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Abstract

The Riccati-Bernoulli sub-ODE method is firstly proposed to construct exact traveling

wave solutions, solitary wave solutions, and peaked wave solutions for nonlinear

partial differential equations. A Bäcklund transformation of the Riccati-Bernoulli

equation is given. By using a traveling wave transformation and the Riccati-Bernoulli

equation, nonlinear partial differential equations can be converted into a set of

algebraic equations. Exact solutions of nonlinear partial differential equations can be

obtained by solving a set of algebraic equations. By applying the Riccati-Bernoulli

sub-ODE method to the Eckhaus equation, the nonlinear fractional Klein-Gordon

equation, the generalized Ostrovsky equation, and the generalized

Zakharov-Kuznetsov-Burgers equation, traveling solutions, solitary wave solutions,

and peaked wave solutions are obtained directly. Applying a Bäcklund transformation

of the Riccati-Bernoulli equation, an infinite sequence of solutions of the above

equations is obtained. The proposed method provides a powerful and simple

mathematical tool for solving some nonlinear partial differential equations in

mathematical physics.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) are known to describe a wide variety

of phenomena not only in physics, but also in biology, chemistry, and several other fields.

The investigation of traveling wave solutions for NLPDEs plays an important role in the

study of nonlinear physical phenomena. In recent years, many powerful methods were

used to construct traveling wave solutions of NLPDEs. For example, the inverse scattering

method [], the Bäcklund and Darboux transformation method [], the homotopy per-

turbation method [], the first integral method [–], the (G
′

G
)-expansion method [–

], the sub-equation method [, ], Hirota’s method [], the homogeneous balance

method [–], the variational iteration method [, ], the tanh-sech method [], the

Jacobi elliptic function method [], the modified simple equation method [–], the

exp(–�(ξ ))-expansion method [], the alternative functional variable method [], and

so on.
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Many well-known NLPDEs can be handled by those traditional methods. However,

there is no unified method which can be used to deal with all types of NLPDEs. Moreover,

we always encounter the fractional NLPDEs, the NLPDEs which have nonlinear terms of

any order or peakedwave solutions. It is significant to construct travelingwave solutions of

NLPDEs by a uniform method. Based on those problems, the Riccati-Bernoulli sub-ODE

method is firstly presented.

In this paper, the Riccati-Bernoulli sub-ODE method is proposed to construct travel-

ing wave solutions, solitary wave solutions, and peaked wave solutions of NLPDEs. By

using a traveling wave transformation and the Riccati-Bernoulli equation, NLPDEs can

be converted into a set of algebraic equations. Exact solutions of NLPDEs can be ob-

tained by solving the set of algebraic equations. The Eckhaus equation, the nonlinear frac-

tional Klein-Gordon equation, the generalized Ostrovsky equation, and the generalized

Zakharov-Kuznetsov-Burgers (ZK-Burgers) equation are chosen to illustrate the valid-

ity of the Riccati-Bernoulli sub-ODE method. A Bäcklund transformation of the Riccati-

Bernoulli equation is given. If we get a solution ofNLPDEs, we can search for a new infinite

sequence of solutions of the NLPDEs by using a Bäcklund transformation.

The remainder of this paper is organized as follows: the Riccati-Bernoulli sub-ODE

method is described in Section . In Section , a Bäcklund transformation of the Riccati-

Bernoulli equation is given. In Sections -, we apply the Riccati-Bernoulli sub-ODE

method to the Eckhaus equation, the nonlinear fractional Klein-Gordon equation, the

generalized Ostrovsky equation, and the generalized ZK-Burgers equation, respectively.

In Section , our results are compared with the first integral method, the (G
′

G
)-expansion

method, and physical explanations of the obtained solutions are discussed. In Section ,

some conclusions and directions for future work are given.

2 Description of the Riccati-Bernoulli sub-ODEmethod

Let there be given a NLPDE, say, in two variables,

P(u,ut ,ux,uxx,uxt , . . .) = , ()

where P is in general a polynomial function of its arguments, the subscripts denote the

partial derivatives. The Riccati-Bernoulli sub-ODE method consists of three steps.

Step . Combining the independent variables x and t into one variable

ξ = k(x +Vt), ()

with

u(x, t) = u(ξ ), ()

where the localized wave solution u(ξ ) travels with speed V , by using Eqs. () and (), one

can transform Eq. () to an ODE

P
(

u,u′,u′′,u′′′, . . .
)

= , ()

where u′ denotes du
dξ
.
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Step . Suppose that the solution of Eq. () is the solution of the Riccati-Bernoulli equa-

tion

u′ = au–m + bu + cum, ()

where a, b, c, andm are constants to be determined later.

From Eq. () and by directly calculating, we get

u′′ = ab( –m)u–m + a( –m)u–m +mcum– + bc(m + )um +
(

ac + b
)

u, ()

u′′′ =
(

ab( –m)( –m)u–m + a( –m)( – m)u–m

+m(m – )cum– + bcm(m + )um– +
(

ac + b
))

u′, ()

· · ·

Remark When ac �=  and m = , Eq. () is a Riccati equation. When a �= , c = , and

m �= , Eq. () is a Bernoulli equation. Obviously, the Riccati equation and Bernoulli equa-

tion are special cases of Eq. (). Because Eq. () is firstly proposed, we call Eq. () the

Riccati-Bernoulli equation in order to avoid introducing new terminology.

Equation () has solutions as follows:

Case . Whenm = , the solution of Eq. () is

u(ξ ) = Ce(a+b+c)ξ . ()

Case . When m �= , b = , and c = , the solution of Eq. () is

u(ξ ) =
(

a(m – )(ξ +C)
)


m– . ()

Case . Whenm �= , b �= , and c = , the solution of Eq. () is

u(ξ ) =

(

–
a

b
+Ceb(m–)ξ

)


m–

. ()

Case . When m �= , a �= , and b – ac < , the solutions of Eq. () are

u(ξ ) =

(

–
b

a
+

√
ac – b

a
tan

(

( –m)
√
ac – b


(ξ +C)

))


–m

()

and

u(ξ ) =

(

–
b

a
–

√
ac – b

a
cot

(

( –m)
√
ac – b


(ξ +C)

))


–m

. ()

Case . Whenm �= , a �= , and b – ac > , the solutions of Eq. () are

u(ξ ) =

(

–
b

a
–

√
b – ac

a
coth

(

( –m)
√
b – ac


(ξ +C)

))


–m

()
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and

u(ξ ) =

(

–
b

a
–

√
b – ac

a
tanh

(

( –m)
√
b – ac


(ξ +C)

))


–m

. ()

Case . When m �= , a �= , and b – ac = , the solution of Eq. () is

u(ξ ) =

(



a(m – )(ξ +C)
–

b

a

)


–m

, ()

where C is an arbitrary constant.

Step . Substituting the derivatives of u into Eq. () yields an algebraic equation of u.

Noticing the symmetry of the right-hand item of Eq. () and setting the highest power ex-

ponents of u to equivalence in Eq. (), m can be determined. Comparing the coefficients

of ui yields a set of algebraic equations for a, b, c, and V . Solving the set of algebraic equa-

tions and substitutingm, a, b, c, V , and ξ = k(x+Vt) into Eq. ()-(), we can get traveling

wave solutions of Eq. ().

In the subsequent section, we will give a Bäcklund transformation of the Riccati-

Bernoulli equation and some applications to illustrate the validity of the Riccati-Bernoulli

sub-ODE method.

3 Bäcklund transformation of the Riccati-Bernoulli equation

When un–(ξ ) and un(ξ ) (un(ξ ) = un(un–(ξ ))) are the solutions of Eq. (), we get

dun(ξ )

dξ
=

dun(ξ )

dun–(ξ )

dun–(ξ )

dξ
=

dun(ξ )

dun–(ξ )

(

au–mn– + bun– + cumn–
)

,

namely

dun(ξ )

au–mn + bun + cumn
=

dun–(ξ )

au–mn– + bun– + cumn–
.

Integrating above equation once with respect to ξ and simplifying it, we get

un(ξ ) =

(

–cA + aA(un–(ξ ))
–m

bA + aA + aA(un–(ξ ))
–m

)


–m

, ()

where A and A are arbitrary constants.

Equation () is a Bäcklund transformation of Eq. (). If we get a solution of Eq. (),

we can search for new infinite sequence of solutions of Eq. () by using Eq. (). Then an

infinite sequence of solutions of Eq. () is obtained.

4 Application to the Eckhaus equation

The Eckhaus equation reads

iψt +ψxx + 
(

|ψ |
)

x
ψ + |ψ |ψ = , ()

where ψ = ψ(x, t) is a complex-valued function of two real variables x, t.
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The Eckhaus equation was found [] as an asymptotic multiscale reduction of cer-

tain classes of nonlinear Schrödinger type equations. A lot of the properties of the Eck-

haus equation were obtained []. The Eckhaus equation can be linearized by making

some transformations of dependent variables []. An exact traveling wave solution of the

Eckhaus equation was obtained by the (G
′

G
)-expansion method [] and the first integral

method [].

In this section, new type of exact traveling wave solutions of the Eckhaus equation are

obtained by using the Riccati-Bernoulli sub-ODE method.

Using the traveling wave transformation

ψ(x, t) = u(ξ )ei(αx+βt), ()

Eq. () is reduced to

ku′′ –
(

α + β
)

u + kuu′ + u = , ()

where

ξ = k(x – αt), ()

and k, α, β are real constants to be determined later.

Suppose that the solution of Eq. () is the solution of Eq. (). Substituting Eqs. () and

() into Eq. (), we get

k
(

ab( –m)u–m + a( –m)u–m +mcum– + bc(m + )um

+
(

ac + b
)

u
)

–
(

α + β
)

u + ku
(

au–m + bu + cum
)

+ u = . ()

Setting m = – and c = , Eq. () becomes

(

kb –
(

α + β
))

u +
(

kab + kb
)

u +
(

ka + ka + 
)

u = . ()

Setting each coefficient of uj (j = , , ) to zero, we get

kb –
(

α + β
)

= , (a)

kab + kb = , (b)

ka + ka +  = . (c)

Notice that k �= , otherwise we can only get trivial solution.

Case A. If b = , from Eqs. (a)-(c) and (), we get

u(x, t) = ±


√
–ka(x – αt) +C

, (a)

α + β = , (b)

ka = –

(

ka = –




)

, (c)

where C is an arbitrary real constant.
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Case A-. When ka = –, we get exact traveling wave solutions of Eq. (),

ψ(x, t) = ±


√
(x – αt) +C

ei(αx–αt), ()

where C and α are arbitrary real constants.

Case A-. When ka = – 

, we get exact traveling wave solutions of Eq. (),

ψ(x, t) = ±


√



(x – αt) +C

ei(αx–αt), ()

where C and α are arbitrary real constants.

Case B. If b �= , from Eqs. (a)-(c), we get

b = ±
√

α + β

k
, (a)

a = –


k
. (b)

CaseB-.When b = –

√
α+β

k
and a = – 

k
, fromEqs. () and (), we get an exact traveling

wave solution of Eq. (),

ψ(x, t) =

(

–


√

α + β
+Ce

√
α+β(x–αt)

)– 


ei(αx+βt), ()

where C, α, and β are arbitrary real constants.

Especially, if we choose C = C =
√

α+β
, Eq. () becomes

ψ(x, t) =

(

√

α + β



(

– + coth
(

√

α + β(x – αt)
))

)




ei(αx+βt), ()

where α and β are arbitrary real constants.

If we choose C = C = – √
α+β

, Eq. () becomes

ψ(x, t) =

(

√

α + β



(

– + tanh
(

√

α + β(x – αt)
))

)




ei(αx+βt), ()

where α and β are arbitrary real constants.

Case B-.When b =

√
α+β

k
and a = – 

k
, from Eqs. () and (), we get an exact traveling

wave solution of Eq. (),

ψ(x, t) =

(


√

α + β
+Ce–

√
α+β(x–αt)

)– 


ei(αx+βt), ()

where C, α, and β are arbitrary real constants.
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Especially, if we choose C = C =
√

α+β
, Eq. () becomes

ψ(x, t) =

(

√

α + β



(

 + tanh
(

√

α + β(x – αt)
))

)




ei(αx+βt), ()

where α and β are arbitrary real constants.

If we choose C = C = – √
α+β

, Eq. () becomes

ψ(x, t) =

(

√

α + β



(

 + coth
(

√

α + β(x – αt)
))

)




ei(αx+βt), ()

where α and β are arbitrary real constants.

Applying Eq. () to ψj(x, t) (j = , , . . . , ), we can get an infinite sequence of solutions

of Eq. (). For example, by applying Eq. () to Eq. (), we get a new solution of Eq. (),

ψ∗
 (x, t) =

(

A

√

α + β( + tanh(
√

α + β(x – αt)))

A +A

√

α + β(– + tanh(
√

α + β(x – αt)))

)




ei(αx+βt), ()

where A, A, α, and β are arbitrary real constants.

5 Application to the nonlinear fractional Klein-Gordon equation

The nonlinear fractional Klein-Gordon equation [] reads

∂αu(x, t)

∂tα
=

∂u(x, t)

∂x
+ βu(x, t) + γu(x, t), t > , < α ≤ , ()

where β and γ are known constants.

As is well known, linear and nonlinear Klein-Gordon equations model many problems

in classical and quantummechanics, solitons and condensedmatter physics. For example,

the nonlinear sine Klein-Gordon equation models a Josephson junction, the motion of

rigid pendula attached to a stretched wire, and dislocations in crystals [, –]. A non-

local version of these equations are properly described by the fractional version of them.

Exact traveling wave solutions of the nonlinear fractional Klein-Gordon equation were

obtained by the homotopy perturbation method [] and the first integral method [].

In this section, exact traveling wave solutions of the nonlinear fractional Klein-Gordon

equation are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

u(x, t) = u(ξ ), ()

with

ξ = lx –
λtα

Ŵ( + α)
, ()

where l and λ are constants to be determined later, Eq. () becomes

u′′ –
β

λ – l
u –

γ

λ – l
u = . ()
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Suppose that the solution of Eq. () is the solution of Eq. (). Substituting Eq. () into Eq.

(), we get

ab( –m)u–m + a( –m)u–m +mcum–

+ bc(m + )um +
(

ac + b
)

u –
β

λ – l
u –

γ

λ – l
u = . ()

Setting m = , Eq. () is reduced to

abu + au + bc +
(

ac + b
)

u –
β

λ – l
u –

γ

λ – l
u = . ()

Setting each coefficient of ui (i = , , , ) to zero, we get

bc = , (a)

ac + b –
β

λ – l
= , (b)

ab = , (c)

a –
γ

λ – l
= . (d)

Solving Eqs. (a)-(d), we get

b = , (a)

ac =
β

(λ – l)
, (b)

a = ±
√

γ

(λ – l)
. (c)

Case A. When β

λ–l
> , substituting Eqs. (a)-(c) and () into Eqs. () and (),

we get exact traveling wave solutions of Eq. (),

u,(x, t) = ±

√

β

γ
tan

(

√

β

(λ – l)

(

lx –
λtα

Ŵ( + α)

)

+C

)

, (a)

and

u,(x, t) = ±

√

β

γ
cot

(

√

β

(λ – l)

(

lx –
λtα

Ŵ( + α)

)

+C

)

, (b)

where C, l, and λ are arbitrary constants.

Case B. When β

λ–l
< , substituting Eqs. (a)-(c) and () into Eqs. () and (),

we get exact traveling wave solutions of Eq. (),

u,(x, t) = ±

√

–
β

γ
tanh

(

√

–
β

(λ – l)

(

lx –
λtα

Ŵ( + α)

)

+C

)

, (a)
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and

u,(x, t) = ±

√

–
β

γ
coth

(

√

–
β

(λ – l)

(

lx –
λtα

Ŵ( + α)

)

+C

)

, (b)

where C, l, and λ are arbitrary constants.

Applying Eq. () to uj(x, t) (j = , , . . . , ), we can get an infinite sequence of solutions

of Eq. (). For example, by applying Eq. () to uj(x, t) (j = , , . . . , ) once, we get new

solutions of Eq. (),

u∗
,(x, t) =

– β

γ
±A

√

β

γ
tan(

√

β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

A ±
√

β

γ
tan(

√

β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

,

u∗
,(x, t) =

– β

γ
±A

√

β

γ
cot(

√

β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

A ±
√

β

γ
cot(

√

β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

,

u∗
,(x, t) =

– β

γ
±A

√

– β

γ
tanh(

√

– β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

A ±
√

– β

γ
tanh(

√

– β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

,

u∗
,(x, t) =

– β

γ
±A

√

– β

γ
coth(

√

– β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

A ±
√

– β

γ
coth(

√

– β

(λ–l)
(lx – λtα

Ŵ(+α)
) +C)

,

where A, A, C, l, and λ are arbitrary real constants.

6 Application to the generalized Ostrovsky equation

The generalized Ostrovsky equation reads

(

ut + uux –
β


uxxx

)

x

–
ε



(

u + δu
)

= , ()

where β , ε, and δ are known constants.

The generalized Ostrovsky equation is a model for the weakly nonlinear surface and

internal waves in a rotating ocean. Exact peaked wave solutions were obtained by the un-

determined coefficient method [].

In this section, exact peaked wave solutions of the generalized Ostrovsky equation are

obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

u(x, t) = u(ξ ), ()

with

ξ = k(x +Vt), ()

where k and V are the wave number and wave speed, respectively, Eq. () becomes

kVu′′ + k
(

u′) + kuu′′ –
β


ku′′′′ –

ε



(

u + δu
)

= . ()
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Suppose that the solution of Eq. () is the solution of Eq. (). From Eqs. () and (), we

get

u′′′′ =
(

ab( –m)( –m)( –m)u–m + a( –m)( – m)( – m)

× u–m +m(m – )(m – )cum– + bcm(m + )(m – )um–
)

×
(

u′) +
(

ab( –m)( –m)u–m + a( –m)( – m)u–m

+m(m – )cum– + bcm(m + )um– +
(

ac + b
))

u′′. ()

Substituting Eqs. (), (), and () into Eq. (), we get

(

kV + ku
)(

ab( –m)u–m + a( –m)u–m

+mcum– + bc(m + )um +
(

ac + b
)

u
)

+
β


k = , ()

where

 =
(

au–m + bu + cum
)(

ab( –m)( –m)( –m)u–m + a( –m)( – m)

× ( – m)u–m +m(m – )(m – )cum– + bcm(m + )(m – )um–
)

+
(

ab( –m)u–m + a( –m)u–m +mcum– + bc(m + )um +
(

ac + b
)

u
)

×
(

ab( –m)( –m)u–m + a( –m)( – m)u–m +m(m – )cum–

+ bcm(m + )um– +
(

ac + b
))

.

Setting m =  and c = , Eq. () is reduced to

(

kVab + ka –
β


kab

)

+

(

kVb –
β


kb + kab –




ε

)

u

+

(

kb –



εδ

)

u = . ()

Setting each coefficient of uj (j = , , ) to zero, we get

kb –



εδ = , (a)

kVb –
β


kb + kab –




ε = , (b)

kVab + ka –
β


kab = . (c)

Solving Eqs. (a)-(c), we get

–
a

b
= –



δ
, (a)

kb = ±
√

δε


, (b)

V =
βδε – 

δ
. (c)
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Substituting Eqs. (a)-(c) and () into Eq. (), we get exact peaked wave solutions of

Eq. (),

u,(x, t) = –


δ
+Ce±

√

δε
 |x+( βδε–

δ )t|, ()

where C is an arbitrary constant.

Similar to Sections  and , by using a Bäcklund transformation, we can get an infinite

sequence of solutions of the generalized Ostrovsky equation. It being a similar process, we

omit it.

7 Application to the generalized ZK-Burgers equation

The generalized ZK-Burgers equation [] reads

ut + αuλux + βuxxx + γ (uyy + uzz) + σuxx = , ()

where α, β , γ , σ , and λ are known constants.

The generalized ZK-Burgers equation retains the strong nonlinear aspects of the gov-

erning equation in many practical transport problems such as nonlinear waves in a

medium with low-frequency pumping or absorption, transport and dispersion of pollu-

tants in rivers, and sediment transport. Wang et al. obtained a solitary wave of the gener-

alized ZK-Burgers equation with a positive fractional power term by using the HBmethod

and with the aid of sub-ODEs [].

In this section, exact traveling wave solutions of the generalized ZK-Burgers equation

are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

u(x, y, z, t) = u(ξ ), ()

with

ξ = k(x + ly + nz +Vt), ()

where k, l, n, and V are constants to be determined later, Eq. () becomes

kVu′ + kαuλu′ + kβu′′′ + kγ
(

l + n
)

u′′′ + kσu′′ = . ()

Suppose that the solution of Eq. () is the solution of Eq. (). Noticing u′ �=  and k �= ,

otherwise we can only get trivial solution. Substituting Eqs. (), (), and () into Eq. (),

we get

ρk
(

ab( –m)( –m)u–m + a( –m)( – m)u–m

+m(m – )cum– + bcm(m + )um– +
(

ac + b
))

+ σk
(

a( –m)u–m +mcum– + b
)

+V + αuλ = , ()
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where

ρ = β + γ
(

l + n
)

. ()

Setting m =  – λ

and c = , Eq. () is reduced to

(

V + ρkb + σkb
)

+

(

(λ + )(λ + )ρkab


+
(λ + )σka



)

u
λ


+

(

α +
(λ + )(λ + )ρka



)

uλ = . ()

Setting each coefficient of uj (j = , λ

,λ) to zero, we get

V + ρkb + σkb = , (a)

(λ + )ka



(

(λ + )ρkb


+ σ

)

= , (b)

α +
(λ + )(λ + )ρka


= . (c)

Solving Eqs. (a)-(c), we get

b =
–σ

kρ(λ + )
, (a)

a = ±


k

√

–α

ρ(λ + λ + )
, (b)

V =
σ (λ + )

ρ(λ + )
. (c)

Substituting Eqs. (a)-(c) and () into Eq. (), we get exact traveling wave solutions

of Eq. (),

u,(x, t) =

(

±
ρ(λ + )

σ

√

–α

ρ(λ + λ + )
+Ce

λσ
ρ(λ+)

(x+ly+nz+( σ
(λ+)

ρ(λ+)
)t)

)

–
λ

, ()

where C, l, and n are arbitrary constants.

Equation () is new type of travelingwave solution of the generalizedZK-Burgers equa-

tion. Especially, if we chooseC = C =
ρ(λ+)

σ

√

–α

ρ(λ+λ+)
, we get the solitary wave solutions

of Eq. (),

u(x, t) =

(



C

(

 – tanh
η



))

λ

, ()

u(x, t) =

(



C

(

– + coth
η



))

λ

, ()

where l, n are arbitrary constants and

η =
λσ

ρ(λ + )

(

x + ly + nz +

(

σ (λ + )

ρ(λ + )

)

t

)

. ()
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If we choose C = C = – ρ(λ+)
σ

√

–α
ρ(λ+λ+)

, we get the solitary wave solutions of Eq. (),

u(x, t) =

(



C

(

– + coth
η



))

λ

, ()

u(x, t) =

(



C

(

 – tanh
η



))

λ

, ()

where l and n are arbitrary constants.

Similar to Sections  and , by using a Bäcklund transformation, we can get an infinite

sequence of solutions of the generalized ZK-Burgers equation. It being a similar process,

we omit it.

8 Comparisons and explanations of the solutions

In this section, the physical interpretation of the results of Sections - are given, respec-

tively. We will compare the Riccati-Bernoulli sub-ODE method with the (G
′

G
)-expansion

method, the first integral method, and so on. Some of our obtained exact solutions are in

the figures represented with the aid of Maple software.

() The Eckhaus equation:

Applying the Riccati-Bernoulli sub-ODEmethod, Eqs. (), (), (), (), and () are

new types of exact traveling wave solutions of the Eckhaus equation. Equations (), (),

(), and (), which are expressed by the hyperbolic functions, are a kind of kink-type

envelope solitary solutions. They could not be obtained by the method presented in Ref.

[]. Equation (), which is expressed by the rational functions, could not be obtained by

the (G
′

G
)-expansion method [] and the first integral method [].

() The nonlinear fractional Klein-Gordon equation:

Applying the Riccati-Bernoulli sub-ODE method and comparing our results with Gol-

mankhaneh’s results [], it is easy to find that uj(x, t) (j = , . . . , ) are new and identical

to results by the first integral method []. uj(x, t) (j = , , , ), which are expressed by the

trigonometric functions, are periodic wave solutions. uj(x, t) (j = ,, , ), which are ex-

pressed by the hyperbolic functions, are a kind of kink-type envelope solitary solutions.

The shape of u = u(x, t) is represented in Figure  with α = 

, β = , γ = , λ = 


, C = 

and l = 

within the interval – ≤ x ≤  and  ≤ t ≤ 


. The shape of u = u(x, t) is rep-

resented in Figure  with α = 

, β = –, γ = , λ = , C = , and l =  within the interval

–≤ x ≤  and  ≤ t ≤ .

() The generalized Ostrovsky equation:

Applying the Riccati-Bernoulli sub-ODE method, it is easy to find that our results are

identical to results presented in Ref. []. u = u,(x, t) are peaked wave solutions of the

generalized Ostrovsky equation. The shape of u = u(x, t) is represented in Figure  with

δ = , β = , ε = , λ = , and C = 


within the interval –≤ x, t ≤ .

() The generalized ZK-Burgers equation:

By applying theRiccati-Bernoulli sub-ODEmethod to the generalizedZK-Burgers equa-

tion, we find that if λ is a positive fraction, our results degenerate to the results of Ref.

[]. Moreover, we enlarge the value range of parameters λ of the generalized ZK-Burgers

equation so that the parameter λ can be an arbitrary constant (λ �= –,–,–). uj(x, t)

(j = , . . . , ) are exact traveling wave solutions of the generalized ZK-Burgers equation.
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Figure 1 Graph of solution u = u1(x, t) of the nonlinear fractional Klein-Gordon equation for α = 1
90
,

β = 1, γ = 1, λ = 9
5
, C = 0, and l = 3

2
. The left figure shows the 3-D plot and the right figure shows the 2-D

plot for t = 0.

Figure 2 Graph of solution u = u5(x, t) of the nonlinear fractional Klein-Gordon equation for α = 1
5
,

β = –1, γ = 1, λ = 2, C = 0, and l = 1. The left figure shows the 3-D plot and the right figure shows the 2-D

plot for t = 0.

uj(x, t) (j = ,, , ), which are expressed by the hyperbolic functions, are a kind of kink-

type envelope solitary solutions. The shape of u = u(x, t) is represented in Figure  with

α = β = γ = l = n = y = z = , λ = –
√
 and σ =  within the interval –≤ x, t ≤ .

Moreover, by using a Bäcklund transformation, we can get an infinite sequence of solu-

tions of these NLPDEs which cannot be obtained by the (G
′

G
)-expansion method and the

first integralmethod. The graphical demonstrations of some obtained solutions are shown

in Figures -.

9 Conclusions

The Riccati-Bernoulli sub-ODE method is successfully used to establish exact traveling

wave solutions, solitarywave solutions and peakedwave solutions ofNLPDEs. ABäcklund

transformation of the Riccati-Bernoulli equation is given. By applying a Bäcklund transfor-
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Figure 3 Graph of solution u = u5(x, t) of the generalized Ostrovsky equation for δ = 6, β = 6, ε = 1,

λ = 2, and C = 1
10
. The left figure shows the 3-D plot and the right figure shows the 2-D plot for t = 0.

Figure 4 Graph of solution u = u5(x, t) of the generalized ZK-Burgers equation for

α = β = γ = l = n = y = z = 1, λ = –
√

2, and σ = 2. The left figure shows the 3-D plot and the right figure

shows the 2-D plot for t = 3.

mation of the Riccati-Bernoulli equation to the NLPDEs, an infinite sequence of solutions

of the NLPDEs is obtained. The Eckhaus equation, the nonlinear fractional Klein-Gordon

equation, the generalized Ostrovsky equation, and the generalized ZK-Burgers equation

are chosen to illustrate the validity of the Riccati-Bernoulli sub-ODEmethod. Many well-

knownNLPDEs can be handled by this method. The performance of this method is found

to be simple and efficient. The availability of computer systems like Maple facilitates the

tedious algebraic calculations. The Riccati-Bernoulli sub-ODE method is also a standard

and computable method, which allows us to perform complicated and tedious algebraic

calculations.

It is well known that it is difficult to propose an uniform analytical method for all types

of the NLPDEs, and the Riccati-Bernoulli sub-ODEmethod is no exception. Similar to the

first integral method, the (G
′

G
)-expansion method and the homogeneous balance method,
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the Riccati-Bernoulli sub-ODE method is used to obtain exact solutions of the form of

Eq. (). Constructing more powerful sub-ODE and Bäcklund transformations is future

work and aims to search for exact solutions of NLPDEs
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