive capital that cannot easily be changed. For example, studies of timber (Sohngen et al., 

2002) show that modeling the transition from one stock to another is important. Although 

agriculture adapts quickly to changes in prices, some intertemporal analyses argue that 

transitional costs attributable to climate change will also be substantial for farms as well (Kaiser 

et al., 1993a,b; Kelly et al., 2005). Given how slowly some innovations in modern agriculture 

have spread in Africa in particular, transition costs may be important.  

Another drawback of the Ricardian approach is that it cannot measure the effect of variables that 

do not vary across space. Specifically, this approach cannot detect the effect of different levels of 

carbon dioxide since carbon dioxide levels are generally the same across the world. Changes in 

carbon dioxide levels have occurred over recent decades. In principle, one might be able to 

detect the effect of these increases in CO2 by looking at productivity over time. However, it is 

difficult to distinguish the effect of the carbon dioxide changes from the much larger effect of 

technical changes that have occurred across the same time period (Mendelsohn, 2006). The best 

evidence about the magnitude of the fertilization effects of carbon dioxide comes from controlled 

experiments. These studies report an almost universal fertilization effect for all crops, although 

the magnitude of this effect varies from crop to crop (Reilly et al., 1996). Reilly reports an 

average improvement in productivity of 30% associated with a doubling in CO2. However, these 

results must be interpreted cautiously because the conditions in the controlled experiments may 

not be representative of farms across the world. In most cases, the laboratory experiments have 

been done in near ideal conditions where other nutrients are freely available. In practice, if 

nutrients are scarce, the fertilization benefits from increased carbon dioxide levels may be lower. 

Thus, in many developing countries, where fertilizers are not fully applied, the actual carbon 

fertilization benefits may be less than 30%. 

Another potential drawback is that the variation in climate that one could observe across space 

may not resemble the change in climate that will happen over time. For example, the temperature 

range across space could be small relative to the change in temperature over the next century. 

This explains why one may not be able to estimate a Ricardian model in small countries. If the 

range of climates in a country is small, one cannot detect how climate might affect crops. This 

specific problem does not apply to this study as there is a wide range of climate variation across 

the sample. However, it may still be true that climates in the future will not resemble any 
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existing climates. For example, the climate could become erratic, leading to precipitation events 

that are simply not common today. The analysis cannot measure the impact of such changes. 

The Ricardian model also assumes that prices remain constant. As argued by Cline (1996), this 

introduces a bias in the analysis, overestimating benefits and underestimating damages. The 

Ricardian approach, by relying on a cross section, cannot adequately control for prices since all 

farms in the same country effectively face the same prices. However, calculating price changes is 

not a straightforward task since prices are a function of the global market. Studies that have 

claimed to take price changes into account have had to make gross assumptions about how world 

output would change with climate change. These global assumptions also may introduce bias if 

they are not correct. Further, even analysts who have assumed large agronomic impacts from 

global warming predict that greenhouse gases would have only a small net effect on aggregate 

global food supply (Reilly et al., 1996). If aggregate supplies do not change a great deal, the bias 

introduced by the Ricardian assumption of constant prices is likely to be small (Mendelsohn & 

Nordhaus, 1996). If the supplies of some commodities increased and others decreased, welfare 

effects would offset each other. In this case, the bias could be large relative to the remaining 

small net effect. However, even in this case, the absolute size of the bias would remain small. In 

a separate analysis, Kumar and Parikh (2001) include prices in their interannual analysis of 

Indian agriculture. The inclusion of the price terms appears to have little impact on the climate 

coefficients. 

Another criticism that has been leveled against the Ricardian analysis concerns the absence of 

explicit inclusion of irrigation. Cline (1996) and Darwin (1999) both argue that irrigation should 

be explicitly included in the analysis. This problem has been addressed in the literature by 

explicitly modeling irrigation (Mendelsohn & Nordhaus, 1999; Mendelsohn & Dinar, 2003; 

Schlenker et al., 2005). This study explicitly examines dryland and irrigated land and also 

includes measures of district water flow (Strzepek & McCluskey, 2006). The Ricardian analysis 

in this paper clearly does take irrigation into account. 

A final concern about the Ricardian method is that it reflects current agricultural policies. If 

countries subsidize specific inputs or regulate crops, these policies will affect farmer choices. 

The Ricardian results will consequently have these distortions embedded in the results. For 

example, if a country mandates that a fraction of cropland be devoted to a certain crop, one may 

well see more of that crop in that country than elsewhere. We can control for such effects using 

country dummies. In general, we prefer not to place dummies unless there is evidence of a 

distortion. We did examine the implications of using country specific dummy variables and the 

results did not change significantly.
1
 Nonetheless, if future decision makers eliminate these 

subsidies or introduce new ones, the empirical results may no longer hold. Policies that differ 

across countries could contribute to some of the differences in farm net revenue.  

3. Data and empirical analyses 

The data for this study was collected in 11 countries, Burkina Faso, Cameroon, Ethiopia, Egypt, 

Kenya, Ghana, Niger, Senegal, South Africa, Zambia and Zimbabwe, by national teams. In each 

country, districts were chosen to get a wide representation of farms across climate conditions in 

that country. The districts are not representative of the distribution of farms in each country as 

there are more farms in more productive locations. In each chosen district, a survey was 

conducted of randomly selected farms. The sampling was clustered in villages to reduce 

sampling costs. 

                                                 
1 The results with country dummy variables can be obtained from the authors. 
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A total of 9597 surveys was administered across the 11 countries in the study. The number of 

surveys across countries varied. (For more information on the survey method and the data 

collected see Dinar et al., 2008.) Not all the surveys could be used. Some farms did not grow 

crops (they only raised livestock). Some surveys contained incorrect information about the size 

of the farm, cropping area or some of the farm operating costs. Impossible values were treated as 

missing values. It is not clear what the sources of these errors were but field and measurement 

errors are most likely. They may reflect a misunderstanding of the units of measurement, they 

may reflect a language barrier, or they may be intentional incorrect answers. The final number of 

useable surveys was 9064 and their distribution by country is shown in Table 1. 

Data on climate was gathered from two sources. We relied on temperature data from satellites 

operated by the US Department of Defense (Basist et al., 2001). The Defense Department uses a 

set of polar orbiting satellites that pass over each location on earth between 6am and 6pm every 

day. The satellites are equipped with sensors that measure surface temperature by detecting 

microwaves that pass through clouds (Weng & Grody, 1998). The precipitation data comes from 

the Africa Rainfall and Temperature Evaluation System (ARTES) (World Bank, 2003). This 

dataset, created by the National Oceanic and Atmospheric Association’s Climate Prediction 

Center, is based on ground station measurements of precipitation. 

There are many ways one could represent monthly temperatures and precipitation data in a 

Ricardian regression model. It is not advisable to include every month, because there is a high 

correlation between adjacent months. We explored several ways of defining three-month average 

seasons. Comparing the results, we found that defining winter in the northern hemisphere as the 

average of November, December and January provided the most robust results for Africa. This 

assumption in turn implies that the next three months would be spring, the three months after that 

would be summer, and August, September and October would be fall (in the north). These 

seasonal definitions were chosen because they provided the best fit with the data and reflected 

the mid-point for key rainy seasons in the sample. We adjusted for the fact that seasons in the 

southern and northern hemispheres occur at exactly the opposite months of the year. We also 

explored the idea of defining seasons by the coldest month, the month with highest rainfall, and 

solar position, but found these definitions did a poorer job of explaining current agricultural 

performance. 

Soil data was obtained from the Food and Agriculture Organization of the United Nations (FAO 

2003). The FAO data provides information about the major and minor soils in each location as 

well as slope and texture. Hydrology data was obtained from the University of Colorado 

(IWMI/University of Colorado, 2003). Using a hydrological model for Africa, the hydrology 

team calculated flow and runoff for each district in the surveyed countries. Flow is an especially 

important variable because it describes the amount of water coming into a district from higher 

elevations. Data on elevation at the centroid of each district was obtained from the United States 

Geological Survey (USGS, 2004). The USGS data is derived from a global digital elevation 

model with a horizontal grid spacing of 30 arc seconds (approximately one kilometer). 

The literature has made it clear that irrigation and water availability are important variables in 

crop production. Irrigated land is generally considered to be of the highest value. However, in 

Africa, most agricultural areas rely on rain (nearly 80%). We explore in this analysis the effect of 

irrigation on the climate response functions of farmers in different regions of Africa. The 

irrigation variable is based on plot specific data on water sources. Farms that relied on rainwater 

alone were considered dryland. Those that relied at least in part on surface water resources, 

ground water or stored water in any season of the survey year were assumed to be irrigated. 

Table 1 provides a breakdown of where irrigation is employed by country, based on the survey 



AfJARE Vol 2 No 1 March 2008                                                                                                     Pradeep Kurukulasuriya and Robert Mendelsohn 

 7

data. It is evident that irrigation plays a prominent role in Egypt and South Africa but also in 

places such as Cameroon, Kenya, and Zimbabwe.  

Figure 1 depicts the mean net revenue for dryland and irrigated farms in each country in the 

sample. Egypt is a unique case in Africa. Farming in Egypt is predominantly irrigated and 

technology intensive, leading to significantly higher earnings. A large fraction of Egyptian 

farmers take advantage of cultivating for two seasons, which gives them another advantage over 

farmers in the rest of our sample.  
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Note: Net revenue = Gross revenue less total cost of hired labor, small tools and heavy machinery, 

fertilizer and pesticide.  

 

Figure 1: Average net revenue per hectare of dryland and irrigated cropland by country 
($/ha) 

Net revenue is gross revenue minus the costs of transport, packaging and marketing, storage, 

post-harvest losses, hired labor (valued at the median market wage rate), light farm tools (such as 

files, axes and machetes), heavy machinery (tractors, ploughs, threshers and others), fertilizer 

and pesticide. The median prices per district were used to value both crops and inputs whenever 

possible. In some circumstances it was necessary to rely on median provincial or national prices. 

We excluded household labor in the definition of net revenue because including it led to many 

households having negative net revenues. This was the case whether we used the payments each 

household alleged it gave to household workers or whether we assigned market wage rates to 

household labor. The inclusion of household labor in net revenues is problematic, as reported in 

the agricultural development literature (Bardhan & Udry, 1999). We therefore defined net 

revenues without household labor costs and controlled for the effect of household labor by 

including household size as an independent variable. Table 2 provides a summary of the mean of 

variables used in the analysis. 
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Table 2: Descriptive statistics 

Variable Obs Mean Std dev Min Max 

Net revenue (USD/ha) 8622.00 461.86 767.99 -2272.65 6972.42 

Temp – winter (°C) 9064.00 19.82 4.71 6.99 28.45 

Temp – spring  (°C) 9064.00 23.35 5.46 9.06 32.79 

Temp – summer (°C) 9064.00 24.52 5.61 15.34 36.27 

Temp – fall (°C) 9064.00 22.23 4.11 14.09 32.42 

      

Precip – winter (mm/mo) 9064.00 25.86 36.08 0.26 158.83 

Precip – spring (mm/mo) 9064.00 39.84 43.79 0.67 214.60 

Precip – summer (mm/mo) 9064.00 96.04 63.24 0.19 289.31 

Precip – fall (mm/mo) 9064.00 102.39 65.90 0.54 330.88 

Mean flow (m3) 9037.00 1.87 5.42 0.00 49.54 

      

Farmland area (ha) 8988.00 60.05 1481.09 0.04 80958.23 

Elevation (m) 9023.00 683.27 659.03 1.00 3042.00 

Size of household 8991.00 7.32 4.13 1.00 48.00 

Irrigation (1/0) 9064.00 0.15 0.36 0.00 1.00 

Electrified (1/0) 9064.00 0.29 0.45 0.00 1.00 

Eutric gleysols, coarse to undulating 9037.00 0.01 0.04 0.00 0.50 

Lithosols, hilly to steep slope 9037.00 0.01 0.06 0.00 0.60 

Orthic luvisols, medium texture, hilly slope 9037.00 0.00 0.02 0.00 0.50 

Chromic vertisols, fine texture, undulating slope 9037.00 0.00 0.04 0.00 0.60 

Chromic luvisols, medium to fine texture, undulating 

9037.00 0.01 0.06 0.00 0.70 

Cambic arenosols 9037.00 0.00 0.02 0.00 0.50 

Luvic arenosols 9037.00 0.01 0.04 0.00 0.40 

Chromic luvisols, coarse to medium texture, steep slope 9037.00 0.00 0.01 0.00 0.30 

Dystric nitosols 9037.00 0.01 0.05 0.00 0.50 

Gleyic luvisols 9037.00 0.01 0.08 0.00 0.80 

Rhodic ferralsols, fine texture, hilly to steep slope 9037.00 0.00 0.02 0.00 0.30 

Calcic yermosols, coarse to medium texture, undulating 

to hilly slope 9037.00 0.01 0.08 0.00 0.60 

In Table 3, we present the results of the multiple regression models of net revenue across three 

samples. This initial set of regressions does not control for regional differences across Africa. It 

examines three models: the entire sample (all farms), just irrigated farms, and just dryland farms. 

The coefficients for irrigated and dryland farms are not the same, which suggests they have 

different relationships with the independent variables. While we do not present the results here, a 

number of farmer specific variables, such as gender, education and whether or not the farmer 

was a full time farmer or not, were not significant and so were dropped as they were not jointly 

significant. Overall, the three regressions explain 35%, 17% and 29% of the variation in net 

revenues from farm to farm. The coefficients of the models are significantly different from zero. 

The variables identify many reasons why farm net revenue varies from place to place. However, 
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a great deal of the variation remains unmeasured. This is especially true of dryland farms that 

vary from small backyard systems to large commercial operations. There are several sources of 

possible error, including misreporting of net revenue, omitted variables, local or national 

restrictions, and random annual phenomena. 
 

Table 3: Regression coefficients of all farms, dryland and irrigated farms without regional dummies 

Variable  All farms Dryland Irrigated 

Winter temperature   -83.9 -117.1* 91.0 

Winter temperature squared 2.98* 3.62* -2.16 

Spring temperature   -18.4 -20.9 -186.3 

Spring temperature squared -1.61 -1.10 2.21 

Summer temperature   212.4** 118.9 1093.0** 

Summer temperature  squared -2.74** -1.36 -19.01** 

Fall temperature     -116.6* -22.8 -1067.4** 

Fall temperature squared 1.68 -0.23 22.28** 

Winter precipitation   -3.32** -4.79** 7.86 

Winter precipitation squared 0.018** 0.025** -0.043 

Spring precipitation 3.42* 5.38** -11.99 

Spring precipitation  squared -0.002 -0.017** 0.099* 

Summer precipitation   3.90** 3.43** 23.84** 

Summer precipitation squared -0.016** -0.015** -0.093** 

Fall precipitation -1.63* -1.76** -19.82** 

Fall precipitation squared 0.012** 0.013** 0.074** 

Mean flow  12.20** -8.48* 10.54** 

Farm area  -0.074** -0.320** -0.042* 

Farm area squared  0.000** 0.000** 0.000* 

Elevation  -0.077** -0.115** 0.234* 

Log (household size)   27.3* 20.93 64.5 

Irrigate (1/0) 251.3**   

Household access to electricity (1/0) 117.4** 95.47** 297.8** 

Eutric gleysols, coarse, undulating -692.4** -393.3** -1265.7** 

Lithosols and luvisols, hilly and steep -454.4** -228.1** -1038.0** 

Orthic luvisols, medium, hilly -2322.0** -1999.8**  

Chromic vertisols - fine, undulating -1065.1** -894.3** -1585.5** 

Chromic luvisols - medium, fine, 

undulating -261.2** -250.2**  

Cambic arenosols 1642.8** 1709.0**  

Luvic arenosols -539.9** -269.6**  

Chromic luvisols, medium, steep -2267.6  -5812.3** 

Dystric nitosols 370.7  7343.7** 

Gleyic luvisols -179.0** -125.2**  

Rhodic ferralsols, fine, hilly, steep 992.4*  3540.0 

Calcic yermosols, coarse, medium, 

undulating, hilly 1279.6** -636.3**  

Constant 141.8 702.4 -243.3 

N 8459 7238 1221 

R2 0.351 0.171 0.29 

F 68.59 33.81 52.45 

Note: * significant at 5% level ** significant at 1% level 
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Many of the control variables were significant. More water flow increases the value of irrigated 

farms but not dryland farms. Dryland farms are no better off with water flow because the only 

water they use comes from on-farm precipitation. Farm area reduces the value per hectare of 

farms at a decreasing rate. That is, small farms are more productive on a per hectare basis. Small 

farms may appear to be more productive because they are using a fixed resource such as 

household labor over a much smaller piece of land. This is consistent with the finding that the 

log of household size is positive in the all-Africa and dryland models. Higher elevation reduces 

the value of dryland farms but increases the value of irrigated ones. In general, high elevation is 

associated with high diurnal temperature variance, which is often hard on crops. However, high 

elevation may reduce the cost of irrigation as the slopes can be used to capture and move water 

at low cost. 

Technology variables also matter. Whether or not the farm has access to electricity has a positive 

effect. This may reflect either higher technology or better access to markets. Whether a farm has 

irrigation increases farm net revenue substantially. This dummy reflects the gross not net value 

of irrigation because the irrigation costs were not counted in the net revenues. 

Soils also were quite important in the model. Altogether 12 types were identified as significant in 

the Africa sample. Types such as cambic arenosols, rhodic ferralsols with fine texture in hilly to 

steep regions and calcic yermosols with coarse to moderate texture and in undulating to hilly 

regions were identified as high productivity soils. By contrast, eutric gleysols with coarse texture 

in undulating areas, orthic luvisols in moderate to hilly areas, chromic vertisols with fine texture 

in undulating areas and chromic luvisols in moderate to steep areas were all particularly 

unproductive soils. Some of these soil types were unique to small areas and so could not be 

included in the dryland and irrigated equations. 

The effects of the seasonal climate variables vary across the three models in Table 3. Both linear 

and squared terms are significant in certain seasons, implying that climate has a nonlinear effect 

on net revenues. One can see from the negative/positive sign of the quadratic term that the 

relationship is hill-shaped/U-shaped. However, depending on what seasonal temperature or 

precipitation is being examined, the marginal impact of a climate variable could be either 

positive or negative. The relationship between temperature and net revenues is depicted in Figure 

2. As temperatures rise, the net revenues from irrigated farms rise whereas the net revenues from 

dryland fall. The relationships between net revenues and precipitation for dryland and irrigated 

farms are shown in Figure 3. Precipitation increases net revenues in both types of farms but it 

has a comparatively larger impact on dryland farms. Drying and warming is especially harmful 

to dryland farms. By contrast, irrigated farms are likely to be robust against climate changes, 

provided there is enough water flow for irrigation. 
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Figure 2: Temperature response functions  
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Figure 3: Precipitation response functions 

In Table 4 we present an alternative specification of the model. We have added regional 

variables to capture differences across broad regions and a few more technology variables. The 

regional variables reflect trade arrangements, common language and colonial history, and 

proximity. The regional dummies suggest that West Africa and North Africa are more productive 

than southern Africa. East Africa, on the other hand, is less productive. The results of the 

technology variables are mixed. The coefficient for whether a farm uses heavy machinery is 

positive in the dryland equation, which probably reflects modern technology. The coefficient for 

whether a farm depends on animal power depends on whether it is dryland or irrigated. The 

dummy variable for animal power has a positive effect on dryland farms but a negative effect on 

irrigated ones. It is also possible that in irrigated lands the negative coefficient implies that some 

farmers of irrigated land have a lower level of technology than others. Animal power may be a 

proxy on the one hand for household labor and on the other for the absence of capital and 

technology. 
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Table 4: Regression coefficients of all farms, dryland and irrigated farms with regional dummies 

Variable  All farms Dryland Irrigated 

Winter temperature   -173.6** -106.7 -93.5 

Winter temperature squared 6.1** 3.9* 4.9 

Spring temperature   115.1 -82.8 58.7 

Spring temperature squared -5.0** -0.3 -4.1 

Summer temperature   173.9** 198.6** 827.5** 

Summer temperature  squared -1.9 -3.2* -13.1* 

Fall temperature     -98.1 -92.4 -824.2* 

Fall temperature squared 1.1 1.5 15.3* 

Winter precipitation   -2.9* -1.9 5.8 

Winter precipitation squared 0.0** 0.00 0.00 

Spring precipitation 3.5* 3.6** -10.6 

Spring precipitation  squared -0.001 -0.011* 0.091*  

Summer precipitation   3.4** 1.9* 21.4** 

Summer precipitation squared -0.012** -0.005 -0.086** 

Fall precipitation -0.5 -0.6 -14.7** 

Fall precipitation squared 0.0055*  0.0053*  0.0586***  

Mean flow  9.4** -5.4 8.8** 

Farm area  -0.1** -0.3** -0.0** 

Farm area squared  0.0* 0.0** 0.0* 

Elevation  0.035 -0.0009 0.229 

Log (household size)   22.9 10.1 62.4 

Irrigate (1/0) 237.5**   

Access to electricity (1/0) 66.6** 47.7** 233.2* 

Eutric gleysols, coarse, undulating -631** -287** -540 

Lithosols and luvisols, hilly, steep -387** -156** -1147** 

Orthic luvisols, medium, hilly -2181** -1959**  

Chromic vertisols - fine, undulating -1180** -1006** -1719** 

Chromic luvisols - medium, fine, undulating -295** -241**  

Cambic arenosols 1633** 1726**  

Luvic arenosols -482** -188**  

Chromic luvisols, medium, steep -2153  -6157** 

Dystric nitosols 214  7051** 

Gleyic luvisols -199** -154**  

Rhodic ferralsols, fine, hilly, steep 1428**  3212 

Calcic yermosols, coarse, medium, undulating, hilly 1071** 148  

West Africa dummy 136** 208** -285 

North Africa dummy 457**  675* 

East Africa dummy -186** -154** -361 

Heavy machinery dummy 51.8** 55.5** -60.8 

Animal power dummy 10.4 49.3** -185.5** 

Constant -388 1081 -549 

N 8459 7238 1221 

R2 0.4 0.2 0.3 

F 63.6 32.4 46.3 

Note: * significant at 5% level ** significant at 1% level  
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In order to interpret the climate coefficients, we calculated the marginal impacts of a change in 

each climate variable evaluated at the mean climate for each specific regression sample. So, the 

marginal impacts for the dryland model are evaluated at the mean climate of the dryland sample 

while those for the irrigated sample are assessed at the mean climate of irrigated farms. The 

marginal values depend on the regression equation that is being used and the climate that is 

being evaluated. Table 5 displays the results of using the three regressions from Tables 3 and 4. 

In each case the marginal effect of temperature and precipitation is evaluated at the mean for 

each sample. For example, the marginal effect of temperature on irrigated land is evaluated at the 

mean temperature of irrigated land and the marginal impact of precipitation on dryland is 

evaluated at the mean precipitation for dryland. Irrigated farms are located in cooler (19.7°C) 

and drier (38.3 mm/mo) locations than dryland farms (22.2°C and 74.1 mm/mo). The marginal 

temperature results are almost identical with or without regional dummies. However, the 

marginal precipitation results are larger with the regional dummies. 

 

Table 5: Marginal impacts of climate on net revenue (USD/ha) 

(Elasticities in parentheses) 

Without regional dummies 

(From coefficients in Table 2) 

Sample Africa 
regression 

Irrigated 
regression 

Dryland 
regression 

Temperature  -28.3** 

(-1.3) 

33.6 

(0.5) 

-23.0** 

(-1.6) 

Precipitation  2.65** 

(0.36) 

2.08 

(0.06) 

2.02** 

(0.47) 

 
With regional dummies 

(From coefficients in Table 3)  

Annual Africa 
regression 

Irrigated 
regression 

Dryland 
regression 

Temperature  -28.5** 

(-1.4) 

35.04 

(0.6) 

-26.7** 

(-1.9) 

Precipitation  3.28** 

(0.44) 

3.82 

(0.13) 

2.70** 

(0.63) 

 
Notes: ** significant at 1% level  

Marginal impacts evaluated at the mean of the all-Africa, irrigated and dryland samples. 

 

Comparing the results of dryland farms with irrigated ones reveals that they are quite different. 

The marginal temperature effect for dryland farms is -USD27/°C. By contrast, the marginal 

effect of a temperature increase on irrigated farms evaluated at their mean temperature is positive 

at USD35/°C. Higher temperatures increase the net revenues of irrigated farms because the mean 

temperature of these farms is relatively cool and because irrigation buffers crops from 

temperature effects. The marginal precipitation effects for dryland and irrigated farms are more 
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similar (3.8 mm/mo for irrigated farms and 2.7 mm/mo for dryland). Irrigated farms may benefit 

more than dryland farms from small increases in precipitation because they are located in such 

dry locations. 

In addition to marginal effects, another important perspective to look at is the climate elasticities 

(the percentage change in net revenues for a percentage change in climate). The mean net 

revenue of irrigated cropland (USD1367/ha) is much higher than the net revenue from dryland 

cropland (USD360/ha). The temperature elasticity for dryland is −1.9 but the elasticity for 

irrigated land is +0.6. Similarly, the precipitation elasticity for dryland is +0.6 but the elasticity 

for irrigated land is only +0.1. The net revenues from dryland are much more climate sensitive 

than those from irrigated land.  

In Figure 4 we present the marginal temperature and precipitation impacts across all irrigated 

and dryland farms. The results suggest that a marginal increase in temperature will cause 

substantial damage in West Africa and in areas along the Rift Valley. Drier parts of East Africa 

(especially in northwest Ethiopia) will also suffer adversely. By contrast, higher rainfall is most 

likely to benefit large parts of southern Africa and the currently dry North Africa. Some of the 

gains in, for example, the Sahara Desert area are exaggerated, as there is limited agriculture in 

deserts without water. 

 

 

 

Figure 4: Marginal impacts ($/ha) from a small change in temperature and precipitation 

 

4. Forecasts of climate impacts 

We used the estimated regressions in the previous section to explore how climate change 

scenarios might affect cropland in all of Africa. The Ricardian results above estimate how net 

revenues vary across existing climates on the African continent. In this projection, we predict 

how future climates might affect future farm net revenues. These projections assume that all 
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other conditions hold constant and that the results of the cross section can be used for long-term 

intertemporal analysis. 

We examine a set of climate change scenarios predicted by three AOGCMs: the Canadian 

Climate Centre (CCC) (Boer et al., 2000), the CCSR (Emori et al., 1999), and the Parallel 

Climate Model (PCM) (Washington et al. 2000). The AOGCMs project how climate will change 

in the near term (2020) and in the long run (2100) for each country in Africa. For each climate 

scenario, we added the predicted change in temperature from the climate model to the baseline 

temperature in each district. We also multiplied the predicted percentage change in precipitation 

from the climate models by the baseline precipitation in each district or province. This gave us a 

new climate for every district in Africa. Table 6 presents the mean temperature and rainfall 

predicted by the three models for the years 2020 and 2100. The PCM scenarios are relatively 

mild and the CCC ones are relatively severe. The temperature change predicted by the CCSR is 

between these two models but the CCSR has a particularly dry 2100 scenario. There is a clear 

trend of warming in both scenarios over time but precipitation varies. 

 

Table 6: Climate predictions of AOGCM models for 2020and 2100 

 Current 2020 2100 

 

Temperature (°C ) 

   

CCC 23.3 24.9 (+1.6) 30.0 (+6.7) 

CCSR 23.3 25.3 (+2.0) 27.4 (+4.1) 

PCM 23.3 23.9 (+0.6) 25.8 (+2.5) 

 

Rainfall (mm/month) 

   

CCC 79.8 76.8 (-3.7%) 65.1 (-18.4%) 

CCSR 

PCM 

79.8 

79.8 

74.0 (-7.3%) 

89.8 (+12.5%)

62.44 (-22%) 

83.2 (+4.3%) 

 

Note that each model also has a slightly different precipitation prediction for each region of 

Africa. For 2020 and 2100, the PCM model predicts a large increase in precipitation in East 

Africa and West Africa, but only a small increase in North, Central and southern Africa. By 

contrast, the CCC model predicts that precipitation will increase in Central and West Africa but 

fall in the rest of Africa. By 2100, the CCC model also predicts an unusually large increase in 

temperature in West Africa (7.3°C) and in Central and southern Africa (6.5°C) compared to the 

rest of Africa (5.5°C). Finally, the CCSR predicts a substantial increase in precipitation in West 

Africa (30%) and a small increase elsewhere in 2020. In this same period, West and Central 

Africa experience larger temperature changes (more than 2 degrees) than the rest of the 

continent. The 2100 prediction of warming is also a little higher for North Africa (4.8°C) than 

for the rest of Africa (3.7°C). North, East and West Africa are likely to experience relatively 

higher precipitation in 2100 than Central and southern Africa.
2
  

                                                 
2 Detailed country and seasonal changes in the climate variables used in the analysis are available from the authors. 
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In order to extrapolate from the sample to the entire continent, we began by projecting how many 

hectares of cropland there are in each district. In this paper, we relied on estimates by the 

International Food Policy Research Institute (IFPRI) and the FAO of the amount of cropland in 

each district (FAOStat, 2005; Lotsch, 2006). The primary arable land areas are in the temperate 

regions of North Africa, the coastal belt in West Africa (south of the Sahel) and along the Rift 

Valley in East and southern Africa. 

Because we intended to explore the effects of climate on dryland and irrigated land, we needed 

to determine which land across Africa is irrigated. We relied on FAO estimates of the total 

hectares of irrigated cropland in each country (FAOStat, 2005; Siebert & Döll, 2005). We 

allocated these hectares across districts within each country on the basis of the districts’ 

respective climates. The probability of irrigation in each district was interpolated using a probit 

model that regressed irrigation on a set of independent climate variables including climate, soils 

and flow.
3
 The results suggest that coastal regions in North and southern Africa have a higher 

likelihood of irrigation. Other regions of Africa, particularly Central Africa and regions along the 

Rift Valley either have sufficient rainfall or lack the investment necessary to undertake 

irrigation. Note that the amount of cropland and irrigated land in each country is based solely on 

current estimates and is assumed not to change. 

Using the estimated regression coefficients in Table 3, we calculated the change in net revenue 

for each climate scenario in each district throughout Africa. We then multiplied the change in net 

revenue per hectare by the number of hectares of cropland in each district to get an aggregate 

impact in each district. This value was then summed across all the districts of Africa to get a total 

impact for a country or for the continent: 

Aggregate Climate Impactd= Sum(ΔYi*Wj)      (5) 

 

where ΔYi = change in net revenue per hectare from a climate change 

Wj =hectares of cropland, irrigated cropland or dryland cropland 

d= district d 

Table 7 presents the results of the six scenarios for the three climate models for 2020 and 2100. 

The PCM results suggest that with ample rainfall and only a small increase in temperature the 

net effect on all African farms would be a marginal gain of from USD59 to USD69 billion/yr. 

The predicted effects would begin in 2020 and become slightly larger by 2100. With CCSR, the 

results decrease from modest gains of USD5.5 to losses in excess of USD15 billion/yr. With 

CCC, the results suggest that even by 2020 losses of USD22 billion are likely. By 2100, a large 

warming of 6°C would lead to substantial losses across African farms equal to USD47 billion. 

Irrigated farms are predicted to be the least affected across all the climate scenarios partly 

because they are climate insensitive and partly because they are currently located in relatively 

cool areas. Dryland farms are likely to be affected the most, whether it is a benefit of USD57 

billion or a loss of USD43 billion, depending on the climate scenario. 

                                                 
3 The regression results can be requested from the authors. 
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Table 7: African impacts from AOGCM climate scenarios 

Impacts 
PCM 

2020 
PCM 2100 

CCSR 

2020 

CCSR 

2100 

CCC 

2020 

CCC 

2100 

Dryland       

ΔNet 

revenue 

(USD/ha) 

181.1 

[181, 182] 

(53.3%) 

160.6 

[160.5, 162.] 

(50.8%) 

-22.9 

[-23.6, -22.8]

(-7%) 

-116.6 

[-118, -115.8] 

(-36%) 

-67.5 

[-67.9, -67.3] 

(-21%) 

-137.4 

[-138.9, -136.8] 

(-43%) 

ΔTotal net 

revenue 

(billions 

USD) 

57.3 50.8 -7.3 -36.9 -21.4 -43.5 

Irrigated       

ΔNet 

revenue 

(USD/ha) 

31.3 

[9.3, 36.8] 

(2.7%) 

352.0 

[326.3,  359.7]

(30%) 

99.5 

[92.2, 98.1] 

(8.7%) 

-416.6 

[-427.1, -404] 

(-36%) 

58.0 

[55, 57.8] 

(5.1%) 

341.4 

[333, 345] 

(29%) 

ΔTotal net 

revenue 

(billions 

USD) 

0.4 4.6 1.3 -5.4 0.8 4.4 

All Africa       

ΔNet 

revenue 

(USD/ha) 

180.2 

[179.7,  182.3] 

(41%) 

212.5 

[212, 214] 

(48%) 

16.8 

[16.3, 17.2] 

(4%) 

-46.3 

[-48, -44] 

(-10%) 

-61.1 

[-61.7, -60.9] 

(-14%) 

-143.7 

[-145.6, -143] 

(-33%) 

ΔTotal net 

revenue 

(billions 

USD) 

58.7 69.2 5.5 -15.1 -22.4 -46.8 

Note: Using coefficients in Table 6 and AOGCM country specific climate scenarios. The numbers in parentheses 

represent the percentage change in net revenue per hectare relative to the mean of the sample. The numbers in the 

square brackets represent bootstrapped confidence intervals based on 1000 repetitions where 50% of the sample is 

randomly dropped. 

In order to show how the climate effects in 2020 are distributed across Africa, in Figure 5 we 

map the predicted impacts in each district for each of the three AOGCM scenarios. The figure 

suggests a wide range of country specific impacts across Africa. Across the three scenarios, 

increases in precipitation in West Africa offset increases in temperature so that there are muted 

net effects. With the CCC scenario, southern Africa experiences large losses in net revenue per 

hectare, as does most of Saharan and North Africa. However, there is a wide swath of land 

across Central Africa that is hardly affected. A similar pattern appears in the CCSR scenario 

except that Central and West African farmers increase their net revenues. By contrast, the PCM 

climate scenario, which predicts a significant increase in rainfall with moderate warming, depicts 

increases in net revenues almost everywhere in Africa. The major exception is Central Africa, 

where the marginal impact of more rain is harmful because this area already receives a great deal 

of precipitation. 

Figure 6 depicts the impact on net revenue per hectare from the 2100 climate change scenarios. 

Compared to the 2020 scenarios, the damages generally get larger and the benefits shrink. 

However, the general spatial patterns that were visible in the 2020 scenarios in each of the three 

models remain. The CCC scenario hits farmers the hardest in North and southern Africa but has 
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smaller impacts in Central Africa. The CCSR scenario also leads to large predicted losses in 

North and southern Africa but gains in Central Africa. In the PCM scenario, there remain 

benefits to most of Africa but the benefits are smaller. The higher temperatures by 2100 reduce 

the benefits found earlier by the PCM model. Looking across the models, the impact in each 

location is uncertain. The outcome will depend on the climate scenario. Further, the entire 

continent will not be affected uniformly in any scenario. Impacts will vary in each scenario, from 

being harmful in some locations to being beneficial in others across all of Africa. 

 

        
 

(a) Impacts based on PCM climate scenario         (b) Impacts based on CCSR climate 
scenario 

 

 
 

(c) Impacts based on CCC climate scenario 

 
Figure 5: Predicted change in net revenue per hectare by 2020 
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(a) Impacts based on PCM climate scenario   (b) Impacts based on CCSR climate scenario 
 

 

 

 

(c) Impacts based on CCC climate scenario  
 

Figure 6: Predicted change in net revenue per hectare by 2100 

 

5. Conclusions and implications for policy  

This study is a cross-sectional analysis of the crop net revenues of African farms, relying on the 

Ricardian method to investigate the current impact of climate on crop net revenues, and building 

on the back of a massive data effort to collect information about farmers in 11 African countries. 
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Surveys of 9064 African farms were combined with detailed measurements of soils, climate, 

hydrology and elevation from a number of sources. 

The study found that African farms are sensitive to climate and especially temperature. It finds 

that farm net revenues are lower in places with higher temperatures. Specifically, the temperature 

elasticity with respect to the net revenue of African farms is estimated to be -1.3. That is, a 10% 

increase in temperature will lead to a 13% decline in net revenue. The precipitation elasticity is 

estimated to be 0.4. African farms are more sensitive to changes in temperature than changes in 

precipitation. Similar results were also found for US farms (Mendelsohn et al., 1994; 

Mendelsohn & Nordhaus, 1999; Mendelsohn et al., 2001; Mendelsohn & Dinar, 2003). The 

sensitivity is the greatest for dryland farms with a temperature elasticity of -1.6 and a 

precipitation elasticity of 0.5. Irrigated farms, by contrast, are resilient to temperature changes 

and may actually increase in value (partly because of their location in temperate regions of 

Africa). These results are similar to preliminary analyses using the same data (Kurukulasuriya et 

al., 2006). 

The study then predicts the impacts of future scenarios from climate models. Irrigated farms will 

benefit slightly across all scenarios. The fate of dryland farms depends on the scenario. Mild 

climate scenarios will probably benefit dryland farmers. Harsh scenarios will lead to large losses. 

Impacts are expected to be evident as early as 2020 and to become larger over time as warming 

increases. 

The results provide some insights into the consequences of doing separate analyses of dryland 

and irrigated land (Schlenker et al., 2005). The dryland regression alone is more sensitive than a 

regression that includes all farms. Schlenker et al. mistakenly conclude from this result that 

separating dryland and irrigated farms indicates that climate warming is more dangerous. 

However, they omit the results of irrigated farms. The dryland analysis alone provides a biased 

forecast of the overall effect of climate change on all farms. Irrigated farms are much more 

robust to warming than dryland farms. If dryland and irrigated farms are to be separated, one 

must use the results from both samples to predict the effects of climate change. 

The study also finds that impacts are not likely to be uniform across Africa. The hotter and drier 

regions of Africa are likely to be hurt the most. Further, the climate changes themselves are not 

likely to be uniform, with some areas getting wetter and others dryer. How many people are 

affected depends on where they are located. Putting all these factors together, there remains a 

wide range of plausible outcomes.  

The study suggests that African countries should begin to plan for climate contingencies. 

Governments should develop contingency plans if certain climate outcomes come to pass. They 

should anticipate what farmers will do, how markets will react, and what role governments need 

to play. They should be prepared to help people adapt to these new circumstances.  

Some actions can also be taken before the climate changes. Actions that make agricultural 

sectors more immune to climate can be taken in advance. Developing new crops that are more 

suited to hot and dry conditions will help countries to adapt to many current climate zones as 

well as future ones. Encouraging profitable irrigated systems will reduce the climate 

vulnerability of the agriculture sector. Developing the economy away from agriculture will 

reduce the climate sensitivity of the entire economy. Increasing wealth so that firms and 

households can explore more alternatives will make adaptation easier. 

There are three important factors that must be considered that were not included in this analysis. 

First, this study takes the technology of each farmer as given. There is no doubt about the 
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importance of technology. The average dryland farmer earns USD319/ha whereas the average 

irrigated farmer earns USD1261/ha. The more advanced irrigated farms earn even more. What 

will happen to technology in Africa’s future is very important. A second factor is that all-Africa 

results are contingent on the current distribution of dryland and irrigated agriculture. Future 

analysis should take into account impacts where irrigation adjusts as climate changes 

(Mendelsohn,  2006). The third important factor left out of this analysis is carbon fertilization. 

Experimental results suggest that yields could increase on average by 30% if CO2 doubles 

(Reilly et al., 1996). If these gains are realized in the field, they will help to offset a great deal of 

the predicted harmful effects of warming. Of course, agriculture in Africa will nonetheless be 

handicapped compared with agriculture in cooler regions even with carbon fertilization. 
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