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In the last decade the use of diamino N-heterocyclic carbenes (NHCs) A as ancillary ligands
for transition-metal catalysts and as organic catalysts on their own has proven very fruitful.
[1] The efficiency of NHCs is attributed to their strong σ-donor properties and sterically
demanding structure.[1,2] Not only have NHCs yielded improved transition metal catalysts,
but they have also lead to the isolation of unusual low-coordinate metal complexes,[2] which
often play a key role in catalytic processes. Recently, we reported the synthesis of stable cyclic
(alkyl)(amino)carbenes (CAACs) B[3] and demonstrated that CAACs can be even stronger
σ donors than NHCs, and lead to highly efficient palladium catalysts for the α-arylation of
ketones and aldehydes. Here we report that the peculiar steric and electronic properties of rigid
CAAC ligands allow the preparation of low-coordinate metal complexes, hitherto not isolable
with any other ligands.

To further evaluate the electronic properties of rigid CAAC B1, we attempted to prepare the
[RhCl(CO)2(B1)] complex, since the CO stretching frequencies of this type of rhodium
complexes are recognized as an excellent measure of the σ-donor ability of the ligand L, and
a large amount of data is available for comparison.[4] Reaction of carbene B1 with half an
equivalent of [{RhCl(cod)2}2] (cod = 1,5-cyclooctadiene) afforded complex 1, which after
purification by column chromatography on silica gel was obtained as orange crystals in 79%
yield (Scheme 1). The structure of 1 was unambiguously determined by single-crystal X-ray
diffraction.[5] Following the classical procedure, a solution of 1 in chloroform was treated with
an excess of CO. Surprisingly, the 13 C NMR spectrum of the product (95% yield) showed
only one CO signal, with a large coupling constant (JRh,C = 134 Hz), and not two signals with
smaller J values (JRh,C = 33–82 Hz), as observed for [RhCl(CO)2(L)] complexes.[4] It is known
that when bulky ligands L are present [RhCl(CO)2L] complexes can readily lose one CO ligand
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to give a chloro-bridged dimer.[6] However, single-crystal X-ray diffraction[5] revealed that
even in the solid state complex 2 is formally a 14-electron [RhCl(CO)L] monomer (Figure 1).

Interestingly, 2 can also be synthesized in 80% yield by reaction of one equivalent of carbene
B1 with half an equivalent of [{RhCl(CO)2}2]. The extreme hindrance provided by the menthyl
ring of CAAC B1, which is locked in the most sterically demanding conformation with respect
to the metal center, explains in part why dimerization does not occur. Moreover, the short Rh–
Ha (2.183 Å) and Rh–Hb (2.231 Å) distances suggest the existence of agostic interactions,
which bring additional stabilization to the metal center. In solution, an agostic interaction is
also apparent in the 1H NMR spectrum, which shows a broad multiplet (1H) at 0.08 ppm.
Complex 2 is indefinitely stable at room temperature in air. Related [RhClL2] complexes,
exemplified by the active species of Wilkinson3s catalyst [RhCl(PPh3)2], are known only as
transient species.[7] They have only been generated in situ by ligand dissociation[8] or by
hapticity changes;[9] otherwise they readily form chloro-bridged dimers, even when two very
bulky ligands L are present.[6] Although other neutral T-shaped formally 14-electron RhI

complexes have been isolated, they are still very rare, and none of them have a bridging-capable
halide ligand like complex 2.[10,11]

The isolation of this low-coordinate RhI complex 2 made us confident that other low-ligated
transition-metal complexes could be stabilized by rigid CAAC B1. After close scrutiny of the
literature, it came to our attention that other ligands, particularly NHCs, have consistently failed
to allow the isolation of cationic 14-electron [Pd(All)(L)]+ complexes (Scheme 2, All =allyl).
[12] In 2003, Nolan et al.[12a] were able to abstract chloride from complex 3, but the cationic
complex generated was either unstable and decomposed upon workup or isolated and
structurally characterized as an acetonitrile adduct. In 2005, Porschke et al.[12b] reported that
chloride abstraction with thallium salts from NHC complexes 3 led to ionic binuclear
compounds, which result from combination of the transiently formed desired cationic species
with the starting neutral complex. Most recently, Glorius et al.[12c] generated cationic complex
4, which, despite intramolecular stabilization by double-bond complexation, appeared to be
rather unstable and was only characterized by 1H NMR spectroscopy.

In marked contrast, chloride abstraction from [PdCl-(All)(B1)] (5)[3] with a stoichiometric
amount of AgBF4 produced the elusive cationic palladium complex 6 as yellow crystals (88%
yield, Scheme 3). The structure of 6 was unambiguously established by single-crystal X-ray
diffraction (Figure 2).[5] As expected, 6 has a T-shaped geometry with no interaction between
the metal atom and tetrafluoroborate anion (shortest Pd–F distance 3.88 Å). Similar to the
above-mentioned RhI complex 2, at least one of the axial H atoms of the menthyl ring provides
a stabilizing agostic interaction (Pd–Ha 2.048, Pd–Hb 2.509 Å). This interaction is also
apparent from the 1H NMR spectrum, which shows a broad multiplet (1H) at −0.17 ppm. This
is the first example of a stable, formally 14-electron, PdII cation.[13]

To further demonstrate the increased stabilization of metal centers provided by the rigid
menthyl moiety of carbene B1, we attempted to prepare complexes analogous to 2 and 6, using
the CAAC B2, featuring the unlocked and therefore flexible cyclohexyl ring.[3,14] Treatment
of [{RhCl(CO)2}2] with two equivalents of carbene B2 afforded exclusively the classical
dicarbonyl complex 7, while treatment of 8[3] with AgBF4 led to rapid formation of palladium
black (Scheme 4). Clearly, in contrast to B1, the cyclohexane ring of CAAC B2 can flip to the
less sterically demanding conformation, in which no H atoms are available for strong agostic
interactions with the metal center.

The isolation of complexes 2 and 6 clearly demonstrates the advantages of rigid CAACs over
classical ligands. By manipulating the quaternary carbon atom adjacent to the carbene center
it is possible to design ligands with an electronically active wall of protection for the metal
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center. We are currently exploring the possibility that CAAC ligands will stabilize even lower
coordinate metal complexes.

Experimental Section
All manipulations were performed under an inert atmosphere of argon by using standard
Schlenk techniques. Dry, oxygen-free solvents were employed. 1H and 13C NMR spectra were
recorded on Varian Inova 300, 500 and Bruker Avance 300 spectrometers.

1
A solution of carbene B1[3] (0.45 g, 1.18 mmol) in THF (10 mL) was added at −78°C to a
stirred solution of [{RhCl(cod)2}2] (0.26 g, 0.53 mmol) in THF (5 mL). The solution was
warmed to room temperature and stirred for 3 h. After evaporation of the solvent under vacuum,
washing with hexane (15 mL), and purification by column chromatography on silica gel with
diethyl ether as eluant, complex 1 was obtained as an orange powder (0.52 g, 79%).
Recrystallization from diethyl ether/pentane at −20°C afforded 1 as orange crystals (m.p. 184–
186°C).  (CHCl3). 1H NMR (CDCl3, 25 °C, 300 MHz): δ=7.41–7.54 (m, 2H,
Har), 7.17–7.20 (m, 1H, Har), 5.44 (m, 1H, CHcod), 4.65 (m, 1H, CHcod), 4.21 (m, 1H,
CHcod), 3.06–3.23 (m, 5H), 2.68 (m, 2H), 2.51 (d, 1H, J = 12.9 Hz), 1.99–2.13 (m, 4H), 1.77
(d, 3H, CHCH3, J = 6.0 Hz), 1.45–1.71 (m, 10H), 1.29 (d, 3H, CHCH3, J = 6.6 Hz), 1.24 (d,
3H, CHCH3, J = 6.6), 1.20 (s, 6H), 1.11 (d, 3H, CHCH3, J = 6.3 Hz), 1.04 (d, 3H, CHCH3, J
=6.3 Hz), 0.97 (d, 3H, CHCH3, J =6.6 Hz), 0.92 ppm (d, 3H, CHCH3, J = 6.3 Hz). 13C NMR
(CDCl3, 25 °C, 75 MHz): δ=278.26 (d, J =44.5 Hz), 148.76, 146.13, 138.42, 128.94, 127.28,
124.30, 100.03 (d, J =6.0 Hz), 99.72 (d, J =5.3 Hz), 76.62, 72.44 (d, J =16.2 Hz), 70.69, 60.43
(d, J =14.5 Hz), 54.96, 51.34, 49.81, 36.42, 35.53, 33.69, 32.93, 31.63, 29.63, 29.34, 29.13,
29.03, 28.48, 27.97, 27.70, 26.71, 25.78, 25.59, 24.90, 22.35, 22.27 ppm.

2
Carbon monoxide was bubbled (60 min) through a solution of complex 1 (0.58 g, 0.92 mmol)
in chloroform (15 mL). After evaporation of the solvent under vacuum and washing with
hexane (10 mL), complex 2 was obtained as an orange powder (0.48 g, 95%). Alternatively, a
solution of carbene B1 (0.40 g, 1.04 mmol) in THF (5 mL) was added at −78°C to a stirred
solution of [{RhCl(CO)2}2] (0.18 g, 0.47 mmol) in THF (5 mL). The solution was warmed to
room temperature and stirred for 2 h. After evaporation of the solvent under vacuum and
washing with hexane (20 mL), a solid residue was obtained (0.41 g, 80%). Recrystallization
from chloroform by slow evaporation at room temperature afforded 2 as orange crystals (m.p.
251°C decomp).  (CHCl3). 1H NMR (CDCl3, 25°C, 300 MHz): δ=7.45 (m, 1H,
Har), 7.28 (m, 2H, Har), 2.83 (sept, 2H, CHCH3, J = 6.6 Hz), 2.60 (m, 1H), 2.47 (d, 1H, J =
13.5 Hz), 2.27 (m, 1H), 1.89–2.12 (m, 5H), 1.61 (d, 3H, CHCH3, J = 6.6 Hz), 1.24–1.44 (m,
20H), 1.13 (d, 3H, CHCH3, J = 5.7), 1.06 (d, 3H, CHCH3, J = 6.9), 0.08 ppm (m, 1H,
Hagos). 13C NMR (CDCl3, 25 °C, 75 MHz): δ= 248.47 (d, J =48.8 Hz), 181.21 (d, J =134.3
Hz), 146.20, 145.72, 136.90, 130.28, 125.82, 125.70, 77.67, 71.85, 51.85, 50.39, 46.26, 40.60,
35.13, 34.78, 30.58, 30.38, 29.13, 27.11, 26.43, 26.26, 24.29, 24.16, 22.63, 20.19 ppm. IR
(CH2Cl2): ν̃(CO) = 1989 cm−1.

6
A 1:1 mixture of carbene complex 5[3] (0.50 g, 0.9 mmol) and silver tetrafluoroborate was
cooled to −40°C and 5 mL of fluorobenzene was added. The suspension was warmed to room
temperature and stirred for 30 min. After filtration, evaporation of the solvent under vacuum,
and washing with hexane (10 mL), a solid residue was obtained (0.48 g, 88%). Recrystallization
from toluene/fluorobenzene at −20°C afforded 6 as yellow crystals (m.p. 157–159°C decomp).
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 (C6H5F). 1H NMR (C6D5F, 25°C, 300 MHz): δ=6.78–7.15 (m, 3H, Har), 5.00 (m,
1H, Hallyl), 3.34–3.48 (m, 2H, Hallyl), 2.90 (m, 2H), 2.59 (m, 2H), 2.36–2.41 (m, 1H), 1.91–
2.17 (m, 3H), 1.65–1.82 (m, 3H), 1.13–1.22 (m, 12H), 1.06 (d, 3H, CHCH3, J = 6.3 Hz), 1.05
(d, 3H, CHCH3, J = 6.9 Hz), 0.99 (d, 3H, CHCH3, J = 6.9 Hz), 0.98 (s, 3H, CH3), 0.88 (d, 3H,
CHCH3, J = 6.9 Hz), 0.73 (d, 3H, CHCH3, J = 6.9 Hz), –0.17 ppm (m, 1H, Hagos). 13C NMR
(C6D5F, 25 °C, 75 MHz): δ=251.46, 145.54, 145.33, 133.42, 130.92, 126.33, 126.17, 118.76,
81.45, 70.74, 51.49, 50.60, 45.86, 40.19, 35.20, 33.95, 29.87, 29.17, 28.93, 26.86, 26.16, 25.44,
23.88, 23.60, 22.94, 22.55, 18.58 ppm.

7
A solution of carbene B2 (0.56 g, 1.72 mmol) in THF (10 mL) was added at −78°C to a stirred
solution of [{RhCl(CO)2}2] (0.30 g, 0.77 mmol) in THF (10 mL). The solution was warmed
to room temperature and stirred for 3 h. After evaporation of the solvent under vacuum, washing
with hexane (20 mL), and extraction with chloroform (20 mL), a gray solid residue was
obtained (0.67 g, 84%). 1H NMR (CDCl3, 25 °C, 300 MHz): δ=7.42–7.47 (m, 1H, Har), 7.28–
7.34 (m, 2H, Har), 3.02 (sept, 2H, CHCH3, J = 6.6 Hz), 2.58 (m, 2H, CH2), 2.09 (s, 2H,
CH2), 1.39–1.90 (m, 8H, CH2), 1.34 (d, 6H, CHCH3, J =6.6 Hz), 1.33 (d, 6H, CHCH3, J =
6.6), 1.32 ppm (s, 6H, CH3). 13C NMR (CDCl3, 25 °C, 100.5 MHz): δ=259.82 (d, J =38.4 Hz),
185.95 (d, J =50.7 Hz), 184.61 (d, J =77.3 Hz), 146.41, 134.15, 129.56, 125.49, 81.81, 62.93,
45.27, 38.34, 30.47, 29.12, 28.78, 25.35, 24.94, 22.48 ppm. IR (CH2Cl2): ν̃(CO) = 1994, 2077
cm−1.
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Figure 1.
Molecular structure of 2 in the solid state. Selected bond lengths [Å] and angles [°]: N–C1
1.3174(14), C1–C2 1.5368(15), C1–Rh 1.9399(10) Rh–Cl 2.3740 (3), Rh–C3 1.7955(11), C3–
O 1.1433(14), Rh–Ha 2.183(17), Rh–Hb 2.231(17); N-C1-C2 108.70(9), C1-Rh-C3 97.99(5),
C3-Rh-Cl 94.55(4), C1-Rh-Cl 167.35(3), Rh-C3-O 173.46(10).
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Figure 2.
Structure of the cation of 6 in the solid state. Selected bond lengths [Å] and angles [°]: N–C1
1.293(3), C1–C2 1.519(3), C1–Pd 2.038(3), Pd–Ha 2.048, Pd–Hb 2.509, Pd–C3 2.272(13),
Pd–C4 2.148(4), Pd–C5 2.126(9); N-C1-C2 109.4(2), N-C1-Pd 133.96(18), C2-C1-Pd 116.64
(15).
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Scheme 1.
Synthesis of [RhCl(CO)(B1)] complex 2.
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Scheme 2.
Previous attempts to prepare cationic 14-electron [Pd(All)(L)]+ complexes.
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Scheme 3.
Synthesis of [Pd(All)(B1)]+ complex 6.
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Scheme 4.
Synthesis of [RhCl(CO)2(B2)] complex 7, and attempted chloride abstraction from [PdCl(All)
(B2)] complex 8.
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