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A RIEMANNIAN GEOMETRIC INVARIANT AND ITS
APPLICATIONS TO A PROBLEM OF BOREL AND SERRE

BANG-YEN CHEN AND TADASHI NAGANO

ABSTRACT. A new geometric invariant will be introduced, studied and de-
termined on compact symmetric spaces.

Introduction. We will introduce a new invariant on Riemannian manifolds,
which is especially interesting on compact symmetric spaces, and we will determine
the invariant for the compact symmetric spaces, thus amplifying the announcement
[CN1].

A symmetric space M is defined with the point symmetry sx at every point x of
M. Our new invariant, denoted by #jM, may be defined as the maximal possible
cardinality #A2 of a subset A2 of M such that the point symmetry sx fixes every
point of A2 for every x in A2. "The 2-number" #2Af is finite. #2M is clearly equal
to 1 if M is not compact (but connected and simple). We thus consider compact
spaces M only. When M is connected, the definition is equivalent to say that #2M
is the maximal possible cardinality #A2 of a subset A2 of M such that for every
pair of points, x and y, of A2 there exists a closed geodesic of M on which x and y
are antipodal to each other. Thus the invariant could be defined on any connected
Riemannian manifold.

It is easy to see (1.4) that the geometric invariant #2M is a new obstruction to
the existence of a totally geodesic embeddings /: N —> M, since the existence of /
clearly implies the inequality #2./V < #2M. For example, while the complex Grass-
mann manifold G2(C4) of the 2-dimensional subspaces of the complex vector space
C4 is obviously embedded into Gs(C6) as a totally submanifold, the space G2(C4)*
which one obtains by identifying every member of G2(C4) with its orthogonal com-
plement in C4, however, cannot be totally geodesically embedded into G3(C6)*,
because #2G2(C4)* = 15 > 12 = #2G3(C6)* according to (6.4). The 2-number
is not an obstruction to a topological embedding; for instance, the real projective
space Gy(Rn) can be topologically embedded in a sufficiently high dimensional
sphere, but the 2-number #2Gy(Rn) = n (> 2) simply prohibits a totally geodesic
embedding into any sphere whose 2-number is 2 regardless of dimension.

Nevertheless, the invariant, #2M, has certain bearings on the topology of M in
other aspects; for instance, #2M equals xM, the Euler number of M, if Af is a
semisimple hermitian symmetric space (4.3); (in particular, one thus has xM > X-B
for every hermitian subspace B of a semisimple hermitian symmetric space M). And
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274 BANG-YEN CHEN AND TADASHI NAGANO

in general one has the inequality #2M > xM for any compact connected symmetric
space M (4.1). To quote another example, let us mention a joint work of Borel and
Serre [BS], from which our present work has originated. They considered the 2-
rank, r2 (and p-rank for any prime number p) of a compact connected Lie group
G, which is by definition the maximal possible rank of the elementary 2-subgroup,
Z2 x • • • x Z2, of G. They proved: (i) the (usual) rank r <r2 < 2r; and (ii) G has
(topological) 2-torsion if r < r2. Now G is a symmetric space, and it turns out (1.3)
that #2G is a power of 2, in fact the r2th power of 2. Our invariant generalizes
their 2-rank in this sense, and their first estimate r <r2 generalizes to 2T < #2M;
see (1.9) for the second one. We do not have a generalization of (ii), but let us
add that Takeuchi at Osaka proved #2(M) = dimH(M;Z2) for any symmetric
i?-space M in a personal communication; this formula is actually correct for every
space we could check.

The full significance of our invariant is yet to be known, but we would like to
mention briefly that the combinatorial geometry in the recent work of Gelfand-
Goresky-MacPherson-Serganova (preprint) can be well understood with our invari-
ant, or the maximal antipodal set A2, together with Chow's arithmetic distance
[N]. There are several properties we believe are true and we cannot prove; for in-
stance, the Euler number x(M) = #2(Af) (mod2) for every compact connected
symmetric space M.

In this paper we assume a good knowledge of [H] on symmetric spaces on the
part of the reader. In actual calculation of individual spaces, we need the fixed point
sets of involutions on symmetric spaces. The reader may find it in the Appendix
at the end of the paper.

GLOSSARY OF NOTATIONS. (I) Symmetric spaces. We use standard symbols
(as in [H]) to denote symmetric spaces, mostly. Here are a few minor exceptions.
More specifically than AI, AI(n) denotes SU(n)/SO(n), AII(n) := SU(2n)/Sp(n),
etc. Gd(Rn), Gd(Cn) and Gd(Hn) are the Grassmann manifolds of d-dimensional
subspaces in the real, complex and quaternion vector spaces (or modules), respec-
tively. Sometimes we write Gd(n) for all these Grassmannians less specifically, when
a statement with it is valid for all of them. G°d(Rn) denotes the Grassmann manifold
of the oriented d-dimensional subspaces of Rn. M~ and M* denote the univer-
sal covering space and the bottom space (the adjoint space in [H]. See 3.1a) of the
space M. M/Zp denotes the space of which M is a covering space with the covering
transformation group Zp, the cyclic group of order p (if there is no ambiguity). The
standard notations for the exceptional spaces such as G2, F4, E&,..., GI,..., EIX
denote the 1-connected spaces, where we write GI for G2/SO(4). Groups D[A] and
Q[S] are defined in 1.5.

(II) Matrices. Im is the diagonal and orthogonal matrix whose first m diagonal
entries are —1 and the other diagonal entries are 1. /c [resp. t] denotes the mapping
which carries a matrix in U(n) into its complex conjugate [resp. inverse]. The
symbol 1 also denotes the mapping which carries a member of a group into its
inverse. Let (ey,... ,en) be a fixed orthonormal basis for the metric cartesian space
C" (and Rn). In case n = 2n' is even, J or Jn> denotes "the complex structure",
J2 = —1, such that J(ei) = £t+n'i 1 < i < n', while K or Kni denotes the
involution (K2 = 1) satisfying the same equalities K(et) = ei+n> for i = 1,... ,m.
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A RIEMANNIAN GEOMETRIC INVARIANT 275

1. Symmetric spaces and #2M. We introduce basic concepts, followed by
examples and comments. Let M be a compact (Riemannian) symmetric space (see
[H]); thus there is a symmetry sx of M at each point x of M, such that x is isolated
in the fixed point set, F(sx,M), of sx. There is a Riemannian metric g for which all
the symmetries are isometries. We fix g for convenience, although g is not unique.
A smooth map /: X —> Y of a symmetric space X into another is called a morphism
if / commutes with the symmetries; s/(x) ° / = / ° sx for x in X (cf. [N]).

A discrete manifold E becomes a symmetric space by choosing the identity map
as the symmetry at every point. We call £ a trivial symmetric space.

DEFINITIONS 1.1. #2M, the 2-number of M, is the supremum of the cardi-
nalities, #£, of the finite trivial spaces £ which admit monomorphisms into M.
In other words, #2M is the supremum of the cardinalities of the subsets A2 of M
such that sx fixes every point of A2 for every point x of A2. Such a subset A2 is
called an antipodal set in M. For brevity, we call an antipodal set in M great if its
cardinality equals #2M. The great ones are not unique up to congruence.

REMARK 1.2. #2M is finite, since every x is isolated in F(sx,M).
REMARK 1.3. If M is a compact Lie group, then #2M is closely related to

the 2-rank of M, [BS and Q]. We will explain this. A compact Lie group M
becomes a symmetric space by assigning sx(y) := xy~lx to every point x. The
automorphism group Aut(M) of the space M contains the left translation group,
and hence Aut(M) is transitive on M. In finding #2M, we may therefore assume
that a maximal antipodal set A2 in M contains the unit element 1. First observe
that the fixed point set F(sy,M) consists of the members of order 1 or 2. Thus we
have sx(y) = y for two members x, y of A2 if and only if xy = yx. Also observe
that this implies that the maximal A2 is a subgroup. Moreover A2 is an elementary
abelian 2-subgroup = (Z2)', a 2-subgroup for short. The largest possible value of
t is by definition the 2-rank of M, we denote it by r2(M). In particular #2M is
a power of 2 for a group M. It is known [B2] that the cohomology of M has no
2-torsion if and only if every antipodal subgroup A2 is contained in some torus in
M, provided M is connected. Furthermore [B2], if the group M is 1-connected and
M does have a 2-torsion, then M contains an antipodal group of rank 3 which no
torus of M contains.

REMARK 1.4. The 2-number gives an obstruction to the existence of a mono-
morphism f:M'—*M. In fact if / exists, it follows immediately from the defini-
tions that / carries every antipodal set in M' onto an antipodal set in M and hence
one has #2M' < #2M necessarily. The 2-number also gives a necessary condition
for totally geodesic embeddings (see 2.1).

EXAMPLES 1.5. We denote by D[4] the dihedral group of order 8, or the
automorphism group of a square in the plane. Thus D[4] is generated, say, by the
reflections in the x-axis and the line y = x in the Euclidean plane. Clearly #2Z)[4] =
4. Let Q[8] denote the quaternion group, generated, by i and j in the group of the
nonzero quaternions, where i and j together with k form a standard basis for the
pure quaternions. One has #2Q[8] = 2. Their commutator subgroups have the
2-numbers both equal to 4. These groups will be useful later (5.15 among others)
because of the following characterizations. If a group contains two distinct members
a, b satisfying a2 = 1, b2 = 1 (resp. a2 = —1, b2 = -1 = an involutive member
in the center) and the commutator [a, b] = —1, then a and b generate a subgroup
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which is isomorphic with D[4] (resp. Q[8]).  Later, we will use representations of
these groups, in which —1 will act on the vector spaces as —1.

EXAMPLES 1.6. The sphere has #25n = 2 obviously. The r-dimensional torus
Tr has #2Tr = 2r by the next lemma.

LEMMA 1.7. We have #2(Mx7V) = (#2M)(#27V) for the product of compact
symmetric spaces M and N.

PROOF. The symmetry at (x,y) in M x N carries a point (u,v) into (sxu,syv).
Hence F(s>XiV),M x N) = F(sx,M) x F(sy,N).   D

If A2 is a great antipodal set in M, then A2 is contained in the subspace F(s0, M)
for any point o in A2 and therefore #2Af = #2F(s0, M) by 1.4. Compare this with
Proposition 1.9 below, however.

DEFINITION 1.8. A polar of o in M is a connected component ^ {o} of F(s0,M)
and is denoted by M+, M+(p) or M+(p;o) if it contains p in it. Every polar is a
subspace.

PROPOSITION 1.9. #2M - 1 does not exceed the sum of the 2-numbers of all
the polars of a point in M; #2M — 1 < £#2M+.

PROOF. Let A2 be a great antipodal set in M. Let o be a point of A2. Then A2
is a subspace of F(s0, M), of which {o} is a connected component. The intersection
of A2 with each polar M+ is antipodal in it. And the inequality is proven.     □

REMARK 1.10. The equality in 1.9 holds in many cases (such as the groups
Sp(n) and O(n) and the hermitian symmetric spaces) and does not in the other
cases (such as the adjoint group SU(8)* of SU(8)). See (2.10) through (2.12) and
(3.13) for a few more examples. It is an interesting problem to determine exactly
when the equality in 1.9 is valid.

2. Connected spaces and the 2-number. From now on, we assume that the
compact symmetric space M is connected. We will relate basic concepts introduced
in the previous section to Riemannian geometry. In particular, we will use the next
lemma to characterize the antipodal sets geometrically.

LEMMA 2.1. A smooth map f: M —► M" is a morphism if and only if f is
totally geodesic.

PROOF. Assume that / is totally geodesic, that is, / carries the geodesies in
M into geodesies in M" preserving the affine parameters. Then / is a linear map
with respect to normal coordinate systems centered at any point x of M and at
f(x) in M". Since sx and sj'x) are -1 times the identity in these coordinates,
we have / o sx = Sf'x) o f on the coordinate neighborhood. This equality is valid
globally on M, since M is connected and complete. Therefore / is a morphism.
Conversely, assume that / is a morphism. First we consider the case where dim M
is one and M is not necessarily compact. Then M is an abelian group with the
symmetries in (1.3) and the identity map 1m is an affine parameter. Since / is a
morphism, the image f(M) is stabilized by the symmetry Sf(x) at every point /(x)
of f(M). In particular s/(x) fixes the first normal vector (the covariant derivative
of the tangent vector to the curve /), fN. Thus fN = 0, since Sftx) is —1 on the
tangent space Tj^M". Therefore f(M) is a geodesic. Moreover / preserves the
affine parameter, since / is a morphism. In the general case of dimM > 1, the
above argument easily shows that / is totally geodesic.    □
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COROLLARY 2.2. The automorphism group of M contains the isometry group
I(M,g), which in turn contains the symmetries.

REMARK 2.3. The identity component of I(M, g), denoted by G, Gm or G(M),
is then transitive on M. Hence we may assume that an antipodal set A2 in consid-
eration contains a chosen point o whenever convenient. G is actually independent
of g.

PROPOSITION 2.4. A subset A2 of a connected symmetric space M is antipodal
if and only if any pair of points in A2 are antipodal points on some circle T = S1
(which is of course a subspace and hence a geodesic).

PROOF. The crucial point is to show that every morphism of the trivial space
{a, b} of two points into a connected space M extends to a morphism from a circle
T. Now take any pair of points, {o,p}, in A2. Then there is a maximal torus A in
M which contains the two points o, p. The pair {o, p} is antipodal in A obviously.
Thus o, p are antipodal points on a circle T in A (and hence in M). The converse
is easy.    D

REMARK 2.5. Proposition 2.4 suggests that the 2-number can be defined and
studied for any compact connected Riemannian manifold. But we will not pursue
it in this paper.

REMARK 2.6. (2.4) also shows that the concept of the polar, M+(p), is the
same as that of M+ (p) in [CN]. The polars have been completely determined for
every connected irreducible symmetric space in [CN and N]. We will list the results
in the appendix, since we will need them in later sections. To illustrate a geometric
meaning of polars, let us notice that a (complete) geodesic passing through o is
closed if and only if it meets a polar of o.

PROPOSITION 2.7.   We have 2r(M) < #2M, where r(M) is the rank of M.

PROOF. Immediate from (1.4) and (1.6).    □
DEFINITION 2.8. Cartan's quadratic morphism Q = Q0: M —► G carries a

point x into sxs0. Q is a G-equivariant morphism which is an immersion, where, in
the action of G on itself, b e G caries c E.G into bca(b)_1. The points ^ o mapped
to the identity are called the poles of o in M. The poles are polars.

PROPOSITION 2.9. The following 6 conditions are equivalent to each other for
two distinct points o,p of a connected space M. (i) p is a pole of o in M; (ii)
sp = $o', (iii) {p} is a polar of o in M; (iv) there is a double covering morphism
"" — n{o,p} '■ M —► M" with 7r(p) = 7r(o); (v) p is a point in the orbit F(a,G)(o) of
the group F(a,G) through o, a := ad(s0), and (vi) the isotropy subgroup of SG atp
is that, SK, of SG at o, where SG is the group generated by G and the symmetries;
SG/G is a group of order < 2.

PROOF. That (i)o-(ii) is immediate from the definition. (ii)=>(iii), since p is
isolated in F(sp,M) = F(s0,M), and vice versa; (ii)o(iii). Recall every covering
morphism of a symmetric space is regular and its covering transformation group is
abelian. In particular, Q: M —> Q(M) is the projection of M onto the orbit space of
the covering transformation group T C I(M). Now assume (i). Then some member
7 of T carries o into p. On the other hand, G contains an involutive member c which
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carries o into p as well. Since T centralizes G, we see 7p = 7c(o) = cy(o) = c(p) =
c2(o) = o. Therefore the free transformation 7 is involutive. And we conclude (iv)
by choosing M" := M/{1,7}, the orbit space; thus (i)=>(iv). In passing, we note
that we may assume a(c) = c_1 (= c). And (iv) implies (v). Assume (v); that is,
p = c(o) for some c in G which is fixed by a. Then sp = sc(0) = cSqC-1 = s0 by
a(c) = c. Thus (v)=>(ii), and hence (i)<=^(ii)<^(iii)<=^(iv)o(v). We will conclude (vi)
from these equivalent conditions. Since Q is G-equivariant, the isotropy subgroup
K acts on M". K fixes o" := rr(o) on M". Hence K stabilizes {o,p} = 7r_1(o") on
M. Since K fixes o, K therefore fixes p, and (vi) is proven. Finally assume (vi).
Then s0 6 SK fixes p and the polar SK(p) is a singleton {p}. (Recall from [CN]
that the SA'-orbit through a point fixed by s0 is a polar.) Thus we have (iii). The
proof of the proposition is now complete.    □

As a simple application of the concept of the pole, we will prove the next propo-
sition concerning the equality in 1.9.

PROPOSITION 2.10. The equality #2M - 1 = £#2M+ holds in 1.9 if all but
one of the polars of o in M are poles.

PROOF. The equality is valid if the symmetry sx at every point x in every polar
M+(p) of o is the identity on every other polar, since the disjoint union of {0} and
great antipodal sets in the polars, chosen one from each polar, will be a great one
in M. Lemma 2.9 says that this condition is satisfied.     □

EXAMPLE 2.11. A projective space of "dimension" n has #2M = n+1; namely,
Gy(Rn+1), Gy(Cn+1) and Gy(Hn+1) have #2 = n, and #2(FII) = 1 + #2(S8) = 3.

EXAMPLE 2.12. #2EIV = 1 + #2FII = 4 by (2.10) and (2.11), since FII is the
only polar in EIV.

REMARK 2.13. Let 0 and p be points in an antipodal set A2 in M. Then
A2 is contained in the fixed point set F(Q(p),M) obviously. Thus, if A2 is great,
then one has #2M = #2F(Q(p),M). The point p lies in a polar M+(p) of 0 in
M. The orthogonal space M~(p) to M+(p) at p is by definition the connected
subspace whose tangent space at p is the orthogonal complement of the tangent
space to M+(p) in TP(M). M~(p) is the connected component of F(Q(p),M)
through p. One has M~(p) = F(Q(p),M) if M is a 1-connected group, as is well
known. Thus, if A2 is a great antipodal subgroup of a 1-connected group M and
if A2 meets M+(p), then the 2-rank of M equals that of the subgroup M~(p).
In particular, it equals the 2-rank of at least one of the subgroups which are the
orthogonal spaces to the polars in M. This easy fact will be used in later sections.

LEMMA 2.14. Every maximal torus A of a connected symmetric space M meets
every polar of a point 0 in A.

PROOF. A point of a polar of o is its polar in a circle passing through it and
o. A member of the isotropy subgroup K at o carries the circle into A (as is well
known [H]). And K stabilizes every polar [CN].    □

REMARK 2.15. A maximal or even great antipodal set A2 does not necessarily
meet every polar of a point in it, however.

3. Covering maps and #2M.

PROPOSITION 3.1. One has #2M' = #2M, if there exists a k-fold covering
morphism f: M' —» M and k is odd.
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PROOF. Since the fundamental groups of all the compact symmetric spaces are
abelian, the structure group of the fibration / is the covering transformation group
T and we assume that T is a cyclic group of order k and that k is prime. Then
the fibre f~l(x) of each point x of M is contained in a circle c. In particular no
two points in /_1(x) are antipodal to each other, since k is odd. This implies
#2M' < #2M; in fact an antipodal set A2 in M' projects onto an antipodal set
A2 in M under / which certainly carries circles onto circles and moreover the
restriction of / to A2 is injective as we have just seen. For the converse or the
opposite inequality, we first consider two points x, y in a given antipodal set A2 in
M. We wish to show that a lift x' € /_1(x) of x is antipodal to exactly one lift y' of
y. Let c be a circle in M' which contains /_1(x) in it. Then sx* stabilizes c, since sx
fixes y = f(y') and stabilizes the circle foe which passes through y. If sxi reverses
the orientation of c, then 8X> fixes exactly one point in f~l(y) C c, since fc is odd. If
sx> preserves it on the contrary, then sx> is the identity on c, which is impossible for
the following reason. The circle c is then contained in a polar M'+(y') of x' in M'.
On the other hand, the orthogonal space M'~(y') is a fc-fold covering space of the
projection M~(y) under /, since the orthogonal spaces to the polars contain the
maximal tori in the whole space in general. Thus there is a circle d in M'~ (y1) which
contains /_1(y). Then d is contained in M'+(y') according to the above, which is
absurd, since M'~(y') is orthogonal to M'+(y') at y'. Therefore sx< fixes exactly
one point in f_1(y) if f(x') and y' sit in A2. Finally let x, y, z be points in A2 and
assume that a lift x' of x is antipodal to y' and to z', f(y') = y and f(z') = z. It
remains to show that y' is antipodal to z'. We have syiz' = 70' for some covering
transformation 7 G T. Thus sx>iz' = sx>sy'z' = sy'Sxiz' = syiz' = 72'. Since
sxiz' = z', this gives 72' = z' by uniqueness, that is, syiz' = 72'. Therefore some
antipodal set A'2 in M' projects onto the given antipodal set A2 in M under /.    □

DEFINITION 3.1a. Every local isomorphism class of connected semisimple sym-
metric spaces contains a unique space M* of which every other space in the class
is a covering space. We call M* the bottom space in the class or that of any space
in it. (M* is called the adjoint space in [H].)

COROLLARY 3.2. #2M depends only on the local class of M if M is one of
the spaces, SU(fc), AI(fc), All(fc), Eq,E1 and EIV, where fc is odd.

PROOF. The fundamental groups of the bottom spaces M* have odd orders.    □
Because of 3.1, we will concentrate on double covering morphisms tt: M —► M".

There is a pole p of o in M which goes to ir(o) = ir(p) under n. In passing to M",
the polar {p} is lost and new ones are created; the next definition of the centrosome
(a term borrowed from biology) may be used to articulate this situation.

DEFINITION 3.3. The centrosome C(o,p) = C(o,p;M) for the pair (o,p) of
a point o and its pole p in M is the subset consisting of the midpoints x of the
geodesies from o to p.

In other words, C(o,p) is the complement 7r_1 (F(s0»,M"))\F(s0,M), where
o" = 7r(o). Hence C(o,p) is a subspace, which may be disconnected. We will
establish its basic properties.

PROPOSITION 3.4. The following 5 conditions are equivalent to each other for
any two distinct points o,q in M: (i) s0sq = sqs0; (ii) Q(q)2 = 1m', (iii) either s0
fixes q or q is a point in the controsome C(o,p) for some pole p of 0; (iv) either
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so(q) = q or s0(q) = 7(g) for the covering transformation 7 for some pole p = 7(0)
of o (see 2.9); and (v) either s0(q) = q or there is a double covering morphism ir:
M —> M" such that s0» fixes q" where o" = n(o) and q" = rr(q).

PROOF. That (i)o(ii) is immediate from Definition 2.8. We may assume s0(q) ^
q, since otherwise all the 5 conditions are satisfied. We have sq(o) ^ o too. Assume
(i). Then the symmetry at p := sg(o) is s0, since sq is an automorphism of M.
Therefore p is a pole of o by 2.9 and p ^ 0. For any geodesic arc c from q to o,
q is the midpoint of the geodesic arc c U sq(c) joining o and p. Hence (i)=>(iii).
Assume (iii). Extend c to a circle T. Project T into M" under the double covering
morphism rr which corresponds to the pair (o,p) by 2.9. The image is a circle. In
other words, the restriction of 7r to T is also a double covering morphism. Therefore
7 stabilizes T. Now it is obvious that 7(g) is s0(q), showing (iii)=>(iv). (v) follows
from (iv) easily. Finally assume (v). Then o" and q" are antipodal points on a
circle T" in M". Its lift Tin Af passes through o and q. The antipodal point p of
o in T is a pole of 0 in M by 2.9. Thus Q(q) is the antipodal point of Q(o) = 1 on
the circle Q(T), which is contained in the group G. Therefore Q(q) is involutive
(see 1.3), and we have (ii).    □

PROPOSITION 3.5. The equality is valid in 1.9, if there are exactly two polars of
positive dimensions and if they project onto a single polar under a double covering
morphism.

PROOF. Let 7 be the corresponding covering morphism. Let A2 be an antipodal
set in M+, a polar of o with dimM+ > 0. Consider the union U of {0}, {the poles
of o}, A2 and 7(A2). We will show that U is antipodal in M. 7(A2) is antipodal
in the polar ~/(M+), since 7 is an automorphism of M. A2 U 7(A2) is antipodal in
M, since sx(^(y)) = ^sx(y) = 71/ for points x, y in A2. Thus U is antipodal by the
property (ii) in (2.9). Hence we have the opposite inequality #2M — 1 > # {the
poles of 0} +2#2M+, which proves the proposition together with 1.9.    □

EXAMPLE 3.6. The group E7 fits 3.5 with M+ = EVI and a single pole. Thus
#2£7 = 2(1 + #2EVI). Similarly #2EV = 2(1 + G4(G8)*). Also #2EVII =
2(1 + #2EIII).

PROPOSITION 3.7. If M is a double covering space of M", then we have
#2M < 2#2M". (The equality is true in case M is SO(2m), 2m > 4; see 5.12.)

PROOF. Let A2 be a maximal antipodal set in M. The union A2 U 7(A2) is
also antipodal, where 7 is the covering transformation for the covering morphism
7r: M —> M". That is, 7 stabilizes A2. 7r(A2) is antipodal in M". Therefore
#(A2) = 2#(ttA2) < 2#2M".    O

DEFINITION AND NOTATION 3.8. Suppose a finite group T is acting on two
spaces M and N freely as automorphism groups. Then T acts on the product space
M x N freely. And the orbit space (M x N)/T is called the dot product of M and
AT (with respect to T) and denoted by M • TV. In most cases T will be the group
of order two acting on M and N as the covering transformation groups for double
covering morphisms in the sequel. V will not be mentioned in that case, if T is
obvious or if T need not be specified.

EXAMPLES 3.8a. SO(4) = S3 ■ S3, U(n) = T • SU(n) and GI has the only polar
S2 ■ S2. Here T for U(n) is the center of SU(n), a cyclic group of order n.
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PROPOSITION 3.9. The dot product for double coverings M —> M" and TV —►
TV" has these properties: (i) #2M < #2(M • TV);

(ii) the fixed point set F(sz, M ■ TV) = F(s0, M) ■ F(sp, TV) U CM ■ CN for every
point z = 7r(o,p) of M ■ TV; and hence

(iii) #2(M-TV) <#2(F(s0,M)-F(sp,N)) + #2(CM-CN), where CM andCN
are the centrosomes for the point o of M and its pole and for p of TV and its pole.
Moreover,

(iv) i(#2(M))(#2(TV)) < #2(M-TV) < 2(#2(M"))(#2(TV")).

PROOF. Since the monomorphism: M —» M x TV: x i-» (x,p) induces a
monomorphism: M —* M • A, we obtain (i) by 1.4. To prove (ii), we denote
by ir the projection: M x TV —* M ■ TV. Set z = ir(o,p). Then sz fixes ir(x,y) in
Af ■ TV if and only if (s0(x),sp(y)) is (x,y) or (72,73/), where the single letter 7
denotes the double covering transformations on M and TV. The second case occurs
if and only if (x,y) is a point of CM x CN by 3.4. We have (ii). (iii) is a con-
sequence of (ii). (iv) follows from 3.7 and 1.7 immediately, since the projection:
M x N —> M" x TV" is factored through tt.    □

COROLLARY 3.10. #2(Sn • M) < #2M + #2(Sn_1 • CM), where CM is a
centrosome as in 3.9.

COROLLARY 3.11.   #2M < #2(SX ■ M) < #2M + #2CM < 2#2M.

PROPOSITION 3.12.   #2(5m -5") = 2(n + l) ifm>n.

PROOF. We induct on n. If n = 0 or (m,n) = (1,1), we have the equality by
1.6. If m > 1 and n > 1, then we have #2(S'm ■ Sn) = 2 + #2(Sm_1 • Sn_1) by
2.10.    □

EXAMPLES 3.13. By 3.12, 2.10 and 3.9, one obtains #2(GI) = l-r-#2(S2-S2) =
7. Similarly and by this, #2G2 = 1 + #2(GI) = 8.

LEMMA 3.14. // a compact connected Lie group G has a pole, then(i) #2(TG)
equals either #2G or 2#2G, where T is the circle U(l). (ii) And in the second case
the centrosome CG has the 2-number = #2G.

PROOF. We have #2G < #2(T-G) < 2#2G by 3.9 and 3.11. But #2(TG) is a
power of 2, since T ■ G is a group too. We have (i). Also (ii) follows from 3.11.    D

REMARK 3.15. Similarly one obtains an estimate of #2(Sp(l) -G); see 8.1.

4. The Euler number x(M) and #2M.

THEOREM 4.1. The Euler number x(M) < #2M for every compact connected
symmetric space M.

PROOF. M is a homogeneous space G/K; see 2.3 for G. We may assume
x(M) > 0, since otherwise the inequality is trivial. Thus G is semisimple and the
rank r(K) = r(G) by a theorem of Hopf and Samelson [HS]. A maximal torus A
of K is that of G. Take a vector field v which generates a dense subgroup of A; v
is a member of the Lie algebra of G naturally. Let V be the set of the points of M
at which v vanishes. V is clearly the fixed point set of A acting on M, F(A,M).
Let x be a point in V. Then x is fixed by A. Since A is a maximal torus in G,
A does not fix any nonzero tangent vector at x; V is a finite set, in particular.
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Also the action of v on the tangent space at x (by the covariant derivative Vw) is
nondegenerate (that is, det(Vv) ^ 0 at x). Therefore x(M) < #V = #F(A,M)
by Hopf's theorem, where # denotes the cardinality. The rank condition is known
to imply that the symmetries lie in G. Therefore the symmetry sx at x belongs to
A, since it centralizes A. Thus F(A, M) is antipodal.     □

REMARK 4.1a. Actually the equality obtains in the above: x(M) = #F(A,M),
since the action of A on the tangent space to M at each point x in F(A, M) is the
product of two dimensional rotations, or more precisely the tangent space may be
thought of as the direct sum of root spaces with respect to A, and hence det(Vu) > 0
at x, that is, each point contributes +1(= the index in Hopf's theorem) to the Euler
number.

PROPOSITION 4.2. Assume the rank r(M) = r(G). Then one has #2M >
x(M) + 2r(M> if M = G/K has no pole or if some polar M+ has the same rank
r(M).

PROOF. Let A be a maximal torus in M. Then A contains an antipodal set A'
of cardinality 2r'M' by 1.6. Thus we may assume x(Af) > 0. And we are in the
situation of the previous proof of 4.2, which we will use freely. First we consider
the case in which M has no pole. F(Q(A), M) is then antipodal in M, where Q is
defined with a point o in A' (see 2.8), since Q(A) is a maximal torus in G. Obviously
A' is disjoint from F(Q(A), M). We have to show that the union A'l)F(Q(A), M) is
antipodal too. Let p be a point of F(Q(A), M). Then Q(A) contains the symmetry
sp. We have sp = Q(q) for some point q in A. Since the symmetry Q(q) is involutive,
sq commutes with s0 by 3.4. Therefore sp = Q(q) = sqs0 commutes with s0. Since
sp commutes with every member Q(t) = sts0 of Q(A), sp commutes with st for
every point t of A. Hence sp fixes every point t of A by 3.4, since M has no pole.
This means {p, t} is antipodal. Now we assume that some polar M+ of o has the
same rank r(M) as M. Let A be a maximal torus in K, the isotropy subgroup
of G at o. Since maximal tori are conjugate to each other, the orbit A(p) has the
maximal dimension = r(M) for some point p in M+ which is a A"-orbit (see [CN]).
Since s0 is the identity on M+, s0 fixes every point of A(p). This is true for an
arbitrary point x in F(A,M), as we are about to prove. On one hand sx is an
involutive member of A, since sx centralizes A. On the other hand an involutive
member of A fixes p, since the symmetry sp at p stabilizes A and carries every
member b into b~l by the assumption. Since A is abelian, it follows that sx fixes
every point of A(p). Thus every antipodal set A' in A(p) extends to an antipodal
set A' U F(A, M) in M, which is of course a disjoint union.    □

REMARK 4.2a. For example, let M be CI(n)*. Then the inequality holds good for
n = 2 or 4, but the equality is valid for any other n; see 6.5. The second half applies
to G^m(R8m) and G4m(R8m); but the equality does not hold for G4m(R8m); see
6.1.

REMARK 4.2b. Picking up one of the assumptions in 4.2, we can derive a con-
clusion of some use; if there is a polar M+ of o having r(M+) = r(M) =: r, then
#2M > 2r. In fact, M+ contains a maximal torus A of dimension r, which contains
an antipodal set A2 of #A = 2r, and we can add {o} to A2. For example, Spin(n)
with n = 8m or 8m + 1 has the polar G4m(Rn). Therefore the 2-rank of Spin(n)
is greater than the rank Am (see 7.6).
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THEOREM 4.3. One has #2M = x(M) = 1 +£#2M+ (the equality in 1.9), if
M is a hermitian symmetric space of semisimple type.

PROOF. It is known that the Euler number x(M) is then positive and all
the members of G (see 2.3) are holomorphic transformations of M. Hence 4.1
applies. Since the symmetries belong to G as another consequence, all the polars are
hermitian; so we can make an induction argument. Since the symmetries are thus
homotopic to the identity 1m, we have x(M) = 1 + T,x(M+), say, by the Lefschetz
fixed point theorem in the version of Atiyah and Singer [AS]. In view of 1.9 and
the above, we have only to show that every polar (^ point) is of semisimple type.
Let p be a point in a polar M+ of o. Let M~ be the orthogonal space (2.13. See
[CN] for properties of Af-). Hence the isotropy subgroup of G(M~) at p coincides
with the one at o by 2.9. In particular the center C of K, the isotropy subgroup of
G at o, fixes the point p, since G clearly stabilizes the complex submanifold M~.
Therefore C acts trivially on M+, since M+ is a if-orbit (see [CN]). We conclude
that M+ is of semisimple type, now that M+ is an orbit of the semisimple part of
K.    U

COROLLARY 4.4. If a compact connected hermitian symmetric space M is a
subspace of another compact connected hermitian symmetric space N, then one has
X(M)<X(N).

5. Classical groups. We will determine the 2-numbers #2 for individual
spaces. In this section, we take a look at classical groups. Some of the results
(for U(n),SO(n) and Sp(n)) are found in [BSe].

NOTATION 5.1. If M is a group, r2(M) denotes the 2-rank of M (see 1.3).

PROPOSITION 5.2. Let U(n)/Zp by the quotient group of the unitary group
U(n) by the cyclic normal subgroup Zp of order p. Then r2(U(n)/Zp) is n + 1 if u
is even and n = 2 or 4; and it is = n otherwise.

PROOF. We write M for U(n) and M" for U(n)/Zp in the proof, which will take
a few lemmas. Our method is to use linear algebra. Let tt denote the projection:
M —> M". Let B be the inverse image 7r-1(A2) of a maximal antipodal subgroup
A2 in M" under rr. We identify the circle group U(l) = {z GC: \z\ = 1} with the
center of U(n). We fix a primitive 2pth root of 1 and call it 0 S U(l).

Lemma 5.3. 9B = B.
PROOF. First note that 02B = B obviously. If a,b are members of B, then

ir(0a)2 = Tr(0)2Tr(a)2 = 1

by 1.3 and
Tr(0a)ir(b) = Tr(0)Tr(a)7t-(b) = n(b)Tr(9)ir(a) = ir(b)Tr(0a)

by 1.3, since it(0) lies in the center of M".  Hence 0a £ B by the maximality of
A2.    □

LEMMA 5.4. If B is abelian, then #A2 = 2", and, more precisely, A2 is con-
jugate in U(n) with 7r{l,0}A, where A := A(0(n)) is the subgroup ofO(n) c U(n)
consisting of the diagonal matrices.

PROOF. B is then simultaneously diagonalizable. Let c € B. Since c2 = <f> for
some qb in Zp, the projection 7r(c) = rr(b) for some b in B satisfying b = I or b = 01
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for some I in A. Thus A2 is contained in 7r{l,#}A, or so we may assume. Here
we have the equality actually by 5.3, since A2 is maximal. #A = 2" = #7r{l,0}A,
since the pth power of 9 is —1. The rest is now obvious.    □

LEMMA 5.5.   If ab ^ ba for some a,b in B, then ab = —ba.

PROOF, ab = tpba for some <j> in Zp, since A2 is abelian. Hence b2 = (tpa~1ba)2 =
<j)2b2 since b2 lies in the center (which contains the kernel of ir). Hence qb2 = 1.    □

LEMMA 5.6. If a,b,c £ B and ab = —ba, then some one of c, ac, be, and abc
commutes with both a and b.

PROOF. Direct computations show this, since ac = ±ca and be = ±cb by 5.5.    D

LEMMA 5.7. Ifab = -ba for a andb in B, then (i) the trace Tr(a) = Tr(b) = 0,
(ii) n = 2n' is even, (iii) a andb are conjugate in U(n) with scalar multiples of In<
and (iv) p is also even.

PROOF. From a = -6a6-1, we have Tr(a) = -Tr(6a6-1) = -Tr(a), and
Tr(a) = 0. Similarly for b. In the notation of the proof of 5.4, this means Tr(I) = 0.
Thus n is even and I is conjugate with /„<, n' = n/2. For (iv), notice that — 1 = <b
in the proof of 5.5. Hence —1 is a pth root of 1.    □

At this point, we explain where we are in the proof of 5.2. If B is abelian for a
great A2, then we have #2M" = 2n or r2 = n by 5.4. This is the case when n or
p is odd, by 5.7. We have r2(M") > n always by 2.7. If B is not abelian for any
great A2, we assert that {a, b} in 5.5 generates a group which is isomorphic with the
dihedral group D[4] in 1.5 and that A2 is contained in a group = 7r{l, 0}.D[4]®U(n').
It follows that r2M <2 + r2(U(n')/Zp). This will be enough.

LEMMA 5.8. If B is not abelian, then A2 is conjugate with a subgroup of
7r{l,0}Z>[4]®U(n').

PROOF. If two members a,b of B do not commute with each other, then a, b
are conjugate with /„' by 5.7, or so we may assume by 5.3. This means a and
b lie in the polar Gni(Cn) of 1 in U(n). Since ab = —ba, the point b lies in
the centrosome C(a,—a) = U(n') in this polar by 1.3 and 3.4. Since U(n') is
connected, the pair (a, b) is conjugate with the particular pair of Jn< = Iy 0 1„'
and Kni = Ky ® ln>. Now 5.6 gives the lemma, in which 0 may be omitted;
{1,0}D[4] ® U(n') = (D[4] ® U(n')) = (Q[8] ® U(n')).    □

COROLLARY 5.9. If B is not abelian for any great A2, then r2(M") < 2 +
r2(U(n')/Zp).

We will conclude the proof of 5.2. We have only to consider the case where
both n and p are even and B is not abelian. Then, in case n = 2, the right-hand
side 2 + r2(U(n')/Zp) in 5.9 equals 2 -I- r2(U(l)) = 3, while n{l,9}D[4] has the
2-rank=3. If n = 4, 2 + r2(U(n')/Zp) = 5 and tt{1, 0}D[4] ® D[4] has the 2-rank 5.
For n > 4, an easy induction on n completes the proof.    D

PROPOSITION 5.10. r2(SU(n)/Zp) isn + 1 for (n,p) = (4, 2), n for (n,p) =
(2,2) or (4,4) and n — 1 = r2(SU(n)/Zp) for the other cases.

The proof is similar to that of 5.2. A difference is, of course, that det(b) = 1 for b
in SU(n). Hence p divides n and Ip belongs to SU(n) if and only if p is even, while
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0Ip is in SU(rc) if and only if 1 = det(6»/p) = 0n(-l)p. We have r2(SU(2)*) = 2 by
2.11, since SU(2)* = (S3)*.    D

REMARK 5.11. The next Propositions 5.12 through 5.14 are concerned with the
other classical groups and their adjoint groups and proven with the same method
as 5.2 basically. In each proof we will point out the difference and the changes
we have to make. Here we explain some common features and common notations.
For the group M := O(n), SO(n) or Sp(n), its 2-rank is easy to find; an antipodal
subgroup is diagonalizable (obviously at least if M is O(n) or SO(n)). For M" :=
O(n)* = 0(n)/{±l} for n > 1, SO(n)* for n even and > 2, or Sp(n)*, we denote
by B the inverse image of a given great antipodal subgroup A2 of M" under the
projection tt: M —► M", which is a 2-to-l morphism. Every member of B thus
satisfies x2 = ±1. Case 1.1°: if B is abelian and all the members are involutive,
then 73 is a maximal antipodal subgroup of M, and hence we obtain the 2-rank
r2(M") = r2(M) — l, since the projection of a great antipodal subgroup is antipodal.
This is normally the case. Case 1.2°: if B is not antipodal but abelian, then B
meets the centrosome C at a point, say c. Hence B is a subgroup of F(ad(c),M)
(which will be a unitary group). Case 2°: if B is not abelian, then B contains
members a, b satisfying ab = — ba by 5.5. These a and b generate a dihedral group
D[4] (Case 2.1°) or a quaternion group Q[8] (Case 2.2°), according as one of a, b
and ab is involutive or not; the distinction is necessary because of the lack of 0 used
in the proof of 5.2. Hence B is a subgroup of D[4] ■ Z or Q[8] ■ Z accordingly by
5.6, where Z is the centralizer of the dihedral or quaternion group in M. We will
then induct on n in dealing with the other case for B. Then a minor complexity
occurs, however, because in the reduction stage of the induction different types of
groups come into the scene (for instance, Z = O(n') or Sp(n") into the proof for
SO(n)*). Thus, theoretically, all those groups must be considered simultaneously
with induction of a larger scale, but we prefer a simpler presentation which might
look like a vicious circle (and which is not). In determining D[4] and Q[S], we use
the fact: the relation ab = —ba implies that the symmetries at a and b commute
with each other and hence the point a lies in the centrosome for (b, —b) on any
connected space in M which carries these three points by 3.4.

PROPOSITION 5.12. One has r2(SO(n)) = n - 1, while r2(SO(n)*) is 4 for
n = 4 and n — 2 for n even > 4. (Of course, SO(n)* is SO(n) for n odd and
S0(n)/{±1} ifn = 2n' is even > 2.)

PROOF. First note SO(4)* = SU(2)* x SU(2)* has 2-rank 4 by 5.10. We use
the notations in 5.11 with M = SO(n) and M" = SO(n)*. In Case 1.2°, B is
contained in U(n') = F'(ad(c),M). Hence the 2-rank of A2 is r2(U(n')/Z2) < n-l
by 5.2. In Case 2.1°, B contains D[4], which has generators a, b contained in the
polar G„'(Rn), n = 2n' even, since Tr(a) = 0 by (i) of 5.7. Write J for ab.
Then an involutive member x of M satisfies Jx = —xj if and only if x = In'y for
some y in U(n') defined by J. The condition x2 = 1 reads y € Ul(n') which is
connected. Thus we may assume a = /„< (hence n' is even). Thus B is a subgroup
of D[4] ® 0(n') = D[4] ■ 0(n'). Hence r2(M") <2 + r2(0(n')*). Therefore one
has r2(A2) < n - 2 for n > 4 by 5.13 (or by 5.2 and O(n') c U(n')). In Case
2.2°, the generators of Q[8] are contained in the centrosome S = 2 x DHI(n').
Since an automorphism of M exchanges these two components, we may assume
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that J = Jy ® ln< is one of the generators. The number n' = 2n" is even, by
xJ = -Jx o Kx e U(n') where K = Ky ® ln<; note that det(K) = (-1)"'. It
is not hard to see that they lie in a single component. Since the centrosome in
DHI(n') is AII(n") which is connected, Q[8] is also unique up to automorphisms.
Thus we may assume that Q[8] is generated by J and Iy ® Jy ® ln». Hence its
centralizer Z is isomorphic with Sp(n"). Thus B c Q[8] ® Sp(n"). Since Sp(n") is
a subgroup of SU(n'), we obtain r2(A2) < n - 1 for n = 6 or n > 8 by 5.10 and
even forn = 8 by r2(Sp(2)*) = r2(SO(5)) = 4.    □

PROPOSITION 5.13. r2(0(n)) = n. r2(0(n)*) is n if n is 2 or 4, while it is
n — 1 otherwise, where O(n)* := 0(n)/{±l}.

PROOF. An antipodal subgroup of O(n) is diagonalizable, and hence the 2-rank
of O(n) is n. Note that O(n)* = SO(n) if n is odd. We may assume that B is not
contained in SO(n). Then the Cases 1.2° and 2.2° are excluded. The Case 2.1° is
similar to 5.13 except that D[4] ® O(n') = D[4] for n = 2 and we have the 2-rank
= 2 of 0(2)*. The assumption implies that n' is odd. For n > 4, B does not give
the 2-rank in this case.    D

PROPOSITION 5.14. One has r2(Sp(n)) = n, while r2(Sp(n)*) is n + 2 for
n = 2 or 4 and n + 1 otherwise.  Thus r2(Sp(n)*) = r2(\J(n)/Z2) + 1 for every n.

PROOF. First we will show that an antipodal group A2 in Sp(n) is "diagonaliz-
able" (or rather contained in a maximal torus). Since Sp(n) is 1-connected, A2 is
contained in the orthogonal space Sp(d) x Sp(n — d) to a polar Gd(Hn) which A2
meets, by 2.13. Therefore one has

r2(Sp(n)) = r2(Sp(d) x Sp(n - d)) = r2(Sp(d)) + r2(Sp(n -d))=d+(n-d)

by induction on n beginning with r2(Sp(l)) = r2(SU(2)) = 1. The 2-ranks of
Sp(l)* = SU(2)* and Sp(2)* = SO(5) are known to be 2 and 4 respectively. Re-
ferring to 5.11, we begin with 2.2°; the Case 1.1° of 1.2° cannot occur as we will
show shortly. Case 2.2°: B contains <5[8] generated by two members a and b of the
centrosome CI(n) by (i) and (ii) of 5.7. Since the centrosome UI(n) of CI(n) is con-
nected, we may assume a = Jy ®1„ and b = iln. Thus B is contained in Q[8]®0(n).
Therefore r2(A2) < 2 + r2(0(n)*); and hence, r2(A2) < 2 + (n - 1) = n + 1 by
5.13 if n ^ 2 or 4. The same 6.13 also gives the correct 2-rank of Sp(4)*. Let
A = A(n) denote the subgroup of the diagonal matrices in O(n). Then a group
B in the Case 1.1° or 1.2° is necessarily a subgroup of Q[8] ® A (or a conju-
gate thereof), since Q[8] ® A contains every diagonal and involutive member of
Sp(n) and every diagonal member of U(n) = F(ad(Ji ® l„),Sp(n)) which satisfies
x2 = ±1. The 2-rank of tt(Q[8] ® A) is n + 1. Case 2.1°: the polar Gn>(Hn)
contains two generators a and b of D[4] by (i) and (ii) of 5.7; n = 2n'. Since
the centrosome Sp(n') in it is connected, we may assume a = 12 ® Ii ® ln' and
h — 12 (g Ky ® ln>. Hence B is contained in D[4] ® Sp(n'); here this Sp(n') is the
diagonal subgroup in Sp(n') x Sp(n') C SU(2n) and we have identified Sp(n) with
F(k o ad(J),SU(2n)). Thus r2(A2) <2 + r2(Sp(n')m) and, inductively, we obtain
the 2-rank < 2 + (n' + 1) < n + 1 for n > 6.    a

REMARK 5.15. We make some comments on the proofs of Propositions 5.12
through 5.14 for a later reference.  Let B denote the inverse image of a maximal
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antipodal subgroup of Sp(n)* under the projection -k: Sp(n) —► Sp(n)*. We will
describe B up to conjugacy in Sp(n). We have seen in the proof of 5.14 that B is a
subgroup of either Q[8]®0(n) or D[4]®Sp(m), n = 2m. Biorn = 2 is Q[8]®I>[4].
B forn = 4 is one of Q[8] ® Q[8] ® Q[8], D[4] ® Q[8] ® Q[8], Q[8] ® D[4] ® D[4] and
Q[8] ® A, where A := A(n) = A(0(n)) is the subgroup of O(n) consisting of the
diagonal matrices.

6. Classical spaces.

PROPOSITION 6.1. #2Gp(n) = ("), the binomial coefficient. Moreover the
great antipodal sets are congruent with each other under the automorphism group.

PROOF. A point x in Gp(n) is a p-dimensional subspace [x] of the metric carte-
sian n-space V over R, C or H. We work on the real one for simplicity; the auto-
morphism group of V is O(n). Let Px be the orthogonal projection of V onto [x].
Then the natural action of 2PX — ln on Gp(n) is the symmetry sx; we denote it
by sjzj. The map /: Gp(n) —► O(n): x \-> S[x] is a monomorphism. Since [x] is an
eigenspace of sm and the orthogonal complement is the other eigenspace (in fact
S[x] is conjugate with — Ip in O(n)), it is easy to see that sx fixes a point y in Gp(n)
if and only if S[x] commutes with S[y]. The desired 2-number is then the number of
matrices in A the diagonals in O(n), whose trace is 2p — n. The second half is also
clear now.    □

Proposition 6.2. #2(CI(n)) = 2n and #2(DIII(n)) = 2n~1.

PROOF. These are hermitian and Theorem 4.3 applies. The Euler numbers are
the sums of those of the fixed point sets of the symmetries.    □

REMARK 6.2a. We will prove the Propositions 6.4, 6.5 and 6.6 simultaneously
by induction arguments because of the complicated situation which is similar to
the one with classical groups as mentioned in 5.11. The Grassmann manifolds
are polars in the classical groups U(n), O(n) and Sp(n), while the space DIII(n)
(or rather its 2 copies) and CI(n) appear as the centrosomes in O(n) and Sp(n).
Gm(2m), DIII(n) and CI(n) are the double covering spaces of their bottom spaces.
The projections are the restrictions of those, denoted commonly by w. M —► M",
of the ambient classical groups M onto the quotient groups M" by the groups
of order 2 in their centers. As in 5.11, we denote by B the inverse image of a
maximal antipodal subgroup of M" under tt or a conjugate subgroup to it in M
which we choose in the conjugate class. In case M = Sp(n), B is contained in
D[4] ® Sp(n/2) or Q[8] ® O(n) (see 5.15; it was the main step in the proof of 5.14
to establish this fact). If M = O(n), B is either A or a subgroup of U(n/2),
D[4] ® 0(n/2) or Q[8] ® Sp(n/4) similarly, where A := A(0(n)) is the subgroup
of O(n) consisting of the diagonal matrices. In case M = U(n), B is {l,i}A or a
subgroup of {l,i}D[4] ® U(n/2), where i is the imaginary unit, i2 = —1, and the
presence of {l,i} corresponds to 5.3; note {l,z}£)[4] = {l,i}Q[8] in U(n). Since the
points of Gm(2m) are characterized in M by the conditions Tr(x) = 0 and x2 = 1
and those of the centrosome by x2 = — 1, the next lemma will be useful in proving
the propositions.

LEMMA 6.3. Among the points ofQ[8]®D[4], those which satisfy x2 = 1 are 12
in number and there are 20 points which satisfy x2 = —1; among the former points
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exactly 10 points satisfy Tr(x) = 0 too. Similarly, among the points of Q[8] ® Q[8]
and 73[4]®73[4], those which satisfy x2 = 1 are 20 in number and there are 12 points
which satisfy x2 = —1; among the former points exactly 18 points satisfy Tr(x) = 0
too.

PROOF. Straightforward by Tr(x®?/) = Tr(x) Tr(y) and (x®y)2 = x2 ®y2.    □

PROPOSITION 6.4. #2(Gm(2m)*) = (2™)/2 with the following exceptions.
#2(G2(R4)*) = 9; #2(Gm(C2m)*) is 3 for m = 1, 15 for m = 2, 12 for m = 3
and 63 for m = 4; #2(Gm(H2m)*) is 5 for m = 1, 27 for m = 2, 20 for m = 3 and
135 for m = 4.

PROPOSITION 6.5. #2(CI(n)*) is 2" + 2"-1 except that it is 10 forn = 2 and
36 for n = 4.

PROPOSITION 6.6. #2(DIII(n)*), n even, is 2n~2 except that it is 3 for n = 2,
28 for n = 4 and 120 for n = 8. (If n is odd, DIII(n)* coincides with DIII(n) :=
SO(2n)/U(n).)

Now we begin in the proof of the three propositions. We already know the 2-
numbers of Gi(G2)* = CI(1)* = DIII(2)* = S2*, Gy(H2)* = (S4)*, G2(R4)* =
(S2)* x (S2)*, G2(C4)* = G2(R6), CI(2)* = G2(R5), and DIII(4)* = G2(R8); they
are 3, 5, 9, 15, 10, and 28 respectively. In the notations of 6.2a, we take M = Sp(ra)
first. Then B is a subgroup of Q[8] ® O(n) or D[4] ® Sp(n/2). If B = Q[8] ® A, then
B meets CI(n) at 3(2") points and Gm(H2m) at #2(Gm(H2m)) points (if n = 2m
is even). Hence #2(CI(n)*) > 2" +2""1 and #2(Gm(H2m)*) > ±#2(Gm(H2m));
notice that these are the stated regular values of the 2-numbers of these spaces. We
have the equality for CI(n)* if n is odd, in particular (since there is no other choice
of B then). If B is not Q[8]® A, B is contained in one of Q[8]®0(2m), Q[8]®U(m),
Q[8] ® D[4] ® O(m), Q[8] ® Q[8] ® Sp(m/2) and D[4] ® Sp(m); therefore the order
#73 is less than or equal to 24+m. Thus we have the stated value #2(Gm(H2m)*) =
£#2(Gm(H2m)) for m > 6, since the binomial coefficient #2(GTO(H2m)) is greater
than 24+m for m > 6. This proves 6.4 for m > 6 by 3.7 and the obvious fact:
Gm(R2m)* C Gm(C2™)* C Gm(H2m)*.

We now work on the cases m = 2,3,4,5 and 6 for Gm(H2m)*. For M = Sp(4),
the case 73 = Q[8] ® Q[8] ® Q[8] gives the correct values for CI(4)* and G2(H4)*
by 6.3, because the other 3 cases do not meet CI(4) and G2(H4) at more points
as is easily seen. One obtains the correct values for m = 3 and 4 are with 73 =
Q[8] ® 73[4] ® A(3) and Q[8] ® Q[8] ® D[4] ® 73[4] respectively. Similarly one verifies
the cases m = 5 and 6 are regular. Actually one obtains the results for CI(n)* with
n = 2m = 4 and 6 simultaneously by 6.3 or in the spirit thereof; in particular one
has the formula #2 Sp(4)* = l + #2 CI(4)* +#2G2(H4)*. As to the regular values,
the estimate using the same number 24+m is even better for CI(n)*.

One obtains the stated values for Gm(C2m)*, m = 3 and 4, by 73 = {1, i}D[4] ®
A(3) and {l,i}73[4] ® D[4] ® 73[4] in U(2m). Those for Gm(R2m)*, m = 3 and 4,
are obtained by B = A(m) in 0(2m).

Finally we look at DIII(n)*, n = 2m. Its 2-number is greater than or equal
to 2"-2 by 6.2 and 3.7. This case is slightly complicated, because the centro-
some for (1, —1) in SO(4m) is not connected but the disjoint union of 2 copies of
DIII(n). The outer automorphism ad(7fc), fc odd, carries one into the other. Hence
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B := {1, i}A(2m) C U(2m) C SO(4m) gives the regular value 2n-2. It is easy to see
that B meets a single component DIII(n) if B has Q[8] among its factors. We have
only to consider the cases m = 3 or 4 by the estimate which is similar to the one for
Gm(H2m)*. The case m = 3 is regular. In case m = 4, B = Q[8]®Q[8]®73[4]®73[4]
gives the correct value. And the Propositions 6.4 through 6.6 have been proven. □

REMARK 6.7. The above result together with 1.4 preclude the possibility of an
inclusion G2(C4)* C G3(C6)* and DIII(4)* c DIII(6)*.

7. Other classical spaces.

PROPOSITION 7.1. Let UI(n) denote \](n)/0(n). Then #2(UI(rc)/Zp) is 6 if
n = 2 and p is even; it is 20 if n = 4 and p is even; and it is 2n otherwise.

PROOF. We write M for UI(n) := U(n)/0(n) and M" for UI(n)/Zp. M has
rank n and a subspace of U(n) characterized as F(k o t, U(n)). Thus we have
2" < #2(M") < #2(U(n)/Zp) = 2" and hence the proposition, by 2.7 and 5.2,
unless p is even and n = 2 or 4. M is the inverse image of M" under the projection
7r of U(n) onto U(n)/Zp. Let 73 be the inverse image of a maximal antipodal
group in U(n)/Zp under tt. B is conjugate to a subgroup of {1,0}AU(1) or that
of {1,0}73[4] ® U(n/2) (see 6.2a and 5.3), where 0 is a primitive 2pth root of
1. The group {1,0}AU(1) is contained in M and gives the value 2" for #2(M)
by the above characterization of M. We assume that p is even. If n = 2, the
group {1,0}73[4] ® U(n/2) meets M at the subset {1,0}I ® A(l), where I is the
involutive members of D[4]. Thus we have the result for n = 2. If n = 4, the
group {1,0}73[4]®73[4]®U(1) meets M at {1,0}I® A(l), where I is the involutive
members of D[4] ® 73[4]. Thus we have the result for n = 4 by 6.3.    □

PROPOSITION 7.2. #2(AI(n)/Zp) is 3 if(n,p) = (2,2); it is 20 if (n,p) =
(4,2); it is 10 if (n,p) = (4,4); and it is 2n_1 otherwise.

PROOF. The rank of AI(n) is n - 1, and M" := AI(n)/Zp is a subspace of
SU(n)/Zp. Thus 2""1 < #2Af" < #2SU(n)/Zp by 2.7. If (n,p) = (2,2), then
M is (S2)*. If (n,p) = (4,2), then M is G3(R6). If (n,p) = (4,4), then M is
Gs(R6)*. Hence we have the conclusions in these cases by 6.1 and 6.2. The other
cases are immediate from 5.10 and the above inequalities.    □

PROPOSITION 7.3. #2(UII(n)/Zp) is 12 if n = 2 and p is even; it is 56 if
n = 4 and p is even; it is 272 if n = 8 and p is even; and it is 2n otherwise.

PROOF. M := UII(n) = U(2n)/Sp(n) has rank n; 2" < #2(M"), where M" =
M/Zp. The polars of M" are Gd(Hn), 0 < d < n, where Gd(Un) should be
replaced with 2xG<j(H™)* in case 2d = n and p is even. Thus we have #2(M") = 2"
by 6.1, 6.4 and 1.9, unless p is even and n is 2, 4, 6 or 8. M is the subspace
F(t o k o ad(J), U(2n)) of U(2n). We assume that p is even. The polars of M",
one of the two components of F(l o/to ad(J), U(2n)/Zp), are the polars ^ CI(n)*
of {l,7r(0)}Sp(n)* = F(noa.d(J), U(2n)/Zp), where tt is the projection: U(2n) -►
U(2n)/Zp. Let B be the inverse image of a maximal antipodal set A2 in M" under
7T. Then the cardinality of A2 equals that of 5 n Sp(n), since 0B = B (see 5.3)
and hence A2 = {l,7r(0)}(BnSp(n)) (compare 5.4 and 5.8). Also every member of
73 n Sp(rc) is involutive. We can use the groups in the proof of 6.4 for Gm(C2m)*.
If n = 2, one can use 6.3 and the group Q[8] ® 73[4] which contains B in order to
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get the 2-number 12 = 2(1 + 5). If n = 4, the group Q[8] ® Q[8] ® Q[8] to get
56 = 2(1 + 27). If n = 8, the group Q[8]®Q[8]®73[4]®73[4] gives 2(1 + 135) = 272.
If n = 6, no group gives a value greater than the regular value.    □

PROPOSITION 7.4. #2(AII(n)/Zp) is 6 if (n,p) is (2,2); it is 28 if (n,p) =
(4,4); it is 56 if(n,p) = (4,2); it is 136 if(n,p) = (8,8); it is 272 if(n,p) = (8,4)
or (8,2); and it is 2™-1 otherwise.

PROOF. Let M" = AII(n)/Zp. If (n,p) = (2,2), then M" is (S5)*. One
can proceed as in the proof of 7.3. The polars of M" are Gd(Hn), 0 < d = even
< n, if p is odd; they are G<j(H"), 0 < d = even < n, Gd(H") replaced with
2 x Gd(H")*, if p and v := n/p are even; and they are Gd(Hn)*, 0 < 2d < n if
p is even and i/ is odd. Since the rank of M" is n — 1, we thus have the stated
2-numbers by 6.4 and 1.9 except when p is even and n = 2,4,6 or 8. If v is odd, one
has 2#2(M") = #2(UII(n)/Zp), since M" meets Sp(n)* only (and not n(0) Sp(n)*
which is not contained in SU(2n)). So we assume that both p and v are even. Then
F(l oko ad(J), SU(2n)) is the disjoint union of M and 12 ® 7i times M. If n = 4,
the group Q[8] ® Q[8] ® Q[8] in Sp(4) meets F(l o k o ad(J), SU(2n)) in the first
component M only and hence the 2-number is 56 as in 7.3. If n = 6, no group gives
a value greater than the regular value. If n = 8, the group Q[8] ®<9[8] ® 73[4] ® 73[4]
in Sp(8) meets M only as in the case of n = 4 and hence gives 2(1 +135) = 272.    □

Now we turn to Spin(n) and related spaces. Recall that Spin(n), the spinor
group, is a subset of the Clifford algebra CI(n), which is generated over R by
the vectors e, in the fixed orthonormal basis of Rn and subject to the conditions
eiCj = —ej&i and e^ = —1, i ^ /; see [ABS] or [C]. Under the projection
rx: Spin(n) —» SO(n), the member cosf? + (sinf?)eie2 of Spin(n), for instance,
projects to the rotation of the (ei,e2)-plane by the angle 20, carrying ei into
(cos20)ei + (sin2f?)e2, for every real number 0. ir is a double covering homomor-
phism with the kernel {1,-1}. Every maximal antipodal group A2 in Spin(n)
projects into a diagonalizable subgroup of SO(n). Hence we may assume that A2 is
a subgroup of E(n) := {±e/: I C ((n))}, where er = e^j • • • et (= 1 if 7 is empty)
for any subset I = {i,j,..., fc}, i < j < ■ ■ ■ < fc, of ((n)) := {1,2,... ,n}. The next
lemma is basic and quite easy to see; it reduces the problem of finding #2(Spin(n))
to a combinatorial one.

LEMMA 7.5. (i) One has ere,/ = eje/ if and only if the cardinalities satisfy
(#7)(#3)-#(7n J) =0 (mod2); (ii) one has (erf = 1 if and only if #7 = 0 or
3 (mod4); and (iii) ej is a member o/Spin(n) if and only if' #1 is even.

Using this one can determine the 2-rank of Spin(n). The result is known, which
we state it as a proposition without proof; find the number n — h from the table in
[Q2]-

PROPOSITION 7.6. r2(Spin(n)) is r + 1 for n = -1,0 or 1 (mod8) and is = r
otherwise, where r is the rank o/Spin(n), r = [n/2].

Corollary 7.7 (Periodicity). r2(Spin(n+8)) = r2(Spin(n))+4/orn > 0.

PROPOSITION 7.8.   r2(Pin(n))=r2(Spin(n+l)) for n>0.

PROOF. Pin(n) projects onto O(n) by definition, [ABS]. Pin(n) is a group
in CI(n) and contains Spin(n); Pin(0) = Spin(0) = Spin(l) = Z2 and Pin(l) =
{l,ei} = Z4. Let A2 be a great 2-subgroup of Pin(n). We may assume that A2 is
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a subgroup of E(n), the inverse image of the group A(n) of the diagonal matrices
in O(n) under the projection. If a member e/ of A2 belongs to Spin(n), then it
is a member of Spin(n + 1) in the natural fashion. If not, ejen+i is a member of
E(n + 1) in Spin(n + 1), since #7 = 3 (mod4). Thus we have a monomorphism
of A2 into Spin(n + 1); r2(Pin(n)) < r2(Spin(n + 1)). One obtains the reversed
inequality by reversing the argument.    □

PROPOSITION 7.9. LetSO(4m)* denote Spin(4m)/{l,e((4m))} the semispinor
group. Then r2(SO(4m)#) is 3 for m = 1; it is 6 for rn = 2; it isr+1 if m is even
> 2; and it is r if m is odd > 1, where r is the rank 2m o/SO(4m)#.

PROOF. Given an antipodal subgroup A2 of SO(4m)#, we write B for the
inverse image of A2 under the projection: Spin(4m) —► SO(4m)#. All the members
x,y,... of the projection n(B) C SO(4m) satisfy x2 = ±1 and yx = ±xy. In
particular, ir(B) is a subgroup of SO(4m) mentioned in 6.2a; it is conjugate to
a subgroup of A, U(2m), 73[4] ® 0(2m) or Q[8] ® Sp(m). If m is odd, consider
the group Bm generated in Spin(4m) by J' := 2~m \~[(1 + eiei+2m), product over
1 < i < 2m, and {epi; I C ((2m))}, where PI denotes the union IU{i + 2m[i € 7}.
ir(Bm), a subgroup of U(2m), satisfies those conditions, and the projection of Bm
into SO(4m)# is an antipodal group of 2-rank = r. If m is even, the subgroup B
generated by Bm and e((2m)) projects to A2 of 2-rank r +1. If m is 1 or 2, then the
group n(B) = {l,z'}73[4] or {l,i}73[4] ® 73[4] (which gives the 2-rank of U(2m)/Z2
for m = 1 or 2; cf. 5.2) gives the stated 2-ranks.

The rest of the proof is more or less similar to previous ones and omitted.    □

8. Exceptional spaces. The 2-numbers of G2 and GI := G2/ SO(4) have been
determined in 3.13.

LEMMA 8.1. Onehasr2(G) <r2(Sp(l)G) < 2+r2(G) for a compact Lie group
G with a pole. (The proof establishes a more precise fact, which will be summarized
as Lemma 8.1a.)

PROOF. Let B be the inverse image of a great antipodal group in Sp(l) • G
under the projection: Sp(l) x G —> Sp(l) ■ G. There are three cases to distinguish.
If B is antipodal, then 73 is great and hence

r„(Sp(l) • G) - r2(B) - 1 = r2(Sp(l) x G) - 1 = r2(Sp(l)) + r2(G) - 1 = r2(G).

If B is not antipodal but abelian, then

r2(Sp(l) • G) = r2(U(l) • G) = r2(Z4 ■ G) = r2(Z4 • F(ad(i),G)),

where Z4 is the cyclic group {±l,±z} generated by i in the circle group U(l) =
T. Thus 3.14 applies to U(l) • G, or alternatively one sees r2(Sp(l) • G) = 1 +
r2(F(ad(i),G)), since B meets F(ad(i),G) at its great antipodal subgroup. Hence
r2(Sp(l)-G) = l + r2(G) if r2(F(ad(i),G)) = r2(G); and it equals r2(G) otherwise,
since r2(Sp(l) • G) > r2(G) anyway by 3.9. Finally, if B is not abelian, B contains
members (i,x) and (j,y) such that {i,j} generates a subgroup = Q[8] in Sp(l)
(never = 73[4]). Hence {x,y} generates a subgroup = Q[8] in G, which also we
denote by Q[8]. Thus B is isomorphic with a subgroup of Q[8] ■ F(ad(Q[8]), G); one
has r2(Sp(l) • G) = r2(Q[8] • F(ad(Q[8]),G)). Since F(ad(Q[8]),G) identified with
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{l}xF(ad(Q[8]),G) in Sp(l)xG projects into Sp(l)-G injectively, B meets it at its
great antipodal subgroup. Therefore r2(Sp(l) • G) = 2 + r2(F(ad(Q[8]),G)). Thus
r2(Sp(l)-G) = 2+r2(G) if r2(F(ad(Q[8]),G)) = r2(G); and r2(G) < r2(Sp(l)-G) <
1 + r2(G) otherwise.    D

LEMMA 8.1a. Let G be a compact Lie group with a pole p. Consider the dot
product Sp(l) • G defined with p. Then the 2-rank r2(Sp(l) • G) has the values
as follows, (i) r2(Sp(l) ■ G) = 2 + r2(G) if G has a subgroup (which is isomorphic
with) Q[8] such that the center ofQ[8] is {l,p} andr2(F(ad(Q[8]),G)) = r2(G); (ii)
r2(Sp(l)-G) = l+r2(G) ifG has a memberi such thati2 = p andr2(F(ad(i),G)) =
r2(G); and (iii) r2(Sp(l) • G) = r2(G) if G does not have such a member as i.

PROOF, (i) and (ii) are obvious from the above proof of 8.1. Suppose G does
not have such a member as i. Then G does not have such a subgroup as Q[8],
for otherwise one would have r2(F(ad(i),G)) > r2(F(ad(Q[8]),G)) = r2(G), where
{l,i} is the center of Q[8]. The subgroup B in the proof of 8.1 is thus either
antipodal in Sp(l) x G or abelian (without being antipodal). In the first case,
one has r2(Sp(l) • G) = r2(G), and in the second case, one has r2(Sp(l) • G) =
1 + r2(F(ad(?),G)) with r2(F(ad(z),G)) < r2(G) and one still concludes that
r2(Sp(l) ■ G) = r2(G), since r2(Sp(l) ■ G) > r2(G) always by 3.9.    D

PROPOSITION 8.2. One has r2(G2) = 3, r2(F4) = 5, r2(E6) = 6, r2(E7) = 7,
r2(7?8) = 9 for the 1-connected exceptional groups.

PROOF. We will use 8.1 and 2.13. We have r2(G2) = r2(SO(4)) = 3, since SO(4)
is the only group that is orthogonal to the polar. In F4, Sp(l) Sp(3) and Spin(9) are
orthogonal to the polars. Thus we have r2(F4) = 5 by 8.1 and 7.6. In E&, T-Spin(lO)
and Sp(l) SU(6) are orthogonal to the polars. We see r2(TSpin(10)) < 6 by 3.11.
We have r2(Sp(l) • SU(6)) < 6 by 8.1, since r2(F(ad(Q[8]), SU(6))) = r2(U(3)) =
3 < 5 = r2(SU(6)). Thus we have r2(E6) = 6. In E7, Sp(l) • Spin(12) is the only
orthogonal to the polar. This dot product is defined with the kernel of the projection
of Spin(12) onto SO(12)#. In particular, a subgroup Q[8] in the centrosome plus the
center in Spin(12) for this dot product projects onto an isomorphic Q[8] in SO(12).
The centralizer F(ad(Q[8]), Spin(12)) is 2xSp(3), the union of 2 copies of Sp(3), and
hence its 2-rank is less than r2(Spin(12)) = 6. Thus we have r2(Sp(l)-Spin(12)) < 7.
Hence r2(E7) = 7 by 8.1. In E8, Sp(l) ■ E7 and SO(16)# are the orthogonal to the
polars. Therefore we obtain r2(Es) = 9 by 8.1 and 7.9.    D

PROPOSITION 8.3. r2(F4) = 5, #2(FI) = 28 = 2r + X and #2(FII) = 3 = x,
where r and x o,re the rank and the Euler number of the space in question.

PROOF. We have #2(FI) > 28 = 2r + X by 4.2. The polars of FI are G, (H4)
and S2 ■ CI(3). We know #2(Gi(H4)) = 4 by 6.1. S2 ■ CI(3) is the centrosome of
Sp(l)-Sp(3). Thus the great antipodal set in 52-CI(3) is contained in Q[8]® A(3) as
in the proof of 5.14. We obtain #2(S2CI(3)) = 23 easily and conclude #2(FI) = 28.
See 2.11 for #2(FII) and 8.2 for the rest.    □

PROPOSITION 8.4. r2(E6) = 6 = r2(E*6), #2(EI) = 64 = 2r = #2(EP),
#2(EII) = 36 = X, #2(EIII) = 27, and #2(EIV) = 4 = 2r = #2(EIV).

PROOF. EIII is hermitian and 4.3 applies. EI has rank 6 and is contained
in 7?6, and hence its 2-number is found from 8.2.   FII is the only polar of EIV;
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thus #2(£7V) = 4 by 2.10 and 8.3. The fundamental groups of E£ and EI* have
order 3, and hence their 2-numbers are equal to those of their universal coverings
by 3.1. Finally we come to EII, which is a polar of Ee together with EIII; we
have #2(EII) > #2(£6) - 1 - 27 = 36 by 4.2. The polars of EII are G2(C6) and
S2 ■ G3(C6). Since S2 ■ G3(C6) is a centrosome of Sp(l) • SU(6), its antipodal set
is contained in {l,i} ■ A(6) or Q[8] ■ U(3). Both cases give #2(S2 • Gs^6)) =
#2(G3(G6)) = 20 and hence #2(EII) = 36. The fundamental groups of the spaces
with * in the proposition have order 3 and 3.1 applies.    □

REMARK 8.4a. The orthogonal space of EI in Eq is Sp(4)*. Hence we rediscover
its 2-rank = 6 (see 5.14).

Proposition 8.5. r2(E7) = 7, #2(EV) = 128 = 2r, #2(EVI) = 63 = x, and
#2(EVII) = 56 = X.

PROOF. EV is a subspace of E7 and of the same rank; thus #2(EV) = 128 (also
by 3.6 and 6.4). EVII is hermitian; 4.3 applies. The polars of E7 are a polar and
2 copies of EVI. The double covering: E7 —> Ej carries both copies onto a single
EVI. Thus #2 (EVI) = (#2(£7) - 2)/2 = 63 by 3.6.    □

Appendix. For the reader's convenience, we will record the fixed point sets
F(t, M) of the involutive automorphisms t of the compact connected symmetric
spaces M, most of which are assumed to be irreducible; the results are quoted from
[CN], [N] and subsequent papers.

We begin with the special case in which t is the symmetry at a point; so the
connected components of F(t, M) are its polars. Those spaces that have the same
roots (with different multiplicity) have the same and obvious pattern of the polars
and F(t, M) more generally, and hence we omit some of the spaces which are locally
isomorphic.

Spaces The polars

torus TT 2r - 1 poles.
U(n)/Zp Gr(Cn),0 < r < n; if p is even and 2r = n, then Gr(C")

is replaced by 2 copies 2 x Gr(C2r)* of Gr(C2r)\
SU(n)/Zp       Gr(Cn), 0 < r = even  <n, if p is odd.

Gr(Cn)*, 0 < 2r < n, if p is even and v := n/p is odd.
Gr(C")*, 0 < r = even  < n, if p and v are even ;Gr(Cn)*
is replaced by 2 copies 2 x Gr(C2r)* for 2r = n.

SO(ra) Gr(Rn), 0 < r = even  < n.
Spin(n) G2r(Rn), 0<r= even  < n/2, with the understanding that

this is a single point for r = 0 and 2 points for r = n/2.
SO(n)#, OIII(n/2)* and G°2r(Rn), 0 < r = even  < n/4, with the under-
n = 0 mod 4    standing that this is a single point for r = 0 and G2r(R")

is replaced with G2r(Rn)* for r = n/4.
SO(n)*, Gr(Rn)*, 0 < r = even  < n, and DIII(n/2). Replace DIII(n/2)

n even,     with OIII(n/2)* if n/2 is even.
Sp(n) Gr(H"), 0 < r < n.
Sp(n)* Gr(Hn)*, 0 < 2r < n, and CI(n)*.
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Gr(n),2r<n Ga(r) x Gb(n- r), a + b = r.
Gr(2r)* Ga(r) x Gb(r), a + b = r and 0<a< r/2, and Ga(r) ■ Ga(r) for

a = r/2; add U(r)/Z2 for Gr(2r)* = Gr(C2r)* and Sp(r)* for
Gr(7Y2r)*. For Gr(R2r)*, add SO(r)* if r is odd and
0(r)* if r is even.

G°r(R"), G°r(Rn-r), apole,andG°a(Rr)-G°b(Rn-r),b = r-aeven
2r < n and 0 < a < r; G°(Rn~r) represents 2 poles if n = 2r.

Gr(R2r)# G°a(Rr) ■ G°b(Rr), b = r-a even with b < r/2, and 0(r)*; add
G6(Rr)# x G6(Rr)# for even b = r/2.

AI(n) Gr(R"), 0<r= even  < n.
AII(n) Gr(Hn), 0 < r = even  < n.
DIII(n) Gr(C"), 0 < r = even  < n.
DIH(n)*, Gr(C"), 0 < r = even  <2r <n, GT(C2r)* for 2r = n,

n even and UII(n)/Z2.
CI(n) Gr(Cn), 0<r < n.
CI(n)' Gr(Cn), 0<2r<n, UI(n)/Z2 and Gr(C")* for 2r = n.
E8 EVIII and EIX.
EVIII G8(R16)# andDIII(8)\
EIX EVI and S2 ■ EVIL
E7 2 x EVI and a pole.
E*7 EVI, EV* and EVII*.
EV 2xG4(C8)* and a pole.
EV* G4(C8)*, AI(8)/Z4 and AII(4)*.
EVI S2-DIII(6) andG^(R12).
EVII 2 x EIII and a pole.
EVII* EIII and (T • EIV)/Z2.
736 and E*% EII and EIII.
EI and EI* CI(4)* and G2(H4)*.
EII G2(C6) and S2 • G3(C6).
EIII G^(R10) andDIII(5).
EIV and FII.

EIV*
F4 FI and FII.
FI S2CI(3) andGi(H3).
FII S8.
G2 GI.
GI S2-S2.

Next we describe F(t,M) for each conjugate class of the involutions t of M,
which fix a point o of M. We omit the case of the groups; since the results for them
are essentially the classification of the symmetric spaces. We select only one space
from its local isomorphism class to keep the table reasonably short.

We begin with the spaces M = G/K with G locally isomorphic with SU(n). Now
t on M is induced from one of the conjugate classes of the involutions of SU(n),
SI := k, SII := /coad(J), and 1^; see the Introduction for these notations, where M
is AI(n) identified with F(sy ok,SU(n)), AII(n) with F(sy oKoad(J)(1), SU(2n)),
or Gr(Cn) with F(sy oad(Ir), SU(n)). We distinguish an involution b from ad(6);
b on M = G/K carries cK into bcK, while ad(6) carries cK into (ad(b)c)K, which
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coincides with b in case 6 is a member of K and which can be defined even if b is
not a member of G but a member of a larger group. Pd means Id ©Id, and similarly
Pj = J®J.

AI(n) AII(n) Gr(C")

81 (polars) Dlll(n) Gr(Rn)
so osI SU(n) Gr(Rn)
8II 2 x SU(n/2) (polars) Gr/2(H"/2)
8oo8II CI(n/2) Gr/2(H"/2)
Id T • (AI(d) x AI(n - d))    T • (AII(d) x AII(n - d))    Ga(Cd) x G|,(C"-d)

J for a -I- 6 = r.
«0oad(Ii) IJGfc(R")' LIG*(Hn)'

fc odd fc odd

_DIH(n)_Gr(an)

Id G0(Rd) x Gfc(Rn-d)
J for a + b = r.

Pd 2 x (DIII(d) x DIII(n - d))
0 < 2d < n

Jr/2®Jn/2-r/2 Gr/2(C"/2)

ad( J) (polars) UI(r) if n = 2r

s0oad(J) 0(r)ifn = 2r

ad(I„) S0(n)

J JjGfc(Cn), fceven

JPi JjGfc(C"), fc odd

ad(PjI„) UII(n/2)

_CI(n)_Gr(H")

Pd CI(d) x CI(n - d)    Ga{Hd) x G6(Hn"d)
J for a + 6 = r.

ad(I„) UI(n)

ad(PjK) Sp(n/2)

J (polars) Gr(C")

ad(Pj) UII(n)

s0oad(Pj) Sp(n)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



296 BANG-YEN CHEN AND TADASHI NAGANO

SI, SII,... will denote the involutive members oi Ee,... which define the spaces
EI, EII,..., except that SI and SIV are outer involutive automorphisms which
define EI and EIV.

_EI_EH_Effl_EIV
SI CI(4)*TTG2(H4)* CI(4)*JjGi(H4) G2(H4)* Gi(H4)
8II S2-AI(6)]jAII(3) S2-G3(C6)JjG2(C6) S2 x Gi(C6) JjG2(C6) AII(3)
8III          TG5(R10) G°(R10)TjDIII(5) G°(R10) JjDIII(5)          T ■ S9
8IV                  FI FI FII                          FII

In the next table, " will mean /Z2.

_EV_EVI_EVII_
ad(sV)            AI(8)"TJAII(4)" AII(4)"
8V                       2xG4(C8)* G4(C8)*}jG2(C8) 2xG2(C8)
8VI S2G°(R12)TjDIII(6) S2DIII(6)JjG°(R12)    S2 x G|(R12) JjDIII(6)
8VII                         2 x EII EII JJ EIII 2 x EIII
ad(8VII)                   T-EI TEIV

_EVIII_EIX_
SVIII    G8(R16)#JjDIII(8)*    G°(R16)JJDIII(8)'
SIX S2EVjjEVI S2 ■ EVII JJ EVI

sl and SII will denote the involutive members of F4 which define the spaces FI
and FII.

_FI_FII
SI     52-CI(3)JJGi(H3)    Gx(H3)
SII G^R9) 58
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