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A RIGID IRREGULAR CONNECTION ON THE PROJECTIVE LINE

EDWARD FRENKEL1 AND BENEDICT GROSS

To Victor Kac and Nick Katz on their 65th birthdays

Abstract. In this paper we construct a connection ∇ on the trivial G-bundle on P1

for any simple complex algebraic group G, which is regular outside of the points 0
and ∞, has a regular singularity at the point 0, with principal unipotent monodromy,
and has an irregular singularity at the point ∞, with slope 1/h, the reciprocal of the
Coxeter number of G. The connection ∇, which admits the structure of an oper in
the sense of Beilinson and Drinfeld, appears to be the characteristic 0 counterpart of
a hypothetical family of ℓ-adic representations, which should parametrize a specific
automorphic representation under the global Langlands correspondence. These ℓ-
adic representations, and their characteristic 0 counterparts, have been constructed
in some cases by Deligne and Katz. Our connection is constructed uniformly for any
simple algebraic group, and characterized using the formalism of opers. It provides
an example of the geometric Langlands correspondence with wild ramification. We
compute the de Rham cohomology of our connection with values in a representation
V of G, and describe the differential Galois group of ∇ as a subgroup of G.

1. Introduction

The Langlands correspondence relates automorphic representations of a split reduc-
tive group G over the ring of adèles of a global field F and ℓ-adic representations of the
Galois group of F with values in a (slightly modified) dual group of G (see Section 2).
On the other hand, the trace formula gives us an effective tool to find the multiplici-
ties of automorphic representations satisfying certain local conditions. In some cases
one finds that there is a unique irreducible automorphic representation with prescribed
local behavior at finitely many places. A special case of this, analyzed in [G3], occurs
when F is the function field of the projective line P1 over a finite field k, and G is
a simple group over k. We specify that the local factor at one rational point of P1

is the Steinberg representation, the local factor at another rational point is a simple
supercuspidal representation constructed in [GR], and that the local representations
are unramified at all other places of F . In this case the trace formula shows that there
is an essentially unique automorphic representation with these properties. Hence the
corresponding family of ℓ-adic representations of the Galois group of F to the dual
group Ǧ should also be unique. An interesting open problem is to find it.

Due to the compatibility of the local and global Langlands conjectures, these ℓ-adic
representations should be unramified at all points of P1 except for two rational points
0 and ∞. At 0 it should be tamely ramified, and the tame inertia group should map
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2 EDWARD FRENKEL AND BENEDICT GROSS

to a subgroup of Ǧ topologically generated by a principal unipotent element. At ∞ it
should be wildly ramified, but in the mildest possible way.

Given a representation V of the dual group Ǧ, we would obtain an ℓ-adic sheaf on
P1 (of rank dimV ) satisfying the same properties. The desired lisse ℓ-adic sheaves on
Gm have been constructed by P. Deligne [D1] and N. Katz [Katz2] in the cases when
Ǧ is SLn, Sp2n, SO2n+1 or G2 and V is the irreducible representation of dimension
n, 2n, 2n + 1, and 7, respectively. However, there are no candidates for these ℓ-adic
representations known for other groups Ǧ.

In order to gain a better understanding of the general case, we consider an analogous
problem in the framework of the geometric Langlands correspondence. Here we switch
from the function field F of a curve defined over a finite field to an algebraic curve
X over the complex field. In the geometric correspondence (see, e.g., [F2]) the role of
an ℓ-adic representation of the Galois group of F is played by a flat Ǧ-bundle on X
(that is, a pair consisting of a principal Ǧ-bundle on X and a connection ∇, which is
automatically flat since dimX = 1). Hence we look for a flat Ǧ-bundle on P1 having
regular singularity at a point 0 ∈ P1 with regular unipotent monodromy and an irregular
singularity at another point∞ ∈ P1 with the smallest possible slope 1/h, where h is the
Coxeter number of Ǧ (see [D2] and Section 5 for the definition of slope). By analogy
with the characteristic p case discussed above, we expect that a flat bundle satisfying
these properties is unique (up to the action of the group Gm of automorphisms of P1

preserving the points 0,∞).
In this paper we construct this flat Ǧ-bundle for any simple algebraic group Ǧ. A

key point of our construction is that this flat bundle is equipped with an oper structure.
The notion of oper was introduced by A. Beilinson and V. Drinfeld [BD2] (following
the earlier work [DS]), and it plays an important role in the geometric Langlands
correspondence. An oper is a flat bundle with an additional structure; namely, a
reduction of the principal Ǧ-bundle to a Borel subgroup B̌ which is in some sense
transverse to the connection ∇. In our case, the principal Ǧ-bundle on P1 is actually
trivial, and the oper B̌-reduction is trivial as well. If N is a principal nilpotent element
in the Lie algebra of a Borel subgroup opposite to B̌ and E is a basis vector of the
highest root space for B̌ on ǧ = Lie(Ǧ), then our connection takes the form

(1.1) ∇ = d+N
dt

t
+Edt,

where t is a parameter on P1 with a simple zero at 0 and a simple pole at ∞. We also
give in Section 5.1 a twisted analogue of this formula, associated to an automorphism
of Ǧ of finite order preserving B̌ (answering a question raised by P. Deligne).

For any representation V of Ǧ our connection gives rise to a flat connection on the
trivial vector bundle of rank dimV on P1. We examine this connection more closely in
the special cases analyzed by Katz in [Katz2]. In these cases Katz constructs not only
the ℓ-adic sheaves, but also their counterparts in characteristic 0, so we can compare
with his results. These special cases share the remarkable property that a regular
unipotent element of Ǧ has a single Jordan block in the representation V . For this
reason our oper connection can be converted into a scalar differential operator of order
equal to dimV (this differential operator has the same differential Galois group as the
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original connection). We compute this operator in all of the above cases and find perfect
agreement with the differential operators constructed by Katz [Katz2]. This strongly
suggests that our connections are indeed the characteristic 0 analogues of the special
ℓ-adic representations whose existence is predicted by the Langlands correspondence
and the trace formula.

Another piece of evidence is the vanishing of the de Rham cohomology of the inter-
mediate extension to P1 of the D-module on Gm defined by our connection with values
in the adjoint representation of Ǧ. This matches the expectation that the correspond-
ing cohomology of the ℓ-adic representations also vanish, or equivalently, that the their
global L-function with respect to the adjoint representation of Ǧ is equal to 1. We
give two proofs of the vanishing of this de Rham cohomology. The first uses non-trivial
results about the principal Heisenberg subalgebras of the affine Kac–Moody algebras
due to V. Kac [Kac1, Kac2]. The second uses an explicit description of the differential
Galois group of our connection and its inertia subgroups [Katz1].

Since the first de Rham cohomology is the space of infinitesimal deformations of our
local system (preserving its formal types at the singular points 0 and∞) [Katz3, BE, A],
its vanishing means that our local system on P1 is rigid. We also prove the vanishing
of the de Rham cohomology for small representations considered in [Katz2]. This is
again in agreement with the vanishing of the cohomology of the corresponding ℓ-adic
representations shown by Katz. Using our description of the differential Galois group
of our connection and a formula of Deligne [D2] for the Euler characteristic, we give
a formula for the dimensions of the de Rham cohomology groups for an arbitrary
representation V of Ǧ.

Finally, we describe some connections which are closely related to ∇, and others
which are analogous to ∇ coming from subregular nilpotent elements. We also use ∇
to give an example of the geometric Langlands correspondence with wild ramification.

The paper is organized as follows. In Section 2 we introduce the concepts and nota-
tion relevant to our discussion of automorphic representations. In Section 3 we give the
formula for the multiplicity of automorphic representations from [G3]. This formula
implies the existence of a particular automorphic representation. In Section 4 we sum-
marize what is known about the corresponding family of ℓ-adic representations. We
then switch to characteristic 0. In Section 5 we give an explicit formula for our connec-
tion for an arbitrary complex simple algebraic group, as well as its twisted version. In
Section 6 we consider the special cases of representations on which a regular unipotent
element has a single Jordan block. In these cases our connection can be represented by
a scalar differential operator. These operators agree with those found earlier by Katz
[Katz2].

We then take up the question of computation of the de Rham cohomology of our con-
nection. After some preparatory material presented in Sections 7–9 we prove vanishing
of the de Rham cohomology on the adjoint and small representations in Sections 10
and 11, respectively. We also show that the de Rham cohomology can be non-trivial for
other representations using the case of SL2 as an example in Section 12. In Section 13
we determine the differential Galois group of our connection. We then use it in Section
14 to give a formula for the dimensions of the de Rham cohomology for an arbitrary
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finite-dimensional representation of Ǧ. In particular, we give an alternative proof of
the vanishing of de Rham cohomology for the adjoint and small representations. In
Section 15 we discuss some closely related connections.

Finally, in Section 16 we describe what the geometric Langlands correspondence
should look like for our connection.

Acknowledgments. We met and started this project while we were both visit-
ing the Institut Mathématique de Jussieu in Paris. E.F. thanks Fondation Sciences
Mathématiques de Paris for its support and the group “Algebraic Analysis” at Univer-
sité Paris VI for hospitality during his stay in Paris.

We have had several discussions of this problem with Dennis Gaitsgory and Mark
Reeder, and would like to thank them for their help. We thank Dima Arinkin and
Pierre Schapira for answering our questions about D-modules and deformations, and
Pierre Deligne for his help on the setup of the global Langlands correspondence. We
owe a particular debt of gratitude to Nick Katz, who explained his beautiful results
carefully, and guided us in the right direction.

2. Simple algebraic groups over global function fields

Let k be a finite field, of order q. Let G be an absolutely almost simple algebraic
group over k (which we will refer to as a simple group for brevity). The group G
is quasi-split over k, and we fix a maximal torus A ⊂ B ⊂ G contained in a Borel
subgroup of G over k. Let k′ be the splitting field of G, which is the splitting field of
the torus A, and put Γ = Gal(k′/k). Then Γ is a finite cyclic group, of order 1, 2, or 3.
Let Z denote the center of G, which is a finite, commutative group scheme over k.

Let Ǧ denote the complex dual group of G. This comes with a pinning Ť ⊂ B̌ ⊂ Ǧ,
as well as an action of Γ which permutes basis vectors X−α of the simple negative root
spaces. The principal element N =

∑
X−α in ǧ = Lie(Ǧ) is invariant under Γ ([G1]).

Let Ž denote the finite center of Ǧ, which also has an action of Γ.
There is an element ǫ in Z(Ǧ)Γ which satisfies ǫ2 = 1 and is defined as follows. Let

2ρ be the co-character of Ť which is the sum of positive co-roots, and define

ǫ = (2ρ)(−1).

Since the value of ρ on any root is integral, ǫ lies in Z(Ǧ). It is also fixed by Γ. We
have

ǫ = 1 ←→ ρ is a co-character of Ť .

In order to avoid choosing a square root of q in the construction of Galois repre-
sentations, we will use the following modification Ǧ1 of Ǧ, which was suggested by
Deligne. Let Ǧ1 = Ǧ × Gm/(ǫ × −1). We have homomorphisms Gm → Ǧ1 → Gm

with composite z 7→ z2, The group Γ acts on Ǧ1, trivially on Gm. The co-character
group X•(Ť1) contains the direct sum X•(Ť ) ×X•(Gm) with index 2. The advantage
of passing to Ǧ1 is that we can choose a co-character

η : Gm → Ť1

fixed by Γ which satisfies

〈η, α〉 = 1
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for all simple roots α of Ǧ. (This is impossible to do for Ǧ when ǫ 6= 1.) Having chosen

η, we let w(η) ∈ Z be defined by composite map Gm
η
→ Ǧ1 → Gm, z 7→ zw(η). Then

w(η) is odd precisely when ǫ 6= 1.

Let X be a smooth, geometrically connected, complete algebraic curve over k, of
genus g. Let F = k(X) be the global function field of X. We fix two disjoint, non-
empty sets S, T of places v of F , and define the degrees

deg(S) =
∑

v∈S

deg v ≥ 1,

deg(T ) =
∑

v∈T

deg v ≥ 1.

A place v of F corresponds to a Gal(k/k)-orbit on the set of points X(k). The degree
deg v of v is the cardinality of the orbit. Let

MG =
⊕

d≥2

Vd(1− d)

be the motive of the simple group G over F = k(X) ([G2]). The spaces Vd, of invariant
polynomials of degree d, are all rational representations of the finite, unramified quo-
tient Γ of Gal(F s/F ). The Artin L-function of V = Vd, relative to the sets S and T , is
defined by

LS,T (V, s) =
∏

v 6∈S

det(1− Frv q
−s
v |V )−1

∏

v∈T

det(1− Frv q
1−s
v |V ).

Here Frv = Frdeg v, where Fr is the Frobenius generator of Γ, x 7→ xq, and qv = qdeg v.
This is known to be a polynomial of degree dimV (2g − 2 + degS + deg T ) in q−s with
integral coefficients and constant coefficient 1 ([We]). We define

LS,T (MG) =
∏

d≥2

LS,T (Vd, 1− d),

which is a non-zero integer. In the next section, we will use the integer LS,T (MG)
to study spaces of automorphic forms on G over F . We end this section with some
examples.

Let 2 = d1, d2, . . . , drk(G) = h be the degrees of generators of the algebra of invariant
polynomials of the Weyl group, where rk(G) = dimA is the rank of G over the splitting
field k′ and h is the Coxeter number. If G is split,

LS,T (MG) =

rk(G)∏

i=1

ζS,T (1− di),

where ζS,T is the zeta-function of the curve X − S relative to T . Now assume that G
is not split, but that G is not of type D2n. Then each Vd has dimension 1, Γ has order
2, and Γ acts non-trivially on Vd if and only if d is odd. Hence

LS,T (MG) =
∏

di even

ζS,T (1− di)
∏

di odd

LS,T (ǫ, 1− di),
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where ǫ is the non-trivial quadratic character of Γ.

3. Automorphic representations

Let A be the ring of adèles of the function field F = k(X). Then G(F ) is a discrete
subgroup, with finite co-volume, in G(A). Let L denote the discrete spectrum, which
is a G(A)-submodule of L2(G(F )\G(A)). Any irreducible representation π of G(A) has
finite multiplicity m(π) in L.

We will count the sum of multiplicities over irreducible representations π = ⊗̂πv

with specified local behavior. Specifically, for v 6∈ S ∪ T , we insist that πv be an
unramified irreducible representation of G(Fv), in the sense that the open compact
subgroup G(Ov) fixes a non-zero vector in πv. At places v ∈ S, we insist that πv is
the Steinberg representation of G(Fv). Finally, at places v ∈ T , we insist that πv is a
simple supercuspidal representation of G(Fv), of the following type (cf. [GR]). We let
χv : Pv → µp be a given affine generic character of a pro-p-Sylow subgroup Pv ⊂ G(Ov).
We recall that χv is non-trivial on the simple affine root spaces of the Frattini quotient
of Pv. (This is the affine analogue of a generic character of the unipotent radical of
a Borel subgroup.) Extend χv to a character of Z(qv) × Pv which is trivial on Z(qv);

then the compactly induced representation Ind
G(Fv)
Pv×Z(qv)(χv) of G(Fv) is multiplicity-

free, with #Z(Ǧ)Γ irreducible summands. We insist that πv be a summand of this
induced representation.

The condition imposed on πv only depends on the Iv-orbit of the generic character
χv, where Iv is the Iwahori subgroup of G(Fv) which normalizes Pv. The quotient
group Iv/Pv is isomorphic to A(qv), where A is the torus in the Borel subgroup, and
there are (qv−1) ·#Z(qv) different orbits. We note that affine generic characters form a
principal homogeneous space for the group Aad(qv)×F×qv

, where the latter group maps
a local parameter t to λt.

Using the simple trace formula, and assuming that some results of Kottwitz [Kot] on
the vanishing of the local orbital integrals of the Euler–Poincaré function on non-elliptic
classes extend from characteristic zero to characteristic p, we obtain the following for-
mula for multiplicities [G3]:

Assume that p does not divide #Z(Ǧ). Then

∑

π as above

m(π) = LS,T (MG) ·
#Z(Ǧ)Γ∏

v∈S #Z(Ǧ)Γv(−1)rk(G)v
·

#Z(q)∏
v∈T #Z(qv)(−1)rk(G)v

,

where rk(G)v is the rank of G over Fv.

In the special case where X = P1 has genus 0, S = {0} and T = {∞}, we have

LS,T (Vd, s) = 1, for all d, s.

Hence
LS,T (MG) = 1.

Since Γv = Γ and qv = q in this case, we find that
∑

m(π) = 1.
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Hence there is a unique automorphic representation in the discrete spectrum which is
Steinberg at 0, simple supercuspidal for a fixed orbit of generic characters at ∞, and
unramified elsewhere. This global representation is defined over the field of definition
of π∞, which is a subfield of Q(µp). We will consider its Langlands parameter in the
next section.

4. ℓ-adic sheaves on Gm

Consider the automorphic representation π of the simple group G over F = k(t),
described at the end of Section 3. This representation is defined over the field Q(µp).
Its local components πv are unramified irreducible representations of G(Fv), for all
v 6= 0,∞. The representation π0 is the Steinberg representation, and π∞ is a simple
supercuspidal representation.

Associated to π and the choice of a co-character η : Gm → Ť1 ⊂ Ǧ1, as described in
Section 2, we should (conjecturally) have a global Langlands parameter. This will be
a continuous homomorphism

ϕλ : Gal(F s/F )→ Ǧ1(Q(µp)λ) ⋊ Γ

for every finite place λ of Qℓ(µp) dividing a rational prime ℓ 6= p. Here we view Ǧ1 as
a pinned, split group over Q. The homomorphism ϕλ should be unramified outside of
0 and ∞, and map Frv to the η-normalized Satake parameter for πv [G4], which is a
semi-simple conjugacy class in Ǧ1(Q(µp)) ⋊ Γv. If this is true, the projection of ϕλ to
Gm(Q(µp)λ) will be the w(η)-power of the ℓth cyclotomic character.

At 0, ϕℓ should be tamely ramified. The tame inertia group should map to a Zℓ-
subgroup of Ǧ(Qℓ(µp)), topologically generated by a principal unipotent element. At

∞, ϕℓ should be wildly ramified, but trivial on the subgroup I
1/h+
∞ in the upper num-

bering filtration, where h is the Coxeter number of G. If p does not divide h, the image
of inertia should lie in the normalizer N(Ť ) of a maximal torus, and should have the
form E · 〈n〉. Here E ⊂ Ť [p] is a regular subgroup isomorphic to the additive group of
the finite field Fp(µh) and n maps to a Coxeter element w of order h in the quotient

group N(Ť )/Ť . The element n is both regular and semi-simple in Ǧ, and satisfies
nh = ǫ ∈ Z(Ǧ), with ǫ2 = 1.

If

ρ : Ǧ1 ⋊ Γ→ GL(V )

is a representation over Q, we would obtain from ρ ◦ ϕλ a lisse λ-adic sheaf F on Gm

over k, with rank(F) = dim(V ). Katz has constructed and studied these lisse sheaves
in the cases when the Coxeter element in the Weyl group has a single orbit on the set
of non-zero weights for Ť on V (cf. Theorem 11.1 in [Katz2]). In all of these cases, the
principal nilpotent element N =

∑
X−α has a single Jordan block on V . We list them

in the table below.
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Ǧ dimV
SLn n
Sp2n 2n
SO2n+1 2n+ 1
G2 7

In all of these cases, there are no I∞-invariants on F and sw∞(F) = 1. If j : Gm →֒
P1 is the inclusion, Katz has shown that H i(P1, j∗F) = 0 for all i. Hence L(π, V, s) = 1.

More generally, consider the adjoint representation ǧ. Then the sheaf F has rank
equal to the dimension of Ǧ. In this case, we predict that

1) I0 has rk(Ǧ) Jordan blocks on F ;
2) I∞ has no invariants on F , and sw∞(F) = rk(Ǧ);
3) H i(P1, j∗F) = 0 for all i;
4) L(π, ǧ, s) = 1.

Katz has verified this in the cases tabulated above, using the fact that the adjoint
representation ǧ of Ǧ appears in the tensor product of the representation V and its
dual.

It is an open problem to construct the λ-adic sheaf F on Gm over the finite field k for
general groups Ǧ. We consider an analogous problem, for local systems on Gm(C) =
C×, in the next section.

5. The connection

Let Ǧ be a simple algebraic group over C and ǧ its Lie algebra. Fix a Borel subgroup
B̌ ⊂ Ǧ and a torus Ť ⊂ B̌. For each simple root αi, we denote by X−αi

a basis vector
in the root subspace of ǧ = Lie(Ǧ) corresponding to −αi. Let E be a basis vector in
the root subspace of ǧ corresponding to the maximal root θ. Set

N =

rk(ǧ)∑

i=1

X−αi
.

We define a connection ∇ on the trivial Ǧ-bundle on P1 by the formula

(5.1) ∇ = d+N
dt

t
+Edt,

where t is a parameter on P1 with a simple zero at 0 and a simple pole at ∞.
The connection ∇ is clearly regular outside of the points t = 0 and ∞, where the

differential forms dt
t and dt have no poles. We now discuss the behavior of (5.1) near

the points t = 0 and ∞. It has regular singularity at t = 0, with the monodromy being
a regular unipotent element of Ǧ. It also has a double pole at t = ∞, so is irregular,
and its slope there is 1/h, where h is the Coxeter number. Here we adapt the definition
of slope from [D2], Theorem 1.12: a connection on a principal Ǧ-bundle with irregular
singularity at a point x on a curve X has slope a/b > 0 at this point if the following
holds. Let s be a uniformizing parameter at x, and pass to the extension given by
adjoining the bth root of s: ub = s. Then the connection, written using the parameter
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u in the extension and a particular trivialization of the bundle on the punctured disc at
x should have a pole of order a+1 at x, and its polar part at x should not be nilpotent.

To see that our connection has slope 1/h at the point ∞, suppose first that Ǧ has
adjoint type. In terms of the uniformizing parameter s = t−1 at∞, our connection has
the form

d−N
ds

s
− E

ds

s2
.

Now take the covering given by uh = s. Then the connection becomes

d− hN
du

u
− hE

du

uh+1
.

If we now make a gauge transformation with g = ρ(u) in the torus Ť , where ρ is the
co-character of Ť which is given by half the sum of the positive co-roots for B̌, this
becomes

(5.2) d− h(N + E)
du

u2
− ρ

du

u
.

The element N +E is regular and semi-simple, by Kostant’s theorem [Kos]. Since the
pole has order (a + 1) = 2 with a = 1, the slope is indeed 1/h. If Ǧ is not of adjoint
type, then g = ρ(u) might not be in Ť , but it will be after we pass to the covering
obtained by extracting a square root of u. The resulting slope will be the same.

Note that exp(ρ/h) is a Coxeter element in Ǧ, which normalizes the maximal torus
centralizing the regular element N + E. We therefore have a close analogy between
the local behavior of our connection ∇ and the desired local parameters in the λ-adic
representation ϕλ at both zero and infinity.

The connection we have defined looks deceptively simple. We now describe how we
used the theory of opers to find it. We recall from [BD2] that a (regular) oper on a
curve U is a Ǧ-bundle with a connection ∇ and a reduction to the Borel subgroup B̌
such that, with respect to any local trivialization of this B̌-reduction, the connection
has the form

(5.3) ∇ = d+

rk(ǧ)∑

i=1

ψiX−αi
+ v,

where the ψi are nowhere vanishing one-forms on U and v is a regular one-form taking
values in the Borel subalgebra b̌ = Lie(B̌). Here X−αi

are non-zero vectors in the root
subspaces corresponding to the negative simple roots −αi with respect to any maximal
torus Ť ⊂ B̌. Since the group B̌ acts transitively on the set of such tori, this definition
is independent of the choice of Ť .

Any B̌-bundle on the curve U = Gm may be trivialized. Therefore the space of
Ǧ-opers on Gm may be described very concretely as the quotient of the space of con-
nections (5.3), where

ψi ∈ C[t, t−1]×dt = C× · tZdt,

and v ∈ b̌[t, t−1]dt, modulo the gauge action of B̌[t, t−1].
We now impose the following conditions at the points 0 and ∞. First we insist that

at t = 0 the connection has a pole of order 1, with principal unipotent monodromy.
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The corresponding B̌[t, t−1]-gauge equivalence class contains a representative (5.3) with
ψi ∈ C×t−1dt for all i = 1, . . . , rk(ǧ) and v ∈ b̌[t]dt. By making a gauge transformation
by a suitable element in Ť , we can make ψi = dt

t for all i.
Second, we insist that the one-form v has a pole of order 2 at t = ∞, with leading

term in the highest root space ǧθ of b̌, which is the minimal non-zero orbit for B̌ on
its Lie algebra. Then v(t) = Edt, with E a non-zero vector of ǧθ. These basis vectors
are permuted simply-transitively by the group Gm of automorphisms of P1 preserving
0 and ∞ (that is, rescalings of the coordinate t). Our oper connection therefore takes
the form

(5.4) ∇ = d+N
dt

t
+Edt.

This shows that the oper satisfying the above conditions is unique up to the automor-
phisms of P1 preserving 0 and ∞.

We note that opers of this form (and possible additional regular singularities at other
points of P1) have been considered in [FF], where they were used to parametrize the
spectra of quantum KdV Hamiltonians. Opers of the form (5.4), where E is a regular
element of ǧ (rather than nilpotent element generating the maximal root subspace ǧθ,
as discussed here), have been considered in [FFT, FFR]. Finally, irregular connections
(not necessarily in oper form) with double poles and regular semi-simple leading terms
have been studied in [B].

5.1. Twisted version. In this paper we focus on the case of a “constant” group scheme
over Gm corresponding to Ǧ. More generally, we may consider group schemes over Gm

twisted by automorphisms of Ǧ. The connection ∇ has analogues for these group
schemes which we now describe. It is natural to view them as complex counterparts of
the λ-adic representation ϕλ for non-split groups. This answers a question raised by
Deligne.

Let σ be an automorphism of Ǧ of order n. It defines an automorphism of the Lie
algebra ǧ, which we also denote by σ. Define a group scheme Ǧσ on X = Gm as

follows. Let X̃ = Gm be the n-sheeted cyclic cover of X with a coordinate z such that

zn = t. Then Ǧσ is the quotient of X̃ × Ǧ, viewed as a group scheme over X, by the
automorphism σ̃ which acts by the formula (z, g) 7→ (ze2πi/n, σ(g)). It is endowed with
a (flat) connection. Hence we have a natural notion of a Ǧσ-bundle on X with a (flat)
connection. We now give an example of such an object which is a twisted analogue of
the flat bundles described above.

Take the trivial Ǧσ-bundle on X. Then a connection on it may be described con-
cretely as an operator

∇ = d+A(z)dz,

where A(z)dz is a σ̃-invariant ǧ-valued one-form on X̃.
Note that Ǧσ and Ǧσ′ are isomorphic if σ and σ′ differ by an inner automorphism

of Ǧ. Hence, without loss of generality, we may, and will, assume that σ is an auto-
morphism of Ǧ preserving the pinning we have chosen (thus, σ has order 1, 2 or 3).
In particular, it permutes the elements X−αi

∈ ǧ. Then, for A(z) as above, zA(z)

defines an element of the twisted affine Kac–Moody algebra ̂̌gσ, see [Kac2]. The lower



A RIGID IRREGULAR CONNECTION ON THE PROJECTIVE LINE 11

nilpotent subalgebra of this Lie algebra has generators X̂−αi
, i = 0, . . . , ℓσ, where ℓσ is

the rank of the σ-invariant Lie subalgebra of ǧ, and X̂−αi
, i = 1, . . . , ℓσ, are σ-invariant

linear combinations of the elements X−αj
of ǧ (viewed as elements of the constant Lie

subalgebra of ̂̌gσ). Explicit expressions for X̂−αi
in terms of ǧ may be found in [Kac2].

In the untwisted case the corresponding generators of the affine Kac–Moody algebra

(which is a central extension of ǧ[t, t−1], see Section 10) are X̂−αi
, i = i, . . . , ℓ = rk(ǧ),

and X̂−α0
= Et. Hence our connection (5.4) may be written as

∇ = d+
ℓ∑

i=0

X̂−αi

dt

t
.

We now adapt the same formula in the twisted case and define the following connec-
tion on the trivial Ǧσ-bundle on Gm:

(5.5) ∇ = d+

ℓσ∑

i=0

X̂−αi

dz

z
.

We propose (5.5) as a complex counterpart of the λ-adic representation ϕλ discussed
above in the case when the group G is quasi-split and Γ = 〈σ〉.

The notion of oper may be generalized to the twisted case as well. Namely, for any

smooth complex curve X equipped with an unramified n-sheeted covering X̃ we define
the group scheme Ǧσ in the same way as above. Since σ preserves a Borel subgroup
B̌ of Ǧ, the group scheme Ǧσ contains a group subscheme B̌σ. The Ǧσ-opers on X

(relative to X̃) are then Ǧσ-bundles on X with a connection ∇ and a reduction to B̌σ

satisfying the condition that locally the connection has the form

(5.6) ∇ = d+

ℓσ∑

i=1

ψiX̂−αi
+ v,

where ψi are nowhere vanishing one-forms and v takes values in the Lie algebra of

B̌σ. (As above, if σ acts by permutation of elements X−αj
of ǧ, then the X̂−αi

are
σ-invariant linear combinations of the X−αj

.)

It is clear that (5.5) is a Ǧσ-oper connection on Gm.

6. Special cases

If V is any finite-dimensional complex representation of the group Ǧ, a connection ∇
on the principal Ǧ-bundle gives a connection ∇(V ) on the vector bundle F associated
to V . In our case, this connection is

(6.1) ∇(V ) = d+N(V )
dt

t
+E(V )dt,

where N(V ) and E(V ) are the corresponding nilpotent endomorphisms of V .
In this section, we will provide formulas for the first order matrix differential operator

∇(V )td/dt, for some simple representations V of Ǧ. We will be able to convert these
matrix differential operator into scalar differential operators, because in these cases
N(V ) will be represented by a principal nilpotent matrix in End(V ). This will allow



12 EDWARD FRENKEL AND BENEDICT GROSS

us to compare our connection with the scalar differential operators studied by Katz in
[Katz2].

Case I. Ǧ = SLn and V is the standard n-dimensional representation with a basis
of vectors vi, i = 1, . . . , n, on which the torus acts according to the weights ei. Since
αi = ei − ei+1, i = 1, . . . , n − 1 and θ = e1 − en, we can normalize the X−αi

and E in
such a way that

(6.2) N(V ) =




0 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0



, E(V ) =




0 0 0 ... 0 1
0 0 0 ... 0 0
0 0 0 ... 0 0
0 0 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... 0 0



.

Therefore the operator ∇td/dt of the connection (5.1) has the form

(6.3) ∇td/dt = t
d

dt
+




0 0 0 ... 0 t
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0




and hence corresponds to the scalar differential operator

(6.4) (td/dt)n + (−1)n+1t.

Now let V be the dual of the standard representation. Then, choosing as a basis
the dual basis to the basis {vn+1−i}i=1,...,n (in the reverse order), we obtain the same
matrix differential operator (6.3). Hence the flat vector bundles associated to the
standard representation of SLn and its dual are isomorphic.

Case II. Ǧ = Sp2m and V is the standard 2m-dimensional representation. We
choose the basis vi, i = 1, . . . , 2m, in which the symplectic form is given by the formula

〈vi, vj〉 = −〈vj , vi〉 = δi,2m+1−j, i < j.

The weights of these vectors are e1, e2, . . . , em,−em, . . . ,−e2,−e1. Since αi = ei −
ei+1, i = 1, . . . ,m − 1, αm = 2em and θ = 2e1, we can normalize N(V ) and E(V ) in
such a way that they are given by formulas (6.2).

Hence∇td/dt is also given by formula (6.3) in this case. It corresponds to the operator
(6.4) with n = 2m.

Case III. Ǧ = SO2m+1 and V is the standard (2m+ 1)-dimensional representation
of SO2m+1 with the basis vi, i = 1, . . . , 2m+1, in which the inner product has the form

〈vi, vj〉 = (−1)iδi,2m+2−j.

The weights of these vectors are e1, e2, . . . , em, 0,−em, . . . ,−e2,−e1. Since αi = ei −
ei+1, i = 1, . . . ,m− 1, αm = em and θ = e1 + e2, we can normalize the X−αi

and E in
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such a way that

(6.5) N(V ) =




0 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0



, E(V ) =




0 0 0 ... 1 0
0 0 0 ... 0 1
0 0 0 ... 0 0
0 0 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... 0 0



.

Therefore

(6.6) ∇td/dt = t
d

dt
+




0 0 0 ... t 0
1 0 0 ... 0 t
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0



.

We can convert this first order matrix differential operator into a scalar differential
operator. In order to do this, we need to find a gauge transformation by an upper-
triangular matrix which brings it to a canonical form, in which we have 1’s below the
diagonal and other non-zero entries occur only in the first row. This matrix is uniquely
determined by this property and is given by




1 0 0 ... t
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1



.

The resulting matrix operator is

t
d

dt
+




0 0 0 ... 2t −t
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0




which corresponds to the scalar operator

(td/dt)2m+1 − 2t2d/dt− t.

Case IV. Ǧ = G2 and V is the 7-dimensional representation.

The Lie algebra g2 of G2 is a subalgebra of so7. Both the nilpotent elements N and
E in so7 may be simultaneously chosen to lie in this subalgebra, where they are equal
to the corresponding elements for g2. Hence ∇td/dt is equal to the operator (6.6) with
m = 3, which corresponds to the scalar differential operator

(td/dt)7 − 2t2d/dt− t.
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There is one more case when N is a regular nilpotent element in End(V ); namely,
when Ǧ = SL2 and V = Symn(C2) is the irreducible representation of dimension n+1.
We have already considered the cases n = 1 and n = 2 (the latter corresponds to the
standard representation of Ǧ = SO3). These representations, and the cases considered
above, are the only cases when an oper may be written as a scalar differential operator.

The scalar differential operators we obtain agree with those constructed by Katz in
[Katz2]. More precisely, to obtain his operators in the case of SO2m+1 and G2 we need
to rescale t by the formula t 7→ −1

2t.

In the above examples, the connection matrix was the same for Sp2n as it was for
SL2n, and was the same for G2 as it was for SO7. The same phenomenon will occur
for the pairs SO2n+1 < SO2n+2, G2 < D4, and F4 < E6, for the reason explained in
Section 13.

7. De Rham cohomology

In the next sections of this paper, we will calculate the cohomology of the interme-
diate extension of our local system to P1, with values in a representation V of Ǧ. In
particular, we will show that this cohomology vanishes for the adjoint representation ǧ,
as well as for the small representations tabulated in Section 6. This is further evidence
that our connection is the characteristic 0 analogue of the ℓ-adic Langlands parameter.
It also implies that our connection is rigid, in the sense that it has no infinitesimal
deformations preserving the formal types at 0 and ∞, as such deformations form an
affine space over the first de Rham cohomology group [Katz3, BE, A].

We begin with some general remarks on algebraic de Rham cohomology for a princi-
pal Ǧ-bundle with connection ∇ on the affine curve U = Gm. Any complex represen-
tation V of Ǧ then gives rise to a flat vector bundle F(V ) on U , where the connection
is ∇(V ).

Since U is affine, with the ring of functions C[t, t−1], the connection ∇(V ) gives a
C-linear map

(7.1) ∇(V ) : V [t, t−1]→ V [t, t−1]
dt

t
.

Any Ǧ-bundle on U may be trivialized. Once we pick a trivialization of our bundle F ,
we represent the connection as ∇ = d + A, where A is a one-form on U with values
in the Lie algebra ǧ. Let A(V ) be the corresponding one-form on U with values in
End(V ). We may write

A(V ) =
∑

n

An(V )
dt

t

with An(V ) ∈ End(V ). If

f(t) =
∑

n

vnt
n,

we find that

∇(V )(f) =
∑

n

wnt
ndt

t
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has coefficients wn given by the formula

wn = nvn +
∑

a+b=n

Aa(V )(vb).

For our specific connection

∇ = d+N(V )
dt

t
+ Edt

we find
wn = nvn +N(V )(vn) + E(V )(vn−1).

The ordinary de Rham cohomology groups H i(U,F(V )) are defined as the cohomol-
ogy of the complex (7.1):

H0(U,F(V )) = Ker∇(V ),

H1(U,F(V )) = Coker∇(V ).

Thus elements of H0(U,F(V )) are solutions of the differential equation ∇(V )(f) = 0.
For our particular connection, a solution f =

∑
vnt

n corresponds to a solution to the
system of linear equations

(7.2) nvn +N(V )(vn) + E(V )(vn−1) = 0

for all n. For example, if v is in the kernel of both N(V ) and E(V ), then f = v is a
constant solution, with vn = 0 for all n 6= 0 and v0 = v.

We can also study the complex (7.1) with functions and one-forms on various sub-
schemes of U . For example, the kernel and cokernel of

(7.3) ∇(V ) : V ((t))→ V ((t))
dt

t

define the cohomology groups H0(D×0 ,F(V )) and H1(D×0 ,F(V )), where D×0 is the
punctured disc at t = 0. Likewise, the kernel and cokernel of

(7.4) ∇(V ) : V ((t−1))→ V ((t−1))
dt

t

define the cohomology groups H0(D×∞,F(V )) and H1(D×∞,F(V )), where D×∞ is the
punctured disc at t =∞. We will also identify the kernel and cokernel of

(7.5) ∇(V ) : V [[t, t−1]]→ V [[t, t−1]]
dt

t
as cohomology groups with compact support in Section 9.

The flat bundle F(V ) on U defines an algebraic, holonomic, left D-module on U
(which has the additional property of being coherent as an O-module). In the next
section we will recall the definition of the intermediate extension j!∗F(V ) in the category
of algebraic, holonomic, left D-modules, where j : U →֒ P1 is the inclusion. The de
Rham cohomology of j!∗F(V ) may be calculated in terms of some Ext groups in this
category. We will establish the following result, which is in agreement with the results
of N. Katz on the ℓ-adic cohomology with coefficients in the adjoint representation and
small representations for the analogous ℓ-adic representations (in those cases in which
they have been constructed).
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Theorem 1. Assume that ∇ = d+N dt
t + Edt and that V is either the adjoint repre-

sentation ǧ of Ǧ or one of the small representations tabulated in Section 6. Then

H i(P1, j!∗F(V )) = 0

for all i.

We will provide two proofs of this result. The first, given in Sections 10 and 11, uses
the theory of affine Kac–Moody algebras and the relation between the cohomology
of the intermediate extension of F(V ) and solutions of the equation ∇(V )(f) = 0 in
various spaces. The second, given in Section 14, uses Deligne’s Euler characteristic
formula and a calculation of the differential Galois group of ∇. The latter proof gives
a formula for the dimensions of H i(P1, j!∗F(V )) for any representation V of Ǧ.

8. The intermediate extension and its cohomology

Here we follow [Katz2], Section 2.9 and [BE] (see also [A]). Let j : U →֒ P1 be the
inclusion. We consider the two functors

j∗ = direct image,(8.1)

j! = ∆ ◦ j∗ ◦∆

from the category of left holonomic D-modules on U to the category of left holonomic
D-modules on P1. The functor j∗ is right adjoint to the inverse image functor, and j!
is defined using the duality functors ∆ on these categories (see, e.g. [GM], Section 5).

We have
H i(P1, j∗F) = H i(U,F), H i(P1, j!F) = H i

c(U,F).

The cohomology groups on P1 are the Ext groups in the category of holonomic D-
modules. The first equality follows from the adjointness property of j∗, and the second
can be taken as the definition of the cohomology with compact support. Poincaré
duality gives a perfect pairing

H i(U,F(V ))×H2−i
c (U,F(V ∗))→ C,

where V ∗ is the representation of Ǧ that is dual to V . Thus, we have H0
c (U,F(V )) = 0

and

(8.2) H i
c(U,F(V )) ≃ H2−i(U,F(V ∗))∗, i = 1, 2.

From the adjointness property of j∗, we obtain a map of D-modules on P1

j!F → j∗F

whose kernel and cokernels are D-modules supported on {0,∞}. Let j!∗F be the image
of j!F in j∗F . We will now show that

H0(P1, j!∗F(V )) = H0(U,F(V )),(8.3)

H1(P1, j!∗F(V )) = Im
(
H1

c (U,F(V ))→ H1(U,F(V ))
)
,(8.4)

H2(P1, j!∗F(V )) = H2
c (U,F(V )).(8.5)

We will also describe an exact sequence involving the cohomology groups on D×0 and
D×∞ which allows us to compute H1(P1, j!∗F(V )).
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Let tα be a uniformizing parameter at α = 0,∞ (t and t−1, respectively) and let

δα = C((tα))/C[[tα]]

be the left delta D-module supported at α. We then have an exact sequence of D-
modules on P1

(8.6) 0→
⊕

α

H0(D×α ,F)⊗ δα → j!F → j∗F →
⊕

α

H1(D×α ,F)⊗ δα → 0.

By the definition of j!∗F , this gives two short exact sequences

0→
⊕

α

H0(D×α ,F)⊗ δα → j!F → j!∗F → 0

0→ j!∗F → j∗F →
⊕

α

H1(D×α ,F)⊗ δα → 0

We now take long exact sequence in cohomology and use the fact that

H0(P1, δα) = 0,

H1(P1, δα) = C.

This gives a proof of (8.4)–(8.5), and patching our two long exact sequences along
H1(P1, j!∗F) gives a six-term exact sequence

(8.7) 0→ H0(U,F)→
⊕

α

H0(D×α ,F)→ H1
c (U,F)→

→ H1(U,F)→
⊕

α

H1(D×α ,F)→ H2
c (U,F)→ 0.

We will compare it later with an exact sequence obtained from the snake lemma.
From the exact sequence (8.7) we deduce the following condition for the vanishing

of cohomology.

Proposition 2. For a flat vector bundle F on U , we have H i(P1, j!∗F) = 0 for all i if
and only if

(1) H0(U,F) = H0(U,F∗) = 0;
(2) dimH0(D×0 ) + dimH0(D×∞) = dimH1

c (U,F).

9. The dual complex

We have seen that the de Rham cohomology of the flat vector bundle F(V ) on U can
be calculated from the de Rham complex (7.1). Since compactly supported cohomology
of F(V ) is dual to the (ordinary) de Rham cohomology of F(V ∗), it can be calculated
from the complex dual to

(9.1) ∇(V ∗) : V ∗[t, t−1]→ V ∗[t, t−1]
dt

t
.

In this section we will identify this dual complex with the complex

(9.2) −∇(V ) : V [[t, t−1]]→ V [[t, t−1]]
dt

t

by using the residue pairing at t = 0, which is described in detail below.
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Hence H1
c (U,F(V )) is identified with the kernel of (9.2) and H2

c (U,F(V )) with its
cokernel. Using this identification, we will compare the six-term exact sequence (8.7)
to the one obtained from the snake lemma.

We can also rewrite Proposition 2 in a form that depends only on solutions to∇(f) =
0.

Corollary 3. The cohomology of the intermediate extension j!∗F on P1 vanishes if and
only if

(1) Ker∇(V ) = 0 on V [t, t−1] and Ker∇(V ∗) = 0 on V ∗[t, t−1];
(2) Every solution f(t) to ∇(V )(f) = 0 in V [[t, t−1]] can be written (uniquely) as a

sum f0(t) + f∞(t), with f0 and f∞ in Ker∇(V ) on V ((t)) and V ((t−1)), respectively.

We now turn to the identification of (9.2) with the dual of (9.1). Define a bilinear
pairing on f ∈ V [[t, t−1]] and ω ∈ V ∗[t, t−1]dt

t by

(9.3) 〈f, ω〉 = Rest=0 S(f · ω),

where f · ω is the product in V ⊗ V ∗[[t, t−1]]dt
t and S : V ⊗ V ∗ → C is the natural

contraction, so S(f · ω) is an element of C[[t, t−1]]dt
t . Explicitly, if f =

∑
vnt

n and

ω =
∑
ωmt

m dt
t , then

〈f, ω〉 =
∑

n+m=0

S(vn ⊗ ωm).

This pairing identifies the direct product vector space V [[t, t−1]] with the dual of the
direct sum vector space V ∗[t, t−1]dt

t . A similar pairing identifies V ∗[[t, t−1]] with the

dual of the direct sum vector space V [t, t−1]dt
t .

To complete the proof that this pairing identifies the dual of (9.1) with (9.2), we
must show that the adjoint of ∇(V ∗) is −∇(V ). Write

∇ = d+
∑

m

Amt
mdt

t
,

with Am ∈ ǧ. Then, for g =
∑
wnt

n and f as before we have

∇(V ∗)(g) = dg +
∑

m,n

Am(V ∗)(wn)tm+ndt

t
,

∇(V )(f) = df +
∑

m,n

Am(V )(vn)tm+ndt

t
.

The desired adjoint identity

〈∇(V )(f), g〉+ 〈f,∇(V ∗)(g)〉 = 0

then follows from the two identities

Rest=0(g ⊗ df + f ⊗ dg) = 0,

S(A(V )v, w) + S(v,A(V ∗)w) = 0.
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We end this section with a reconstruction of the six-term exact sequence (8.7). The
maps α(f) = (f, f) and β(f, g) = f − g give an exact sequence of vector spaces

0→ V [t, t−1]
α
→ V ((t))⊕ V ((t−1))

β
→ V [[t, t−1]]→ 0.

Using ∇(V ), we obtain a commutative diagram with exact rows

(9.4)

0 −−−−→ V [t, t−1]
α

−−−−→ V ((t))⊕ V ((t−1))
β

−−−−→ V [[t, t−1]] −−−−→ 0

∇

y (∇,∇)

y ∇

y

0 −−−−→ V [t, t−1]dt
t

α
−−−−→ V ((t))dt

t ⊕ V ((t−1))dt
t

β
−−−−→ V [[t, t−1]]dt

t −−−−→ 0

The 3 kernels and the 3 cokernels have been identified with the cohomology groups
in (8.7). Do the morphisms in (8.7) come from an application of the snake lemma to
(9.4)? We note that we have made two sign choices: in the pairing (9.3) we took the
residue at t = 0, not at t = ∞ (which would have changed the sign), and in the map
β we took f0 − f∞, not f∞ − f0. We expect that with consistent choice of signs the
morphisms in (8.7) do indeed come from (9.4) via the snake lemma.

10. The vanishing of adjoint cohomology

We now turn to the proof of Theorem 1, using Corollary 3. Specifically, when V is
the adjoint representation of Ǧ or a small representation we will show that any solution
f(t) =

∑
vnt

n of ∇(V )(f) = 0 in V [[t, t−1]] satisfies

(10.1) vn = 0 for all n < 0.

Next, we will use the following lemma.

Lemma 4. Suppose that any solution f =
∑
vnt

n ∈ V [[t, t−1]] to ∇(V )(f) = 0
satisfies property (10.1) and the same property holds if we replace V by V ∗. Then
H i(P1, j!∗F(V )) = 0 for all i.

Proof. The equation ∇(V )(f) = 0 implies that the components vn satisfy

(10.2) nvn +N(V )(vn) + E(V )(vn−1) = 0.

If (10.1) is satisfied, then it follows that v0 lies in the kernel of N(V ) on V . This also
shows that there is a unique solution

f =
∑

n≥0

vnt
n

for any v0 in the kernel of N(V ), because N(V ) is nilpotent so that the operator
n Id +N(V ) is invertible on V for all n 6= 0. Clearly then, if v0 6= 0, this solution has

(10.3) vn 6= 0 for all n ≥ 0.

Hence there cannot be a non-zero solution to ∇(V )(f) = 0 that has finitely many
non-zero components for positive powers of t. We obtain that

H0(U,F(V )) = H0(D×∞,F(V )) = 0

and
H0(D×0 ,F(V )) ≃ H1

c (U,F(V )) ≃ KerN(V ).
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Together we the same properties for V replaced by V ∗, this implies that all of the
criteria of Corollary 3 for the vanishing of cohomology are met. �

We now turn to the proof of the property (10.1) in the case when V = ǧ. We will
drop V in our notation and write ∇ for ∇(V ), etc. The vector space ǧ[t, t−1] is a
Z-graded Lie algebra, with the Lie bracket

[xtn, ytm] = [x, y]tn+m.

There is a Ǧ-invariant inner product

κ : ǧ⊗ ǧ→ C

given by the Killing form (which is a unique such inner product up to scaling). We
define an inner product on ǧ[t, t−1] by

(10.4)
〈∑

xnt
n,

∑
ymt

m
〉

=
∑

n+m=0

κ(xn, ym).

The Z-grading on ǧ[t, t−1] is given by the differential operator td/dt. If we write a
solution f(t) to ∇(f) = 0 in terms of its graded pieces: f =

∑
vnt

n, then (10.2)
becomes

(10.5) nvn + [N, vn] + [E, vn−1] = 0

for all n.
To find the solutions to (10.5), it is convenient to switch to a different Z-grading of

ǧ[t, t−1] called the principal grading. Let ρ be again half the sum of positive coroots
for the Borel subgroup B̌. Then

[ρ,N ] = −N, [ρ,E] = (h− 1)E.

The operator

(10.6) d = h t
d

dt
− ad ρ

has integer eigenvalues on ǧ[t, t−1], and defines the principal grading with respect to
which the element

(10.7) p1 = N + Et

has degree 1. If we write a solution f =
∑
yn of ∇(f) = 0 in its components for the

principal grading, then (10.5) gives rise to the identities

(10.8) nyn + [ρ, yn] + h[p1, yn−1] = 0

for all n.
Since the eigenvalues of ad ρ on ǧ are the integers in the interval [1−h, h−1], we see

that the eigenvalues of d on ǧtn are the integers of the form nh+e, with 1−h ≤ e ≤ h−1.
In particular, as eigenvector ym with eigenvalue m has the form

ym ∈ ť tn,

if m = nh, where ť ⊂ ǧ is the unique Cartan subalgebra containing ρ (so ť is the kernel
of ad ρ on ǧ). If n = nh+ e with 0 < e < h, then ym has the form

ym = atn + btn+1
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with a of degree e and b of degree (e − h) for − ad ρ. From this one deduces that the
component of ǧ[t, t−1] of degree m with respect to the principal grading has dimension
equal to the rank of Ǧ, except when m is congruent to an exponent e of Ǧ (mod h),
when the dimension is the rank of Ǧ plus the multiplicity of that exponent. Note
that the original grading operator td/dt preserves the components with respect to the
principal grading.

V. Kac has studied the decomposition of ǧ[t, t−1] under the action of ad p1, where
p1 = N +Et. His results are summarized in the following proposition. Set

a = Ker(ad p1), c = Im(ad p1).

Proposition 5 ([Kac1], Prop. 3.8).
(1) The Lie algebra ǧ[t, t−1] has an orthogonal decomposition with respect to the inner

product (10.4),
ǧ[t, t−1] = a⊕ c.

(2) a is a commutative Lie subalgebra of ǧ[t, t−1]. With respect to the principal
grading, a =

⊕
i∈I ai, where I is the set of all integers equal to the exponents of ǧ

modulo the Coxeter number h, and dim ai is equal to the multiplicity of the exponent
i mod h.

(3) With respect to the principal grading, c =
⊕

j∈Z
cj , where dim cj = rk(ǧ), and the

map ad p1 : cj → cj+1 is an isomorphism for all j ∈ Z.

Let f be a solution to ∇(f) = 0 and f =
∑
yn its decomposition with respect to

the principal grading. Then the components satisfy (10.8). We now have the following
crucial lemma.

Lemma 6. Suppose that the yn satisfy the equations (10.8) and yn ∈ an for some n.
Then ym = 0 for all m ≤ n.

Proof. Applying (10.8), we obtain

(10.9) t
d

dt
yn =

m

h
yn +

1

h
[ρ, yn] ∈ cn,

where cn is the degree n homogeneous component of c = Im(ad p1). Let us show that
this is impossible to satisfy if yn ∈ an and yn 6= 0.

Consider the affine Kac–Moody algebra ̂̌g, which is the universal central extension ̂̌g
of ǧ[t, t−1] by one-dimensional center spanned by an element 1,

0→ C1→ ̂̌g→ ǧ[t, t−1]→ 0

The commutation relations in ̂̌g read

[Atn, Btm] = [A,B]tn+m + nκ(A,B)δn,−m1.

According to [Kac2], Lemma 14.4, the inverse image of a in ̂̌g is a (non-degenerate)
Heisenberg Lie subalgebra a⊕ C1. Hence there exists z ∈ a−n such that

[yn, z] 6= 0 in C1 ⊂ ̂̌g.
Write, for n = kh+ e (where e is an exponent of ǧ),

yn = atk + btk+1, z = a′t−k + b′t−k−1,
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as above, where a, b, b, b′ are homogeneous elements of ǧ with respect to the grading
defined by − ad ρ of degrees e, e− h,−e, h− e, respectively. Then we find that

[yn, z] = (k κ(a, a′) + (k + 1) κ(b, b′))1 6= 0.

But

k κ(a, a′) + (k + 1) κ(b, b′) = 〈t
d

dt
· yn, z〉,

where in the right hand side we use the inner product defined by formula (10.4). This
contradicts the condition that t d

dt · yn ∈ cn, which is orthogonal to a−n. Hence yn = 0.
Now, equation (10.8) shows that if yn = 0, then yn−1 ∈ an−1. Hence we find by

induction that ym = 0 for all m ≤ n. �

Setting n = 0 in (10.8), we obtain

[ρ, y0] + [p1, y−1] = 0.

Since ǧ[t, t−1]0 = ť = Ker(ad ρ), this shows that

[p1, y−1] = 0.

Hence y−1 ∈ a−1. Lemma 7 then implies that yn = 0 for all n < 0. Thus, any solution
f ∈ ǧ[[t, t−1]] to ∇(f) = 0 has the form f =

∑
n≥0 yn, and in particular belongs to

ǧ[[t]]. Writing this solution as f =
∑
vnt

n, we obtain that it satisfies property (10.1).
Theorem 1 for the adjoint representation now follows from Lemma 4 because ǧ∗ = ǧ.

11. Vanishing for small representations

Let V be one of the small representations considered in Section 6; that is, n-
dimensional representation of SLn, 2n-dimensional representation of Sp2n, (2n + 1)-
dimensional representation of SO2n+1, or 7-dimensional representation of G2. We de-
note the corresponding flat bundle on U by F(V ). Since our connection for Sp2n and
G2 is the same as for SL2n and SO7, respectively, it is sufficient to consider only the
cases of SLn and SO2n+1.

We will now prove Theorem 1 when V is one of these representations. We will follow
the argument used in the proof of Theorem 1 for the adjoint representation. Define a
Z-grading on V [t, t−1] compatible with the principal Z-grading on ǧ[t, t−1] defined by
the operator d. The representation V has a basis v1, . . . , vp in which N appears as a
lower Jordan block. We set

deg vit
k = i− 1 + kh.

All graded components are one-dimensional in the case of SLn. For SO2n+1 the com-
ponents of degrees kh, k ∈ Z, are two-dimensional. Components of all other degrees
are one-dimensional. It is easy to see that the operator td/dt preserves the graded
components.

We will use the operators N(V ) and E(V ) from Section 6. Denote again N(V ) +
E(V )t by p1. Let f ∈ V [[t, t−1]] be a solution to ∇(V )(f) = 0. Decomposing f =

∑
yr

with respect to the above grading, we obtain the following system:

(11.1) t
d

dt
yr = −p1 · yr−1, r ∈ Z.

The role of Lemma 6 is now played by the following result.
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Lemma 7. Suppose that the yr satisfy the equations (11.1) and p1 · yr = 0 for some r.
Then ym = 0 for all m ≤ r.

Proof. In the case of SLn we have Ker p1 = 0, so if p1 · yr = 0, then yr = 0. For
SO2n+1, Ker p1 is spanned by the vectors v1t

k − v2n+1t
k−1, k ∈ Z. Hence yr is one of

these vectors. Equation (11.1) tells us that

t
d

dt
(v1t

k − v2n+1t
k−1) = kv1t

k − (k − 1)v2n+1t
k−1

is in the image of p1. But the image of p1 in this graded component is spanned by
the vector v1t

k + v2n+1t
k−1. Since k ∈ Z, it is impossible to satisfy this condition.

Therefore yr = 0.
Now, if yr = 0, then p1 · yr−1 = 0, by (11.1). Hence we obtain by induction that

ym = 0 for all m ≤ r. �

Now observe that td/dt annihilates the component of V [t, t−1] of degree 1 (in fact,
all components of degrees 1, . . . , h − 1). Hence we find from (11.1) with r = 1 that
p1 · y0 = 0. Therefore it follows from Lemma 6 that ym = 0 for all m ≤ 0. Hence any
solution f =

∑
fnt

n to ∇(V )(f) = 0 is a formal power series in t, that is, fn = 0 for
all n < 0. Theorem 1 for small representations now follows from Lemma 4 and the fact
that V ∗ = V in the case of SO2n+1, and in the case of SLn the flat bundles associated
to V and V ∗ are isomorphic as well (see Case I in Section 6).

12. The case of SL2

In the previous two sections we have shown that the de Rham cohomology of our
connection vanishes in the adjoint representation as well as the small representations.
This is because solutions to the equation ∇(V )(f) = 0 enjoy special properties which
do not hold for a general representation V . The key property of ǧ and the small
representations that we have used is the fact that the weights of the torus of a principal
SL2 on V are all small (that is, the eigenvalues of ad ρ on V have absolute value less
than h).

But for most other representations this is not the case and the de Rham cohomology
does not vanish. As an example, we consider in this section the faithful irreducible
representations V = Sym2k−1 of SL2 of even dimension 2k = n ≥ 2. We will see
that there are k = n/2 solutions in the space of formal power series in t and t−1 with
coefficients in V , but that only the zero solution lies in V ((t−1)), and only one line of
solutions lies in V ((t)). Hence H1(P1, j!∗F(V )) has dimension k − 1 = (n/2)− 1.

We will see how to compute the dimensions of the de Rham cohomology of j!∗F(V )
on P1, for any representation V of Ǧ, in Section 13.

In the case of SL2 our connection looks as follows:

∇ = d+ F
dt

t
+ Edt,

where F = X−α1
and E are the standard generators of sl2. Let J = diag[1, 2, . . . , n].

Make a change of variables t = z2 and apply gauge transformation by zJ . We then
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obtain

∇ = d− J
dz

z
+ 2(E + F )dz.

Let Veven (resp., Vodd) be the subspace of V on which the eigenvalues of J are even
(resp., odd). The de Rham complex on U = Gm,

V [t, t−1]
∇
−→ V [t, t−1]dt,

is identified with the subcomplex

(12.1) Veven[z
2, z−2]⊕ Vodd[z

2, z−2]z
∇
−→ Veven[z

2, z−2]
dz

z
⊕ Vodd[z

2, z−2]dz

of the de Rham complex

(12.2) V [z, z−1]
∇
−→ V [z, z−1]dz

on the double cover of U . Introduce a Z-grading on this complex by setting deg vzk = k.
Note that the operator E + F is conjugate to 2ρ = diag[n − 1, n − 3, . . . ,−n + 1].

From now on we assume that n is even. Then the operator E+F is invertible. Suppose
that y(z) =

∑
ymz

m is in the kernel of (12.2). Then we obtain the following system of
equations:

(12.3) (m Id−J) · ym = −2(E + F ) · ym−1

on its homogeneous components. Let m be the largest integer such that ym = 0 but
ym−1 6= 0. Then we should have (E + F ) · ym−1 = 0, which is impossible. This shows
that H0(P1, j!∗(F(Vn))) = 0. Using duality, we obtain that H2(P1, j!∗(F(Vn))) = 0.

In order to compute H1(P1, j!∗(F(Vn))) = 0, we first compute the kernel of

(12.4) V [[z, z−1]]
∇
−→ V [[z, z−1]]dz.

Note that the operator m Id−J is invertible for all m 6= 1, . . . , n. Let us choose any
yn ∈ Vn. Then we can find ym,m > n, by using equation (12.3) and inverting m Id−J ,
and we can find ym,m < n, by using (12.3) and inverting E + F . Thus, the kernel of
(12.4) is isomorphic to Vn. An element of this kernel belongs to

Veven[[z
2, z−2]]⊕ Vodd[[z

2, z−2]]z

if and only if yn ∈ Veven. Thus, we obtain that H1(U,F(Vn))∗ is isomorphic to Veven.
Using the exact sequence (8.7), we obtain that H1(P1, j!∗(F(Vn)))∗ is the quotient of
the above space of solutions of (12.3) by the subspace of those solutions for which
ym = 0 for m≫ 0 or m≪ 0.

Those are precisely the solutions for which there exists m = 1, . . . , n such that
ym−1 = 0, but ym 6= 0. We claim that there are no such solutions for m 6= n. Indeed,
denote by vi, i = 1, . . . , n, an eigenvector of J with eigenvalue i. If ym−1 = 0, but
ym 6= 0, then ym is a multiple of vm. But −2(E +F )(vm) contains vm+1 with non-zero
coefficient if m < n. Hence −2(E + F )(vm) cannot be in the image of (m + 1) Id−J ,
and so (12.3) cannot be satisfied. If, on the other hand, yn = vn, then ym = 0 for all
m < n.
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Thus, we obtain that there is a unique solution (up to a scalar) for which ym = 0
for m ≫ 0 or m ≪ 0. Hence dimH1(P1, j!∗(F(Vn))) = (n/2) − 1, which is non-zero if
n ≥ 4.

13. The differential Galois group

In this section, we determine the differential Galois group of our rigid irregular
connection ∇ on Gm, as well as its inertia subgroups (up to conjugacy) at t = 0 and
t =∞.

We first review some of the general theory, which is due to N. Katz [Katz1]. Fix
the point t = 1 on Gm. Then the fiber at this point gives a fiber functor from the
category of flat complex algebraic vector bundles (F ,∇) on Gm to the category of
finite-dimensional vector spaces. The automorphism group of this fiber functor is, by
definition, the differential Galois group of Gm. This is a pro-algebraic group over C,
which we denote by DG(Gm); Katz calls this group πdiff

1 (Gm, 1).
Since the fiber functor preserves tensor products, the fundamental theorem of [DM],

Ch. 2, gives an equivalence between the category of flat bundles on Gm with the
category of finite-dimensional representations of the differential Galois group DG(Gm).
If

ϕ : DG(Gm)→ GL(V )

corresponds to the flat bundle (F ,∇), then

H0(Gm,F) = Ker∇ = V DG(Gm).

Under this equivalence, a principal Ǧ-bundle with connection ∇ on Gm defines a
homomorphism

ϕ∇ : DG(Gm)→ Ǧ

up to conjugacy. The image Ǧ∇ is an algebraic subgroup of Ǧ, which we call the
differential Galois group of ∇.

At the two points t = 0 and t =∞ on P1 −Gm, we have local inertia groups I0 and
I∞ in DG(Gm), well-defined up to conjugacy. Each inertia group I = Iα is filtered by
normal subgroups

P x+ ⊂ P x ⊂ P ⊂ I

for rational x > 0 (called the slopes). The wild inertia subgroup P is a pro-torus over
C. As a pro-algebraic group over C, I/P is isomorphic to the product of Ga with a
pro-group A of multiplicative type, with character group C/Z. The additive part comes
from local systems with regular singularity at α with unipotent monodromy, and the
rest from the one-dimensional local systems d− a dtα/tα with solutions taα near tα = 0,
with a ∈ C/Z. The tame monodromy is then e2πia ∈ C×. The torsion in the character

group of A is Q/Z, so the component group of A is the dual group Ẑ(1) = lim
←−

µn,

which is the profinite Galois group of C((tα)).
The quotient group I/P acts on the pro-torus P by conjugation. Its connected

component centralizes P ; only the component group Ẑ(1) acts non-trivially. On the
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character group C of the quotient torus P x/P x+, the element a = 2πim acts by multi-
plication by the root of unity e−ax. Hence the component group acts through its finite

quotient Ẑ(1)/nẐ(1) = µn, where nx ≡ 0 (mod Z).

Now let

∇ = d+N
dt

t
+ Edt

be the connection introduced in Section 5. We will determine the differential Galois
group Ǧ∇ of Ǧ by studying the images ϕ∇(I0) and ϕ(I∞) in Ǧ, and we begin with a
discussion of the two homomorphisms

ϕ∇ :I0 → Ǧ,

ϕ∇ :I∞ → Ǧ

up to conjugacy.
Since ∇ has a regular singular point at t = 0, the restriction of ϕ∇ to I0 is trivial

on the wild inertia subgroup P0. The resulting homomorphism is given by the analytic
monodromy, which maps a = 2πin in Z(1) to exp(−aN) in Ǧ. In particular, the image
ϕ∇(I0) is an additive subgroup Ga = exp(zN) of Ǧ, containing the principal unipotent
element u = exp(−2πiN).

To determine the image of the inertia group at t =∞, we first make the assumption
that ρ is a co-character of Ǧ. Let uh = s = t−1. Then by our earlier results in Section
5, over the extension C((u)) of C((s)) our connection is equivalent to

d− h(N + E)
du

u2
− ρ

du

u
.

By a fundamental result of Kostant [Kos], the element (N + E) is regular and semi-
simple. Hence the highest order polar term of our connection over C((u)) is diagonal-
izable, in any representation V of Ǧ. It follows that the slopes of this connection over
C((u)), as defined by Deligne [D2], Theorem 1.12, are either 0 or 1, the former occur-
ring at the zero eigenspaces for N + E on V and the latter occurring at the non-zero
eigenspaces. Since Katz has shown [Katz1], Sections 1 and 2.2.11.2, that the slopes over
the extension C((u)) are h times the slopes over the original completion C((s)), we see
that the original slopes are either 0 or 1/h. In particular, I∞ is trivial on the subgroup

P 1/h+. A similar argument works when ρ is not a co-character, using the extension of
degree 2h.

The image Š := ϕ(P∞) of wild inertia subgroup P∞ is the smallest torus in Ǧ, whose
Lie algebra contains the regular, semi-simple element N +E. The irregularity Irrα(V )
of a representation V of Ǧ at an irregular singular point α was defined by Deligne [D2],
p. 110, and shown by Katz [Katz1], Sections 1 and 2.3, to be the sum of the slopes.
From the above analysis, we deduce that

h Irr∞(V ) = dimV − dimV Š .

The full image Ȟ = ϕ(I∞) normalizes Š, and the quotient is generated by the element
n = (2ρ)(eπi/h). The element n is regular and semi-simple in Ǧ. Further, ǫ := nh is a
central involution in Ǧ which is equal to identity if and only if ρ is a co-character of Ǧ.
The element n acts on N + E by multiplication by e−2πi/h. The irreducibility of the
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hth cyclotomic polynomial over Z shows that Š has dimension φ(h) = #(Z/hZ)× and
that the eigenvalues of n on Lie(Š) are the primitive hth roots of unity.

Since n normalizes Š, it also normalizes the centralizer Ť ′ of Š in Ǧ, which is a
maximal torus (note that it is different from the maximal torus Ť considered in Section
5). The image w of n in N(Ť ′)/Ť ′ is a Coxeter class in the Weyl group, and has order
h.

The character group X∗(Š) is the free quotient of X∗(Ť ′) where w acts by primitive
hth roots of unity. Thus the characters of Ť ′ which restrict to the trivial character of
Š are generated by those λ : Ť ′ → Gm where the 〈w〉-orbit of λ has size less than h.

This completes the description of the local inertia groups, and we now turn to the
global differential Galois group Ǧ∇.

Proposition 8. Let Ǧ0 ⊂ Ǧ be an algebraic subgroup which contains ϕ(I∞) = Ȟ and
ϕ(I0) = exp(zN). Then Ǧ0 is reductive and contains the image of a principal SL2 in
Ǧ.

Proof. Let R(ǧ0) be the unipotent radical of Ǧ0, and let Z = Lie(Z) be its center. We
will show that Z = 0.

The group Ȟ = ϕ(I∞) acts on R(Ǧ0) and Z. Since Š contains regular elements,
every root α : Ť ′ → Gm restricts to a non-trivial character of Š. Hence the action of
Ȟ = 〈Š, n〉 on ǧ decomposes as

Lie(Ť ′)⊕

rk(ǧ)⊕

i=1

Wi,

where the Wi are irreducible representations of dimension h whose restriction to Š
contains an entire w-orbit of roots.

Since Z is nilpotent and Lie(Ť ′) is semi-simple, Z must be the sum of certain Wi.

But each Wi contains a non-zero vector v0 =
∑h

i=1 n
i(v) fixed by 〈n〉 (as nh = ǫ is

central and acts trivially on ǧ). Since n is regular and semi-simple, v0 is a semi-simple
element and hence cannot be contained in Z. Therefore Z = 0.

Since Ǧ0 is reductive and contains the principal unipotent element u, it contains a
principal SL2 [C]. We note that a principal embedding SL2 → Ǧ maps the central
element −1 ∈ SL2 to the element ǫ ∈ Ȟ ⊂ Ǧ. �

Proposition 8 is a serious constraint on the global image Ǧ∇, as the reductive sub-
groups of Ǧ containing a principal SL2 are severely limited by a result of [SS] which
goes back to the work of Dynkin [Dy]. They are all simple, and their Lie algebras
appear in one of the following maximal chains:

sl2 // sp2n // sl2n
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sl2n+1

sl2 // so2n+1

99tttttttttt

%%KKKKKKKKKK

so2n+2

sl7

sl2 // g2 // so7

=={{{{{{{{

!!DD
DD

DD
DD

so8

sl2 // f4 // e6

sl2 // e7

sl2 // e8

In some of these cases, the subgroup Ǧ0 cannot contain Ȟ, as its Coxeter number is
less than the Coxeter number of Ǧ. Looking at the minimal cases remaining, we obtain

Corollary 9. If Ǧ is simple of type A2n, n ≥ 1, Cn, n ≥ 1, Bn, n ≥ 4, G2, F4, E7, E8,
then Ǧ∇ = Ǧ.

Indeed, by the above list of embeddings and Proposition 8, any Ǧ0 ⊂ Ǧ containing
Ȟ and 〈n〉 must be equal to Ǧ.

For the remaining cases, observe that the automorphism group Σ of the pinning of
Ǧ is known to be isomorphic to the outer automorphism group of Ǧ. This finite group
fixes N and acts on the highest root space. If Ǧ is not of type A2n, it also fixes E.
Hence Σ fixes the connection ∇, and its differential Galois group Ǧ∇ is contained in
ǦΣ. Thus Corollary 9 gives the differential Galois group in all cases.

Corollary 10. If Ǧ is of type A2n−1, then Ǧ∇ is of type Cn, with center the kernel of
the center of Ǧ on the second exterior power representation.

If Ǧ is of type D2n+1 with n ≥ 4, then Ǧ∇ is of type Bn, with the center the kernel
of the center of Ǧ on the standard representation.

If Ǧ is of type D4 or B3, then Ǧ∇ is of type G2.
If Ǧ is of type E6, then Ǧ∇ is of type F4.
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14. The dimension of cohomology

We now use the calculation of the differential Galois group Ǧ∇ of our connection, with
its inertia subgroups at 0 and∞, to determine the dimensions of the cohomology groups
of the D-modules j∗F(V ), j!F(V ) and j!∗F(V ) on P1 associated to a representation V
of Ǧ.

We will assume that we are in one of the cases described in Corollary 9. Otherwise,
the computation of cohomology reduces to one in a smaller group given by Corollary
9. We will also assume that V is irreducible non-trivial representation of Ǧ, so

H0(P1, j∗F(V )) = H0(U,F(V )) = V Ǧ = 0,

H2(P1, j!F(V )) = H2
c (U,F(V )) = HomǦ(V ∗,C) = 0.

We will use Deligne’s formula [D2], Section 6.21.1, for the Euler characteristic

χ(H•(U,F)) = χ(H•c (U,F)) = χ(U) rank(F)−
∑

α

Irrα(F).

In our case, χ(U) = 0 and ∇ is regular at α = 0. Hence

dimH1(P1, j∗F) = dimH1(P1, j!F) = Irr∞(F).

The kernel of the map H1
c (U,F)→ H1(U,F) is isomorphic to the direct sum

H0(D×0 ,F)⊕H0(D×∞,F) = V I0 ⊕ V I∞

by (8.7). Hence we obtain

Proposition 11. If Ǧ∇ = Ǧ and V is an irreducible, non-trivial representation of Ǧ
with associated flat vector bundle F(V ) on Gm, then

H0(P1, j!∗F(V )) = H2(P1, j!∗F(V )) = 0,

(14.1) d(V ) := dimH1(P1, j!∗F(V )) = Irr∞(V )− dimV I0 − dimV I0 .

If we don’t assume that Ǧ∇ = Ǧ or that V is an irreducible, non-trivial representation
of Ǧ, we obtain the formulas

dimH0(P1, j!∗F(V )) = dimH2(P1, j!∗F(V )) = dimV Ǧ∇ ,

dimH1(P1, j!∗F(V )) = Irr∞(V )− dimV I0 − dimV I0 + 2dimV Ǧ∇ .

Since
h Irr∞(V ) = dimV − dimV Š ,

as we have seen above, this allows us to compute the dimensions of the cohomology
of the middle extension for any representation V of Ǧ, provided that we know the
restriction of V to the three subgroups Š, Ȟ and Ǧ∇, and the restriction of V to a
principal SL2. We will now make this more explicit.

The irreducible representations of SL2 all have the form Symk, k ≥ 0. Hence we may
write the restriction of V to the principal SL2 as

V =
⊕

k≥0

(Symk)⊕m(k)
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with multiplicities m(k) ≥ 0. We then have

(14.2) dimV I0 =
∑

k≥0

m(k)

as ϕ(I0) = exp(tN) fixes a unique line on each irreducible factor. We note that the
parity of these k is determined by V : if m(k) > 0 we have

(−1)k = ǫ|V .

The irreducible complex representations of Ȟ have dimensions either h or 1. The
irreducible W of dimension h restrict to a sum of h distinct non-trivial characters λ of
Š, in a single 〈n〉-orbit. The irreducible χ of dimension 1 are the representations trivial
on Š, and determined by χ(n), which lies in µ2h. We may therefore write

(14.3) V =
⊕

i

χ
⊕m(χi)
i ⊕

⊕

j

W
⊕m(Wj)
j .

If mi > 0, then
χi(n)h = ǫ|V .

In terms of the decomposition (14.3), we have

(14.4) dimV I∞ = m(χ0),

where χ0 is the trivial character, χ0(n) = 1. Each one-dimensional representation of Ȟ
is tame, and each irreducible h-dimensional representation has irregularity 1 = h·(1/h).
Hence

Irr∞(V ) =
∑

j

m(Wj)(14.5)

=
1

h
·#{non-trivial weight spaces for Š on V }.

If we know the restriction of V to a principal SL2 and to Ȟ, then formulas (14.1),
(14.2), (14.4), and (14.5) allow us to determine the dimension d(V ) of H1(P1, j!∗F(V )).
For example, when V = ǧ is the adjoint representation, we have ǫ = +1 on V and

V =

rk(ǧ)⊕

i=1

Sym2di−2,

=

rk(ǧ)⊕

i=1

χi ⊕

rk(ǧ)⊕

j=1

Wj,

where the di are the degrees of invariant polynomials and χi 6= 1 for all i. Hence
Irr∞ = dimV I0 = rk(ǧ), V I∞ = 0, and so d(V ) = 0. This gives the second proof of the
rigidity of our connection (Theorem 1), for the groups Ǧ in Corollary 9. (When Ǧ∇ is
a proper subgroup of Ǧ, we find that ǧ = ǧ∇ ⊕ V

′, where the representation V ′ of Ǧ∇
also has d(V ′) = 0.)

For example, the adjoint representation e6 of Ǧ = E6 decomposes as a sum of two
irreducible representations e6 = f4⊕V

′ for the differential Galois group Ǧ∇ = F4, with
dimV ′ = 26. The restriction of V ′ to the principal SL2 is the sum Sym16⊕Sym8. The
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restriction of V ′ to Ȟ is the sum χ1 ⊕ χ2 ⊕W1 ⊕W2, with the χi non-trivial of order
3. Hence Irr∞(V ′) = dimV ′I0 = 2, dimV ′I∞ = 0, and d(V ′) = 0.

Similarly, for the non-trivial irreducible representations V = Symn of Ǧ = SL2, we
find that d(V ) = (n− 1)/2 when n is odd, d(V ) = (n− 2)/2 when n is congruent to 2
(mod 4), and d(V ) = (n− 4)/2 when n is divisible by 4, in agreement with the results
of Section 12. In particular, d(V ) > 0 whenever n > 4. For the spin representation V
of dimension 2n of Ǧ = Spin2n+1, we find that d(V ) > 0 for all n > 7.

We now investigate the difference

d(V ) = Irr∞−dimV I0 − dimV I∞

=
∑

j

m(Wj)−
∑

k≥0

m(k)−m(χ0)

further, assuming that V is irreducible and non-trivial. This argument, which was
shown to us by Mark Reeder, breaks into two cases, depending on whether ǫ = +1 or
−1 on V .

If ǫ = +1 on V , we may assume (by passing to a quotient that acts faithfully on V )
that ǫ = 1 in Ǧ. Then nh = 1 and Ȟ is a semi-direct product 〈n〉⋉ Š. In this case, the
map SL2 → Ǧ factors through the quotient PGL2.

We now count the dimension of the span of invariants for 〈n〉 on V . Since 〈n〉 is a
subgroup of Ȟ which fixes a line in each Wj , we find that

dimV 〈n〉 =
∑

m(Wj) +m(χ0)

= Irr∞+m(χ0).

Since n is conjugate to the element n′ = ρ(e2πi/h), which lies in the maximal torus A
of the principal PGL2, we have

dimV 〈n〉 =
∑

k≥0

m(k) ·#{weights of A on Symk with a ≡ 0 (mod h)}.

if m(k) 6= 0, then k is even and the weight a = 0 occurs once in the irreducible
representation Symk. Since the weights a and −a occur with the same multiplicity in
V , we find that

dimV 〈n〉 =
∑

k≥0

m(k) + 2#{weights a > 0 of A on V with a ≡ 0 (mod h)}

= dimV I0 + 2#{weights a > 0 of A on V with a ≡ 0 (mod h)}.

Hence, when ǫ = +1 we find that

d(V ) = Irr∞−dimV I0 −m(χ0)

= 2(#{weights a > 0 of A on V with a ≡ 0 (mod h)} −m(χ0)).

The fact that d(V ) is even is consistent with the fact that when V is self-dual and
ǫ|V = +1, then V is orthogonal. Hence the first cohomology group H1(P1, j!∗F(V )) is
symplectic.
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If the highest weight λ̌ of V satisfies

〈λ̌, ρ〉 ≤ h− 1,

then there are no weights a > 0 with a ≡ 0 (mod h). Since d(V ) ≥ 0, this forces
m(χ0) = 0 and d(V ) = 0. This is what happens for the adjoint representation.

A similar analysis when ǫ|V = −1 gives the formula

d(V ) = #{weights 2k + 1 for the torus of SL2 on V with k ≡ 0 (mod h) and k 6= 0}

−m(χ1),

where χ1 is the character of Ȟ which is trivial on Š and maps n to eπi/h. if ǫ = nh lies
in Š, then m(χ− 1) = 0, as all weights of Š on V are non-trivial.

15. Nearby connections

There are several connections closely related to the rigid irregular connection ∇ that
we have studied in this paper. First, there is the connection

∇1 = d+N
dt

t
which has regular singularities at both t = 0 and t = ∞. The monodromy of ∇1 is
generated by the principal unipotent element u = exp(2πiN) and the differential Galois
group is the additive group exp(zN) of dimension 1 in Ǧ.

A second related connection is the canonical extension of our local differential equa-
tion at infinity, defined by Katz [K1, 2.4]. This is the connection

∇2 = d+

(
N −

1

h
ρ

)
dt

t
+ Edt.

If we pass to the ramified extension given by uh = s = t−1, and make a gauge trans-
formation by g = ρ(u) (assuming that ρ is a co-character), the connection ∇2 becomes
equivalent to the connection

d− h(N + E)
du

u2
.

This is regular at the unique point lying above t = 0. The differential Galois group of
∇2 and its inertia group at infinity are both isomorphic to Ȟ. The inertia group at
zero is cyclic, of order h or 2h.

Finally, we have the following generalization of ∇ for the exceptional groups Ǧ of
types G2, F4, E6, E7, and E8, which was suggested by the treatment of nilpotent
elements and regular classes in the Weyl group in [Sp], Section 9. We thank Mark
Reeder for bringing this argument to our attention. Let

ϕ′ : sl2 → ǧ

be a subregular sl2 in the Lie algebra. The Dynkin labels of the semi-simple element
ϕ′(h) are equal to 2 on all of the vertices of the diagram for Ǧ, except the vertex
corresponding to the (unique) root with the highest multiplicity m in the highest root,
where the label is 0.

Let d = h−m. Then the highest eigenspace ǧ[2d− 2] for ϕ′(h) on ǧ has dimension
equal to 1. Let E′ be a basis, and let N ′ = ϕ′(f) in ǧ[−2]. Then Springer shows that
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the element N ′ + E′ is both regular and semi-simple in ǧ. This element is normalized
by the semi-simple element n′ = ϕ′(h(eπi/d)), which has order either d or 2d in Ǧ.

Let M be the maximal torus which centralizes N ′ + E′. Then the image of n′ in
the Weyl group of M is a regular element of order d, in the sense of Springer [Sp]. It
has r + 2 free orbits on the roots of ǧ, where r is the rank of Ǧ. We tabulate these
numerical invariants for our groups below, as well as the characteristic polynomial F of
n′ acting on the character group of M , as a product of cyclotomic polynomials F (n).

Ǧ m d r + 2 F
G2 3 3 4 F (3)
F4 4 8 6 F (8)
E6 3 9 8 F (9)
E7 4 14 9 F (14) · F (2)
E8 6 24 10 F (24)

Define the subregular analog of ∇ as follows:

∇′ = d+N ′
dt

t
+ E′dt.

Then ∇′ has a regular singularity at t = 0, with monodromy the subregular unipotent
element u′ = exp(−2πiN ′). It has an irregular singularity at ∞, with slope 1/d and
local inertia group 〈Š′, n′〉, where Š′ is the subtorus of M on which n′ acts by the
primitive dth roots of unity.

The connection ∇′ is rigid, with differential Galois group given by the following table

Ǧ G∇′

G2 SL3

F4 Spin9

E6 E6

E7 E7

E8 E8

In the first two cases, we note that a subregular SL2 in Ǧ is a regular SL2 in Ǧ∇′ .
Hence the connection∇′ on Ǧ is obtained from the rigid connection∇ for the differential
Galois group. In the three other cases, the connection ∇′ is new; the third gives us
a connection with differential Galois group of type E6. In particular, the differential
Galois group of Gm has any simple exceptional group as a rigid quotient.

We get two further rigid connections with differential Galois group E8 from the two
nilpotent classes that Springer lists in [Sp], Table 11. These have slopes 1/20 and 1/15
at ∞ respectively. Since there is a misprint in that table, we give the Dynkin labeling
of these nilpotent classes below.

2 2 0 2 0 2 2

2
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2 0 2 0 2 0 2

0

In both cases, the action of the corresponding regular element in the Weyl group
on the character group of the torus is by the primitive 20th and 15th roots of unity,
respectively.

16. Example of the geometric Langlands correspondence with wild

ramification

The Langlands correspondence for function fields has a counterpart for complex
algebraic curves, called the geometric Langlands correspondence. As in the classical
setting, there is a local and a global pictures. For simplicity we will restrict ourselves
to the case when G is a simple connected simply-connected algebraic group, so that Ǧ
is a group of adjoint type.

The local geometric Langlands correspondence has been proposed in [FG] (see also
[F1] for an exposition). According to this proposal, to each “local Langlands param-
eter” σ, which is a Ǧ-bundle with a connection on D× = Spec C((t)), there should
correspond a category Cσ equipped with an action of the formal loop group G((t)). This
correspondence should be viewed as a “categorification” of the local Langlands corre-
spondence for the group G(F ), where F is a local non-archimedian field, F = Fq((t)).
This means that we expect that the Grothendieck group of the category Cσ, equipped
with an action of G((t)), attached to a Langlands parameter σ, should “look like” an
irreducible smooth representation π of G(F ) attached to an ℓ-adic representation of the
Weil group of F with the same properties as σ.

In particular, an object of Cσ should correspond to a vector in the representation π.
Thus, the analogue of the subspace π(K,Ψ) ⊂ π of (K,Ψ)-invariant vectors in π (that
is, vectors that transform via a character Ψ under the action of a subgroup K of G(F ))

should be the category C
(K,Ψ)
σ of (K,Ψ)-equivariant objects of Cσ.

Denote by LocǦ(D×) the set of isomorphism classes of flat Ǧ-bundles onD×. In [FG],
a candidate for the category Cσ has been proposed for any σ ∈ LocǦ(D×). Namely,
consider the category ĝcrit -mod of discrete modules over the affine Kac–Moody algebra
ĝ of critical level. The center of this category is isomorphic to the algebra of functions
on the space OpǦ(D×) of Ǧ-opers on D× (see [F1]). Hence for each point χ ∈ OpǦ(D×)
we have the category ĝcrit -modχ of those modules on which the center acts according
to the character corresponding to χ.

Consider the forgetful map p : OpǦ(D×) → LocǦ(D×). It was proved in [FZ] that
this map is surjective. Given a local Langlands parameter σ ∈ LocǦ(D×), choose
χ ∈ p−1(σ). According to the proposal of [FG], the sought-after category Cσ should
be equivalent to ĝcrit -modχ (these categories should therefore be equivalent to each

other for all χ ∈ p−1(σ)). In particular, C
(K,Ψ)
σ should be equivalent to the category

ĝcrit -mod
(K,Ψ)
χ of (K,Ψ)-equivariant objects in ĝcrit -modχ.
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Next, we consider the global geometric Langlands correspondence (see [FG, F2, F1]
for more details). Let X be a smooth projective curve over C. The Langlands param-
eters σ are now Ǧ-bundles on X with connections which are allowed to have poles at
some points x1, . . . , xN . Let BunG,(xi) be the moduli stack of G-bundles on X with
the full level structure at each point xi, i = 1, . . . , N (that is, a trivialization of the
G-bundle on the formal disc at xi). The global correspondence should assign to σ the
category Autσ,(xi) of Hecke eigensheaves on BunG,(xi) with eigenvalue σ.

The compatibility between the local and global correspondence should be that [FG]

(16.1) Autσ,(xi) ≃
N⊗

i=1

Cσxi
,

where σxi
is the restriction of σ to the punctured disc at xi. This equivalence should

give rise to an equivalence of the equivariant categories. Let Kxi
be a subgroup of

G(Oxi
), where Oxi

is the completed local ring at xi, and Ψxi
be its character. Then

the equivariant category of Autσ,(xi) is the category Aut
(Kxi

,Ψxi
)

σ,(xi)
of Hecke eigensheaves

on BunG,(xi) with eigenvalue σ which are (Kxi
,Ψxi

)-equivariant. We should have an
equivalence of categories

(16.2) Aut
(Kxi

,Ψxi
)

σ,(xi)
≃

N⊗

i=1

C
(Kxi

,Ψxi
)

σxi
.

Now suppose that σ comes from an oper χ which is regular on X\{x1, . . . , xN}.
Let χxi

be the restriction of χ to D×xi
. Then we have the categories ĝcrit -modχxi

and

ĝcrit -mod
(Kxi

,Ψxi
)

χxi
, which we expect to be equivalent to Cσxi

and C
(Kxi

,Ψxi
)

σxi
, respectively.

The stack BunG,(xi) may be represented as a double quotient

G(F )\
N∏

i=1

G(Fxi
)/

N∏

i=1

G(Oxi
),

where F = C(X) is the field of rational functions on X and Fxi
is its completion at xi.

A loop group version of the localization functor of Beilinson–Bernstein gives rise to the
functors

(16.3) ∆ :

N⊗

i=1

ĝcrit -modχxi
→ Autσ,(xi),

(16.4) ∆(Kxi
,Ψxi

) :

N⊗

i=1

ĝcrit -mod
(Kxi

,Ψxi
)

χxi
→ Aut

(Kxi
,Ψxi

)

σ,(xi)
,

and it is expected [FG] that these functors give rise to the equivalences (16.1) and (16.2),
respectively. This is a generalization of the construction of Beilinson and Drinfeld in
the unramified case [BD1].

We now apply this to our situation, which may be viewed as the simplest example
of the geometric Langlands correspondence with wild ramification (i.e., connections
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admitting an irregular singularity). We note that wild ramification has been studied
by E. Witten in the context of S-duality of supersymmetric Yang–Mills theory [Wi].

Let χ be our Ǧ-oper on P1 with poles at the points 0 and ∞. Let σ denote the
corresponding flat Ǧ-bundle. We choose K0 to be the Iwahori subgroup I, with Ψ0

the trivial character (we will therefore omit it in the formulas below), and K∞ to be

its radical I0. Note that I0/[I0, I0] ≃ (Ga)
rank(G)+1. We choose a non-degenerate

additive character Ψ of I0 as our Ψ∞. Thus, we have the global categories Autσ,(0,∞)

and Aut
I,(I0,Ψ)
σ,(0,∞) on BunG,(0,∞).

According to Section 3, there is a unique automorphic representation of G(A) corre-
sponding to an ℓ-adic analogue of our oper. Moreover, the only ramified local factors
in this representation are situated at 0 and ∞. The former is the Steinberg represen-
tation, whose space of Iwahori invariant vectors is one-dimensional. The latter is the
simple supercuspidal representation constructed in [GR]. Its space of (I0,Ψ)-invariant
vectors is also one-dimensional. We recall that the geometric analogue of the space
of invariant vectors is the corresponding equivariant category. Hence the geometric
counterpart of the multiplicity one statement of Section 3 is the statement (conjecture)

that the category Aut
I,(I0,Ψ)
σ,(0,∞) has a unique non-zero irreducible object. (Here and below

“unique” means “unique up to an isomorphism.”)

The compatibility of the local and global correspondences gives us a way to construct

this object. Namely, we have two local categories ĝcrit -modI
χ0

and ĝcrit -mod
(I0,Ψ)
χ∞

at-

tached to the points 0 and ∞, respectively. The oper χ0 on D×0 has regular singularity
and regular unipotent monodromy. Using the results of [FG, F1], one can show that
the category ĝcrit -modI

χ0
has a unique non-zero irreducible object M−ρ(χ0), which is

constructed as follows. It is the quotient of the Verma module

M−ρ = Ind
bgcrit

Lie(I)⊕C1
(C−ρ)

over ĝcrit with highest weight −ρ, by the image of the maximal ideal in the center
corresponding to the central character χ0.

On the other hand, χ∞ has irregular singularity with the slope 1/h. To construct

an object of the category of ĝcrit -mod
(I0,Ψ)
χ∞

, we imitate the construction of [GR] (see
Section 3). Define the affine Whittaker module

WΨ = Ind
bgcrit

Lie(I0)⊕C1
(Ψ)

over ĝcrit (here we denote by the same symbol Ψ the character of the Lie algebra Lie(I0)
corresponding to the above character Ψ of the group I0). Let WΨ(χ∞) be the quotient
of WΨ by the image of the maximal ideal in the center corresponding to the central
character χ∞. By construction, it is an (I0,Ψ)-equivariant ĝcrit-module and hence it

is indeed an object of our local category ĝcrit -mod
(I0,Ψ)
χ∞

. Applying the localization

functor ∆I,(I,Ψ) of (16.4) to M−ρ(χ0)⊗WΨ(χ∞), we obtain an object of the category

Aut
I,(I0,Ψ)
σ,(0,∞) . It is natural to conjecture that this is the unique non-zero irreducible object

of this category.
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One can show (see [FF], Lemma 5) that the image of the center of the completed
enveloping algebra in End WΨ is the algebra of functions on the space of opers which
have representatives of the form

d−N
ds

s
− E

ds

s2
+ v

ds

s
,

where v ∈ b[[s]]. Since our oper χ∞ belongs to this space, we obtain that the quotient
WΨ(χ∞) is non-zero. This provides supporting evidence for the above conjecture de-
scribing an example of the geometric Langlands correspondence with wild ramification.
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