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Abstract

The gamma density function is usually defined in interval between

zero and infinity. This paper introduces an upper and a lower boundary

to this distribution. The parameters which characterize the truncated

gamma distribution are evaluated. A statistical test is performed on

two samples of stars. A comparison with the lognormal and the four

power law distribution is made.
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1 Introduction

A probability distribution function (PDF) which models a given physical vari-
able is usually defined in the interval 0 ≤ x < ∞. As an example the exponen-
tial , the gamma, the lognormal, the Pareto and the Weibull PDFs are defined
in such interval, see [1]. We now briefly review the status of the research
on the truncated gamma distribution (TG). A first attempt to deduce the
parameters of a TG can be found in [2], [3] derived the minimum variance un-
biased estimate of the reliability function associated with the TG distribution
which is right truncated, [4, 5] estimated the parameters of a TG distribution
over 0 ≤ x < t, adopting the maximum likelihood estimator(MLE), [6] stud-
ied the properties of TG distributions and derived the simulation algorithms
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which dominate the standard algorithms for these distributions, [7] considered
a doubly-truncated gamma random variable restricted by both a lower (l) and
upper (u) truncation.

On adopting an astronomical point of view the left truncation is connected
with the minimum mass of a star, ≈ 0.02M⊙ and the right truncation with
the maximum mass of a star, ≈ 60M⊙, see [8]. This paper first review the
gamma PDF, introduces the right and left truncated gamma PDF and finally
analyzes two samples of stars and brown dwarfs (BD).

2 The various gamma distributions

This Section reviews the gamma PDF, introduces the truncated gamma PDF
and analyzes the data of two astronomical samples.

2.1 The gamma distribution

Let X be a random variable taking values x in the interval [0,∞]; the gamma

PDF is

f(x; b, c) =

(

x
b

)c−1

e−
x

b

bΓ (c)
(1)

where

Γ(z) =
∫

∞

0

e−ttz−1dt , (2)

is the gamma function, b > 0 is the scale and c > 0 is the shape, see formula
(17.23) in [5]. Its expected value is

E(x; b, c) = bc , (3)

and its variance,

V ar(x; b, c) = b2c . (4)

The mode is at

m(x; b, c) = bc − b when c > 1 . (5)

The distribution function (DF) is

DF (x; b, c) =
γ(c, x

b
)

Γ (c)
, (6)

where

γ(a, z) =
∫ z

0

ta−1e−tdt, (7)
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is the lower incomplete gamma function, see [9, 10]. The two parameters can
be estimated by matching the moments

b =
s2

x̄
(8)

c = (
x̄

s
)2 , (9)

where s2 and x̄ are the sample variance and the sample mean. More details
can be found in [1].

2.2 The truncated gamma distribution

Let X be a random variable taking values x in the interval [xl, xu]; the trun-
cated gamma (TG) PDF is

f(x; b, c, xl, xu) = k
(

x

b

)c−1

e−
x

b (10)

where the constant k is

k =
c

bΓ
(

1 + c, xl

b

)

− bΓ
(

1 + c, xu

b

)

+ e−
xu

b b−c+1xu
c − e−

xl

b b−c+1xl
c

, (11)

where
Γ(a, z) =

∫

∞

z
ta−1e−tdt, (12)

is the upper incomplete gamma function, see [9, 10]. Its expected value is

E(b, c, xl, xu) = −b2k
(

−Γ
(

1 + c,
xl

b

)

+ Γ
(

1 + c,
xu

b

))

. (13)

The mode is at

m(x; b, c, xl, xu) = bc − b when c > 1 , (14)

but in order to exist the inequality xl < m < xu should be satisfied. The
distribution function is

DF (x; b, c, xl, xu) =

k
(

bΓ
(

1 + c,
xl

b

)

− bΓ
(

1 + c,
x

b

)

+ e−
x

b b−c+1xc − e−
xl

b b−c+1xl
c

)

. (15)

A random number generation can be implemented by solving for x the following
nonlinear equation

DF (x; b, c, xl, xu) −R = 0 , (16)
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where we have a pudendum number generator giving random numbers R be-
tween zero and one, see [11]. A simple derivation of the lower and upper
boundaries gives

x̃l = minimum of sample x̃u = maximum of sample . (17)

A first approximate derivation of b̃ and c̃ is through the standard estimation
of parameters of the gamma distribution. We compute the χ2 with these first
values of b̃ and c̃ and we search a numerical couple which gives the minimum
χ2. The χ2 is computed according to the formula

χ2 =
n

∑

i=1

(Ti − Oi)
2

Ti

, (18)

where n is the number of bins, Ti is the theoretical value, and Oi is the ex-
perimental value represented by the frequencies. The merit function χ2

red is
evaluated by

χ2

red = χ2/NF , (19)

where NF = n − k is the number of degrees of freedom, n is the number
of bins, and k is the number of parameters. The goodness of the fit can be
expressed by the probability Q, see equation 15.2.12 in [12], which involves the
degrees of freedom and the χ2. The Akaike information criterion (AIC), see
[13], is defined by

AIC = 2k − 2ln(L) , (20)

where L is the likelihood function and k the number of free parameters in the
model. We assume a Gaussian distribution for the errors and the likelihood
function can be derived from the χ2 statistic L ∝ exp(−χ2

2
) where χ2 has been

computed by Equation (18), see [14], [15]. Now the AIC becomes

AIC = 2k + χ2 . (21)

2.3 Data analysis

A first test is performed on the low-mass initial mass function in the young
cluster NGC 6611, see [16]. Table 1 shows the values of χ2

red, the AIC, the
probability Q, of the astrophysical fits and the results of the K-S test, the
maximum distance, D, between the theoretical and the astronomical DF as
well the significance level PKS , see [17, 18, 19, 12]. Figure 1 shows the fit with
the TG distribution of NGC 6611 and Figure 2 visually compares the three
types of fits for NGC 6611.

A second test is performed on low-mass stars in NGC 2362, see [20]. Table
2 shows the statistical parameters which characterize the astrophysical fits.
Figure 3 shows the fit with the TG distribution of NGC 2362 and Figure 4
visually compares the three types of fits for NGC 2362.
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Figure 1: Logarithmic histogram of mass distribution as given by NGC 6611
cluster data (207 stars + BDs) with a superposition of the TG distribution
when the number of bins, n, is 12, c = 1.287 , b = 0.372 , xl = 0.019 and xu

=1.36. Vertical and horizontal axes have logarithmic scales.

Figure 2: Histogram (step-diagram) of mass distribution as given by NGC 6611
cluster data (207 stars + BDs) with a superposition of the left TG distribution
(full line), the lognormal (dashed), and the four power laws (dot-dash-dot-
dash). Vertical and horizontal axes have logarithmic scales.
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Figure 3: Logarithmic histogram of mass distribution as given by NGC 2362
cluster data (272 stars) with a superposition of the TG distribution when the
number of bins, n, is 12, b = 0.161, c = 3.933, xl= 0.12 and xu =1.47 . Vertical
and horizontal axes have logarithmic scales.

Figure 4: Histogram (step-diagram) of mass distribution as given by NGC 2362
cluster data (272 stars) with a superposition of the left TG distribution (full
line), the lognornal (dashed), and the four power laws (dot-dash-dot-dash).
Vertical and horizontal axes have logarithmic scales.
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Table 1: Numerical values of NGC 6611 cluster data (207 stars + BDs). The
number of linear bins, n, is 20.

PDF parameters AIC χ2
red Q D PKS

lognormal σ=1.029,µLN = −1.258 71.24 3.73 1.3 10−7 0.09366 0.04959
gamma b=0.248 ,c = 1.717 62.83 3.26 3.15 106 0.109 0.0124

truncated gamma b=0.372 ,c =1.287 52.34 2.77 0.00017 0.09 0.061
xl=0.019, xu=1.46

four Eqn.(59) 81.39 5.18 2.41 19−9 0.12514 2.72 10−3

power laws in Zaninetti 2013

Table 2: Numerical values of of the NGC 2362 cluster data (272 stars). The
number of linear bins, n, is 20.

PDF parameters AIC χ2
red Q D PKS

lognormal σ=0.5,µLN = −0.55 37.64 1.86 0.013 0.07305 0.10486
gamma b=0.13 ,c =4.955 34.28 1.68 0.034 0.059 0.284

truncated gamma b=0.161 ,c =3.933 33.88 1.61 0.055 0.071 0.122
xl=0.12, xu=1.47

four Eqn.(58) 77.608 4.89 1.17 10−8 0.16941 2.6 10−7

power laws in Zaninetti 2013

3 Conclusions

The right or left TG PDF has been extensively investigated in the field of
mathematics , as an example [7] reports most of the mathematical details.
The application of the TG PDF in astronomy represents conversely a new
promising field. Here we have deduced the constant of normalization ,eqn.(11),
the average value ,eqn.(13), the DF , eqn.(15), and presented an algorithm for
the generation of the random numbers , (eqn.16). The application of the TG
PDF to the IMF is positive and both the reduced χ2 and the K-S test give
better results in respect to the standard PDFs used by the astronomers which
are the lognormal and the four power laws , see Tables 1 and 2. A comparison
with the left truncated beta PDF , see Tables 1 and 2 in [21] allows to say
that the left truncated beta PDF produces a better fit to the IMF in respect
to the truncated gamma PDF here analyzed.
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