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Abstract. Let P be a (non-necessarily convex) embedded polyhedron in R3, with its
vertices on the boundary of an ellipsoid. Suppose that the interior of P can be decomposed
into convex polytopes without adding any vertex. Then P is infinitesimally rigid. More
generally, let P be a polyhedron bounding a domain which is the union of polytopes
C1, . . . ,Cn with disjoint interiors, whose vertices are the vertices of P . Suppose that there
exists an ellipsoid which contains no vertex of P but intersects all the edges of the Ci . Then
P is infinitesimally rigid. The proof is based on some geometric properties of hyperideal
hyperbolic polyhedra.

Introduction

We are interested here in the infinitesimal rigidity of non-convex, embedded polyhedra in
Euclidean 3-space, homeomorphic to the sphere. So we define polyhedra in the following
way.

Definition 0.1. Let P ⊂ R3. P is a polyhedron if there exists a finite triangulation τ
of S2 and a continuous, injective map ϕ: S2 → R

3, sending each face of τ to a triangle
in a plane in R3, whose image is P .

There is then a natural notion of face of P (the image by ϕ of one of the faces of
τ ), of edge of P (the image of an edge of τ ) and of vertex of P (the endpoints of the
edges). Moreover, P bounds a compact domain, which we call the interior of P . Note
that it is not really necessary to suppose, in the above definition, that the faces of P are
triangles. For the infinitesimal rigidity questions, however, the general case is a direct
consequence of the case where the faces are triangles.
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Each edge e is in the boundary of two faces, and the dihedral angle of P at e is the
angle between those faces, measured in the interior of P .

It is customary to say that P is rigid if P has no non-trivial one-parameter deformation
among polyhedra with the same combinatorics and the same induced metrics (or edge
lengths), otherwise it is flexible. We say that P is infinitesimally rigid if any first-
order deformation of P which does not change its combinatorics or its edges lengths
is trivial—i.e. it is the restriction to P of an infinitesimal isometry of R3. It is known
that any infinitesimally rigid polyhedron is rigid, but the converse is false, see, e.g.,
[Co2].

The rigidity of polyhedra has a long history. Legendre [Le] and Cauchy [Ca]1 proved
that convex polyhedra are rigid, and their proof can also be used to obtain that those
polyhedra are infinitesimally rigid (a result first obtained by Dehn [De] by other meth-
ods). Their method has been extended by Stoker [St] and more recently by Rodrı́guez
and Rosenberg [RR] to some non-convex polyhedra sharing some properties of convex
polyhedra.

Bricard [Bri] introduced families of flexible octahedra, but they were not embedded,
and thus not polyhedra according to the definition given above. Indeed it was conjectured
for a long time that embedded polyhedra are rigid, until Connelly [Co1] found a counter-
example. On the other hand, Sabitov [Sab] recently proved the “Bellows conjecture”:
the volume bounded by a flexible polyhedron remains constant.

The main goal of this paper is to prove an infinitesimal rigidity statement for some
polyhedra. The proof is entirely different from the Legendre–Cauchy proof, and relies
on hyperbolic geometry.

Theorem A. Let P ⊂ R
3 be a polyhedron whose vertices are on the boundary of

an ellipsoid. Suppose that the interior of P can be decomposed as a union of convex
polytopes, with disjoint interiors, without adding any vertex. Then P is infinitesimally
rigid.

It is quite easy to find examples of polyhedra to which this theorem applies; given at
least five points in general position on a sphere, there are several polyhedra with those
points as vertices. Our proof actually applies to a much larger class of polyhedra, for
instance those obtained by moving the vertices of the examples of Theorem A a little.
This is seen in the next theorem, which is more complicated but much more general than
Theorem A.

Theorem A does not hold without the hypothesis on a decomposition into convex
polytopes; there is a known example of an octahedron in R3 which has its vertices on a
sphere but is not infinitesimally rigid.

Definition 0.2. Let P be a Euclidean polyhedron, bounding a compact domain �. A
cellulation of P is a decomposition of � into the union of a finite number of non-
degenerate convex polytopes with disjoint interiors, such that the vertices of the Ci are

1 The fact that it was mostly due to Legendre was recently discovered by I. Sabitov.
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Fig. 1. Examples of infinitesimally rigid polyhedra.

vertices of P and that, for 1 ≤ i, j ≤ n, Ci ∩ Cj is a vertex, an edge or a face of Ci and
of Cj .

Theorem B. Let P be a polyhedron, with a cellulation with cells C1, . . . ,Cn . Let E
be an ellipsoid which contains no vertex of P , but intersects all edges of the Ci . Then P
is infinitesimally rigid.

Again it is easy to find polyhedra to which Theorem B applies. Some examples are
shown in Fig. 1, along with the ellipsoid which shows that they are infinitesimally rigid.

Theorem A is a direct consequence of Theorem B: given a polyhedron P with vertices
on the boundary of an ellipsoid E , one can take a slightly smaller ellipsoid E ′ which
contains no vertex of P , but intersects all the segments between two of those vertices.
One can then apply Theorem B to obtain Theorem A.

The proof of Theorem B is based on hyperbolic geometry, and on related rigidity
results for (non-convex) hyperideal polyhedra. Those objects are most easily described
using the projective model of H 3, which identifies H 3 with the open unit ball B0 in R3,
and sends hyperbolic geodesics to segments in B0; a hyperideal polyhedron is then
the intersection with H 3 of a polyhedron which has all its vertices outside B0 but all its
edges intersecting B0. (Some definitions would allow the vertices to be on the boundary
of B0, but it would rather cloud the issues here.)

Given a hyperideal polyhedron, each vertex v has a “dual plane”, which is the hy-
perbolic plane which intersects orthogonally (for the hyperbolic metric) all the lines
containing v. The length of an edge e of P is the hyperbolic distance, along e, be-
tween the planes dual to its endpoints; we sometimes call it the hyperbolic length of e,
when there can be an ambiguity with the Euclidean length in the projective model. The
dihedral angle of P at an edge is also the angle for the hyperbolic metric.
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Definition 0.3. Let P be a hyperideal polyhedron, bounding a compact domain � in
the projective model. A hyperideal cellulation of P is a decomposition of � as the
union of a finite set of convex hyperideal polyhedra C1, . . . ,Cn with disjoint interiors,
such that, for all 1 ≤ i, j ≤ n, Ci ∩ Cj is a vertex, an edge or a face of Ci and
of Cj .

Theorem C. Let P be a hyperideal polyhedron. Suppose that P admits a hyperideal
cellulation by polyhedra C1, . . . ,Cn . Then any non-trivial first-order deformation of P
induces a non-trivial first-order variation of the hyperbolic lengths of its edges.

Theorem B will follow from Theorem C using the Pogorelov transformation, a re-
markable tool which is recalled in Section 1. Along the way we find another infinitesimal
rigidity statement for hyperideal polyhedra, concerning their dihedral angles.

Theorem D. Let P be a hyperideal polyhedron, with a hyperideal cellulation by poly-
hedra C1, . . . ,Cn . Any non-trivial first-order deformation of P induces a non-trivial
first-order variation of its dihedral angles.

Given a hyperideal polyhedron P , there is a compact polyhedron P ′, called the trun-
cated polyhedron associated to P , which is obtained by truncating a neighborhood of
each hyperideal vertex of P by the hyperbolic plane dual to this vertex. A basic remark
is that if v, v′ are two points of S3

1,+ such that the segment going from v to v′ (in the pro-
jective model of S3

1,+) enters B3, then the hyperbolic planes dual to v and v′ are disjoint.
As a consequence, the combinatorics of P ′ is obtained from the combinatorics of P by
adding one face for each vertex of P . By construction, all the edges of those “new” faces
have right angles, and all their vertices are trivalent (see [BB] for more details).

A consequence of Theorem D and of the Euler formula is that hyperideal polyhedra
with given combinatorics, near one that satisfies the hypothesis of Theorem D, are
parametrized by their dihedral angles. We can consider their volume, defined as the
hyperbolic volume of the corresponding truncated polyhedron.

Theorem E. Let P be a hyperideal polyhedron satisfying the hypothesis of Theorem
D. In the neighborhood of P , the hyperideal polyhedra with the same combinatorics
are parametrized by their dihedral angles. With this parametrization, their volume is a
strictly concave function.

One of the underlying ideas of this paper, leading in particular to the proof of Theo-
rem D, is related to the methods developed to study circle packings and ideal polyhedra,
in particular by Thurston [Th], Colin de Verdière [CdV], Brägger [Brä] and Rivin [Ri].
Thurston found the important relationship between the ideal polyhedra and the circle
packings, and realized that the Koebe Circle Packing Theorem was a consequence of
the Andreev Theorem on ideal polyhedra [An]. He also gave an extension of the Koebe
Theorem (to hyperbolic surfaces, etc.) and a proof which apparently helped Colin de
Verdière discover that there was a variational approach to those results. Brägger discov-
ered that the underlying functional was the hyperbolic volume. Rivin rediscovered this
independently, refined and simplified the proof, and brought it from the setting of circle
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packings to ideal polyhedra; the path that we follow in Section 3 is directly related to
his paper [Ri]. This approach was first transfered to the setting of hyperideal polyhedra
in [Sc4].

We remark that it is not really necessary to suppose that the polyhedra we consider
are embedded. It is necessary to have them immersed, but they might bound a domain
which includes some parts which are “multiply covered”.

The proof of Theorem B could be done entirely in the setting of Euclidean geometry;
hyperbolic geometry enters the picture only through the hyperbolic volume functional
and its wonderful properties. This suggests that other functionals could be used to prove
infinitesimal rigidity results. One could for instance wonder whether any polyhedron
with vertices on a strictly convex sphere in R3, which can be decomposed as a union of
polytopes with disjoint interiors with no new vertex, is infinitesimally rigid.

1. The Pogorelov Transformation

We recall in this section some fairly well-known facts of hyperbolic geometry, in partic-
ular the Pogorelov transformation, which takes infinitesimal rigidity questions from H 3

or S3
1 to Euclidean 3-space. This transformation was defined by Pogorelov [Po] in the

case of H 3 and S3.
The three-dimensional de Sitter space is a Lorentzian space of constant curvature 1.

Like H 3, it can be obtained as a quadric in the Minkowski four-dimensional space R4
1.

Recall that R4
1 is simply R4, with the Lorentz metric:

dx2 + dy2 + dz2 − dt2.

The de Sitter space, like H 3, can be seen as a quadric in R4
1, with the induced metric:

S3
1 := {x ∈ R4

1 | 〈x, x〉 = 1}.

We call S3
1,+ the “positive hemisphere” defined, in the hyperboloid model, as the set of

points of S3
1 with positive vertical coordinate t . There is a “projective model” of S3

1,+.
It is a map ϕS: S3

1,+ → R
3\B0, which is defined by sending a point x ∈ S3

1,+ in the
hyperboloid model to the intersection of the line containing 0 and x with the plane
{t = 1}, where t is the vertical coordinate.

Each totally geodesic, space-like plane P0 of S3
1 bounds two “hemispheres” each

isometric to S3
1,+. We will fix a plane P0, which in the hyperboloid model will be the

intersection of S3
1 with the hyperplane {t = 0}. The time-like geodesics orthogonal to

P0 foliate S3
1 . At each point x ∈ S3

1 , we call the directions which are parallel to the
unique geodesic containing x and orthogonal to P0 “radial”, and the directions which
are orthogonal to this direction “lateral”. By construction, the differential dϕS of ϕS

sends the radial direction in S3
1,+ to the radial direction in R3, and the lateral directions

in S3
1,+ to the lateral directions in R3.

Also, the oriented distance from x to P0 along the time-like geodesic containing x
and orthogonal to P0 we call ρ. The spheres {ρ = ρ0}, for ρ0 ∈ R, are totally umbilical,
space-like spheres.
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Definition 1.1. We define	S: T S3
1,+ → T (R3\B0) as the map sending (x, v) ∈ T S3

1,+
to (ϕS(x), w), where:

• The lateral component of w is the image by dϕS of the lateral component of v.
• The radial component of w has the same direction and the same norm as the radial

component of v.

The following remark is at the heart of the proof of Lemma 1.3 below.

Remark 1.2. For each ρ ∈ R+, call Iρ and IIρ the induced metric and second fun-
damental form of the sphere at distance ρ from P0 in S3

1 ; for each t ∈ (1,∞), call I t

and II t the induced metric and second fundamental form of the sphere of radius t in R3.
Then, for t = 1/tanh(ρ), we have

Iρ = sinh2(ρ)I t , IIρ = sinh2(ρ)II t .

Proof. Let “can” be the canonical metric on S2, then Iρ = cosh2(ρ)can, IIρ =
sinh(ρ) cosh(ρ)can, I t = t2can, II t = tcan; the result follows.

We can now state the main property of the Pogorelov transformation. The next lemma
is basically taken from [Sc3], but we include the proof since [Sc3] contains only the proof
of the analog for H 3 instead of S3

1,+.

Lemma 1.3. Let S be a smooth submanifold in S3
1,+, and let v be a vector field of S3

1,+
defined on S; then v is an isometric deformation of S if and only if	S(v) is an isometric
deformation of ϕS(S). In particular, if v is a vector field on S3

1,+, then v is a Killing field
if and only if 	S(v) is a Killing field of R3.

Proof. The second part follows from the first by taking S = S3
1,+.

To prove the first part, we have to check that the Lie derivative of the induced metric
on S under v vanishes if and only if the Lie derivative of the induced metric on ϕS(S)
under 	S(v) vanishes. In other words, if x, y are vector fields tangent to S, if we call g
and g the metrics on S3

1,+ and R3, respectively, and x = dϕS(x), y = dϕS(y), then we
have to prove that

(Lvg)(x, y) = 0 ⇔ (L	S(v)g)(x, y) = 0.

We will prove that the two terms are actually proportional:

(Lvg)(x, y) = sinh2(ρ)(L	S(v)g)(x, y). (1)

We decompose v into the radial component f N , where N is the unit radial vector, and
the lateral component u. Then 	S(v) = f N + u, where N is the unit radial vector in
R

3, and u := dϕS(u).
By linearity, it is sufficient to prove (1) in the cases where x and y are non-zero, and

are each either radial or lateral. We consider each case separately, and call D and D the
Levi–Cività connections of S3

1,+ and R3, respectively.
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First case: x and y are both radial. Then

(Lvg)(x, y) = (Lu g)(x, y)+ (L f N g)(x, y).

However,

(Lu g)(x, y) = g(Dx u, y)+ g(x, Dyu) = 0,

because both Dx u and Dyu are lateral. Moreover,

(L f N g)(x, y) = g(Dx f N , y)+ g(x, Dy f N ) = d f (x)g(N , y)+ d f (y)g(x, N ).

The same computation applies in R3. In addition, d f (x) = d f (x) by definition of x , so
the scaling comes only from g(x, N ) versus g(x, N ). So (1) is true in this case.

Second case: x and y are both lateral. Then, at a point at distance ρ from x0, with
t := 1/tanh(ρ), we have by Remark 1.2 that

(Lu g)(x, y) = (Lu Iρ)(x, y) = sinh2(ρ)(Lu I t )(x, y) = sinh2(ρ)(Lu g)(x, y).

Moreover,

(L f N g)(x, y) = g(Dx f N , y)+ g(x, Dy f N ) = −2 f IIρ(x, y),

and since the same computation applies in R3, we see by Remark 1.2 that

(L f N g)(x, y) = sinh2(ρ)(L f N g)(x, y)

and
(Lvg)(x, y) = sinh2(ρ)(Lvg)(x, y),

so that (1) also holds in this case.

Third case: x is lateral, while y is radial. We choose an arbitrary extension of x and
y as vector fields which remain tangent, resp. orthogonal, to the spheres {ρ = const}.
Then

(Lu g)(x, y) = u · g(x, y)− g([u, x], y)− g(x, [u, y]) = −g(x, [u, y]),

because [u, x] is tangent to the sphere of radius ρ. So, since the Lie bracket does not
depend on the metric, we have by Remark 1.2 that

(Lu g)(x, y) = −g(x, [u, y]) = − sinh2(ρ)g(x, [u, y]) = sinh2(ρ)(Lu g)(x, y).

In addition,

(L f N g)(x, y) = g(Dx f N , y)+ g(x, Dy f N ) = d f (x)g(y, N )

= d f (x) sinh2(ρ)g(N , y) = sinh2(ρ)(L f N g)(x, y),

again because the same computation applies in R3. As a consequence, we have again
that

(Lvg)(x, y) = sinh2(ρ)(Lvg)(x, y),

and (1) still holds.
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Corollary 1.4. Let x, y ∈ S3
1,+ be two points such that the segment s between x :=

ϕS(x) and y := ϕS(y) intersects B0. Let v ∈ Tx S3
1 , w ∈ Ty S3

1 be two vectors, and let
v := 	S(v), w := 	S(w). Suppose that the first-order displacement of x and y by v
and w, respectively, does not change the Euclidean distance between x and y. Then the
first-order displacement of x and y by v and w does not change the hyperbolic length
of s.

Recall that the hyperbolic length of s was defined, before Theorem C, as the distance,
in H 3, between the intersections of s with the planes dual to x and to y.

Proof of Corollary 1.4. Under the hypothesis of the corollary, there is an infinitesimal
isometry u ofR3 (i.e. a Euclidean Killing vector field) such that u(x) = v and u(y) = w.
Let u := 	S(u), then v = u(x), w = u(y), and, under the deformation by u, the distance
between the planes dual to x and y does not change since, by Lemma 1.3, u is a Killing
vector field.

Note that the proof actually uses only a weak version of Lemma 1.3, namely the
fact that the Pogorelov map	S sends de Sitter Killing vector fields to Euclidean Killing
vector fields. This fact could presumably be proved more quickly by a direct computation,
but it seems more illuminating to state the “real” property of 	S .

Proof of Theorem B assuming Theorem C. Let P be a polyhedron, suppose that there
exists a closed ellipsoid E containing no vertex of P but intersecting all its edges. By
replacing E by a slightly larger ellipsoid if necessary, we can suppose that each edge of
P intersects E along a segment.

We can also apply a projective transformation, so that E is replaced by the unit ball B0

inR3. This is possible because, by a result of Darboux [Da] and Sauer [Sau], infinitesimal
rigidity is a projective property: given a projective transformation u, P is infinitesimally
rigid if and only if its image by u is. Note that this result is not really necessary here, we
could also work with an arbitrary ellipsoid E and with the hyperbolic model given by
its Hilbert metric (see, e.g., [Sc1]).

We can now consider P as a hyperideal polyhedron P in the projective model. Let v
be a first-order deformation of P which does not change its induced metric, and let v be
the first-order deformation of P defined from v by the Pogorelov map	S . By Corollary
1.4, v (or rather its restriction to the vertices of P) does not change, at first order, the
edge lengths of P . So, by Theorem C, v is a trivial deformation. So, by Lemma 1.3, v is
trivial. Therefore, P is infinitesimally rigid.

2. Hyperideal Simplices

This section describes the Schläfli formula for hyperideal polyhedra, and some elemen-
tary properties of hyperideal simplices. Note that in this paper we only consider strictly
hyperideal simplices and polyhedra; we sometimes refer to [Sc4], but the situation there
was more complicated because it dealt also with polyhedra with some ideal vertices.
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Definition 2.1. The volume of a hyperideal simplex is defined as the volume of the
compact polyhedron obtained by truncating each of the four ends by the plane dual to
the corresponding hyperideal vertex.

The Schläfli formula describes the first-order variation of the volume of a polyhedron
in a deformation, in terms of the first-order variation of its dihedral angles. We state it
first for compact polyhedra. The proof can be found, e.g., in [Mi]. The dihedral angles
mentioned here are the interior angles.

Lemma 2.2. Let P be compact hyperbolic polyhedron, with edge lengths (Li ) and
dihedral angles (θi ). In a deformation of P , the first-order variation of its volume is
given by

dV = −1

2

∑

i

Li dθi . (2)

Applying this formula to a truncated hyperideal polyhedron, we see that it holds
also for hyperideal polyhedra, because the volume and edge lengths of a hyperideal
polyhedron are the same as for its truncated polyhedron—and the angles at the truncation
edges, which are equal to π/2, do not vary. We thus obtain an extension of the Schläfli
formula to hyperideal polyhedra (which has certainly been well known for some time).

Lemma 2.3. The Schläfli formula (2) is also valid for hyperideal polyhedra.

We now consider infinitesimal deformations of hyperideal polyhedra. Those deforma-
tions are uniquely determined by the first-order displacements of the vertices, basically
one vector at each vertex.

Lemma 2.4. Let S be a hyperideal simplex. There is no non-trivial first-order defor-
mation of S which does not change its edge lengths.

This statement is also well known, it can be proved directly in an elementary way.
The reader can find such a proof in [Sc4]; we do not reproduce it here since it is not too
surprising. The following lemma, concerning dihedral angles, is more subtle.

Lemma 2.5. Let S be a hyperideal simplex. Its exterior dihedral angles are such that,
for each vertex s of S, the sum of the angles of the edges containing s is greater than 2π ,
and equal to 2π if and only if s is ideal. Moreover, given a mapα: {e12, . . . , e34} → (0, π)
such that, for each vertex s of S0, the sum of the values of α on the edges of S0 incident
to s is strictly larger than 2π , there exists a unique hyperideal simplex such that the
exterior dihedral angle at each edge ei j is α(ei j ).

This is a simple special case of a recent description, by Bao and Bonahon [BB], of
the possible dihedral angles of hyperideal polyhedra. Another proof of this result of Bao
and Bonahon has been obtained by Rousset [Ro] as a consequence of the results of Rivin
and Hodgson [RH] on compact hyperbolic polyhedra.
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The key point of the proof of Theorem C is the remark, made in the next lemma, that
the volume of hyperideal simplices is a strictly concave function of the dihedral angles.
It is taken, with its proof, from [Sc4]. The same is true for ideal polyhedra (see [Ri]),
in that case it can be checked by a direct computation. It is however false for compact
simplices. From here on we call S the space of hyperideal simplices (up to the isometries
preserving the vertices). According to Lemma 2.5, S is the interior of a six-dimensional
polytope.

Lemma 2.6. The volume of hyperideal simplices is a strictly concave function of the
dihedral angles.

Proof. Let S ∈ S be a hyperideal simplex. Suppose that there is a direction in TSS
which is in the kernel of Hess(V ). Then by the Schläfli formula (2), the corresponding
first-order variation of the edge lengths vanishes, and this is impossible by Lemma 2.5.
Therefore, Hess(V ) has a constant signature over each S, with maximal rank. So it only
remains to check that Hess(V ) is negative definite at a point.

To do this one can consider a regular hyperideal simplex; by the Schläfli formula the
question boils down to showing that the matrix of variations of the edge lengths with
respect to the dihedral angles is positive definite. We refer the reader to [Sc4], where this
is done (using a very short Maple program).

3. Dihedral Angles of Hyperideal Polyhedra

In this section we use ideas similar to those in previous papers dealing with dihedral
angles of ideal polyhedra, in particular [Ri]. The situation is however simpler since, for
hyperideal polyhedra, it is not necessary to choose horosphere around the vertices, etc.
Of course, the fact that it is possible to extend those ideas from the ideal to the hyperideal
context follows from Lemma 2.6.

Since we want to use the properties of the volume of simplices, we start by checking
that our hyperideal (non-convex) polyhedron P admits a non-degenerate triangulation,
i.e. a decomposition in non-degenerate hyperideal simplices. We first remark that, in any
cellulation of P by hyperideal polyhedra C1, . . . ,Cn , each vertex of the Ci has to be a
vertex of P .

Remark 3.1. Let P be a hyperideal polyhedron. Suppose that the domain bounded
by P is the union of a finite number of convex hyperideal polyhedra C1, . . . ,Cn , with
disjoint interiors. Then the vertices of the Ci are the vertices of P .

Proof. Suppose that some point v is a vertex of at least one of the Ci , but is not a vertex
of P . It is either in the interior of P , in the interior of a face of P or in the interior of one
of its edges. Moreover, by the definition of a hyperideal polyhedron, v cannot be in B0.

Suppose that v is in the interior of P . Then, since the Ci are convex, at least one of
the edges of the Ci ending on v is oriented in a direction which is not towards B0. Thus
some of the Ci are not hyperideal polyhedra, a contradiction.
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Suppose now that v is in the interior of a face f of P . Let b0 := f ∩ B0, then v �∈ b0.
The intersections of f with the Ci defines a cellulation of f , and the same argument as
above shows that there is an edge of one of the Ci which starts from v in the direction
“opposite” to b0, and this again contradicts the fact that the Ci are hyperideal.

Finally, the same argument works if v is in the interior of an edge e of P , since then
v separates e into two parts, and only one of them can intersect B0.

Definition 3.2. Let P be a hyperideal polyhedron. A hyperideal triangulation of P
is a hyperideal cellulation by hyperideal polyhedra which are all simplices.

Lemma 3.3. Let P be a hyperideal polyhedron. Suppose that P has a hyperideal
cellulation. Then it has a hyperideal triangulation.

Proof. We will show that it is possible to subdivide a hyperideal cellulation C1, . . . ,Cn

to obtain a hyperideal triangulation. Note that we only have to prove that it is possible to
do this affinely, because, given a convex hyperideal polyhedron Ci , any non-degenerate
simplex with its vertices among the vertices of Ci is a hyperideal simplex.

Let v1, . . . , vν be the vertices of P . For each i ∈ {1, . . . , n}, we call wi the vertex of
Ci which has the smallest index. It is then clear that if Ci and Cj share a 2-face f , and
if wi ∈ f and wj ∈ f , then wi = wj .

For each i ∈ {1, . . . , n}, we subdivide each of the 2-faces of the cellulation of P
which contains wi by adding the segments going from wi to all the other vertices of f .
Since each 2-face contains at most one of the wi , this leads to a triangulation of all the
faces of the cellulation containing one of thewi . We then further triangulate all the other
non-triangular 2-faces of the cellulation in an arbitrary way.

Now we can subdivide each of the Ci , 1 ≤ i ≤ n, as follows: for each triangle T of
∂Ci which does not contain wi , we add the simplex with one face equal to T and the
opposite vertex equal to wi . Clearly, this defines a hyperideal triangulation of P .

Using Lemma 3.3, we can find a hyperideal triangulation τ of P . We stick to this
triangulation until the end of the paper. We call E and N the number of edges and
simplices in τ , respectively.

Definition 3.4. We callA the space of possible dihedral angles for the simplices of τ ;
A is the product of N copies of the six-dimensional polytope determined by Lemma 2.5.

The polyhedron P , with its triangulation τ , defines a set of dihedral angles on each of
the simplices of τ , i.e. an element of A which we call θ0. All the arguments that follow
happen in the neighborhood of θ0.

An element θ ∈ A determines, for each of the simplices of τ , an identification with
a unique hyperideal simplex. So each simplex of τ has a well-defined volume, and we
can define the volume V (θ) as the sum of the volumes of the simplices of τ . Since the
sum of concave functions is concave, we see using Lemma 2.6 that:

Lemma 3.5. V is a strictly concave function on A.
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Definition 3.6. We call F : A→ R
E the map sending an element ofA to the function

defined, on each edge e of τ , by the sum of the (interior) dihedral angles at e of the
simplices of τ containing e. For each element α ∈ RE , we call A(α) := F−1(α).

Clearly, F is an affine map, so that, for each α ∈ RE , A(α) is either empty or the
intersection of A with an affine submanifold RE . We call α0 := F(θ0).

Lemma 3.7. Let θ ∈ A, and let α := F(θ). θ is a critical point of the restriction of V
to A(α) if and only if, for each edge e of τ , the length assigned to e by all the simplices
of τ containing it is the same.

Proof. Let θ̇ be a first-order deformation of θ , in other words θ̇ gives a first-order
deformation of each of the dihedral angles of each of the simplices C1, . . . ,Cn in the
triangulation τ of P . By the Schläfli formula (2), the first-order variation of the volume
under the deformation θ̇ is

V̇ = −1

2

n∑

i=1

e(i)∑

j=1

Li, j θ̇i, j ,

where e(i) is the number of edges of the polyhedron Ci , Li, j is the hyperbolic length of
the edge ej of Ci , and θ̇i, j is the first-order variation, under θ̇ , of the same edge.

This formula can also be written as

V̇ = −1

2

e∑

i=1

p(i)∑

j=1

Li, j
˙̄θ i, j , (3)

where now e is the number of edges of the triangulation τ of P (i.e. the sum of the number
of interior edges and of the number of edges of P), p(i) is the number of simplices among
C1, . . . ,Cn which contain edge ei , Li, j is the hyperbolic length of edge ei for the j th

polyhedra containing it, and ˙̄θ i, j is the first-order variation of the dihedral angle of the
same edge.

Suppose first that the length of each edge is the same for all the simplices containing
it. In the notations of the previous formula, this means that, for each i ∈ {1, . . . , e}, there
exists a Li such that, for each j ∈ {1, . . . , p(i)}, Li, j = Li .

Then, with the same notations, we have for each i ∈ {1, . . . , e},
p(i)∑

j=1

Li, j
˙̄θ i, j = Li

p(i)∑

j=1

˙̄θ i, j = 0,

which shows that, in this case, θ is a critical point of the restriction of V to A(α).
Conversely, suppose that there is an edge ei0 of the triangulation which is contained

in two simplices, say Cj1 and Cj2 , and that the hyperbolic lengths of the ei0 for Cj1 and
for Cj2 are not the same. Consider the following first-order variation θ̇ of θ :

• The first-order variation of the angle at the edge ei0 of Cj1 is equal to 1.
• The first-order variation of the angle at the edge ei0 of Cj2 is equal to −1.
• The other angles remain the same.
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Clearly, the total angle at each edge of the triangulation remains the same, so that θ̇ is
in the tangent space of A(α). However, in (3), the term corresponding to the edge ei0 is
not zero, while the sums for all the other edges vanish. So V̇ �= 0, and θ is not a critical
point of the restriction of V to A(α).

In particular, θ0 is a critical point of V restricted toA(α0). Therefore, a direct conse-
quence of Lemma 3.5 is:

Corollary 3.8. For each α ∈ RE close enough to α0, there is a unique θc(α) ∈ A(α)
which is a critical point of the restriction of V to A(α). θc(α) depends smoothly on α.

Proof. Since the A(α), for α close to α0, define a foliation of a neighborhood of θ0 by
affine subspaces, this is a direct consequence of the strict concavity of V .

Proof of Theorem D. Let v be an infinitesimal deformation of P which does not change
its dihedral angles. We can find a one-parameter family (Pt )t∈[0,1] with P0 = P and such
that, for each vertex of P , the first-order displacement at t = 0 is given by v.

The triangulation of P obtained in Lemma 3.3 can be extended to a triangulation of
Pt for t small enough, with the same combinatorics. Considering the dihedral angles of
the simplices leads to a one-parameter family (θt )t∈[0,ε] for some ε > 0. By construction:

• For all t ∈ [0, ε], θt is a critical point of V restricted to A(F(θt ))—this follows
from Lemma 3.7 since our deformation comes from a deformation of P among
polyhedra.
• (d F(θt )/dt)t=0 = 0, since the dihedral angles of P does not change at first order,

and the total angles around the interior edges of the cellulation remain equal to 2π .

This clearly contradicts the strict concavity of V unless (dθt/dt)t=0 = 0.

4. Edge Lengths

This section contains the proofs of Theorems C and E. The basic idea is that once we know
that polyhedra near P are parametrized by their dihedral angles and that their volume
is a strictly concave function of the dihedral angles, the Schläfli formula shows that the
hyperbolic edge lengths—which appear again as the coefficients of the differential of
V —have a non-zero first-order variation under any non-trivial deformation.

Definition 4.1. P is the space of hyperideal polyhedra with the same combinatorics as
P . We still denote by V the hyperbolic volume, seen as a function on P .

We need the basic fact that the volume, as a function on P , is a strictly concave
function of the dihedral angles. It is a consequence of the following elementary remark,
taken from [Sc2].

Remark 4.2. Let� ∈ RN be a convex subset, and let f : �→ R be a smooth, strictly
concave function. Let ρ: RN → R

p be a linear map, with p < N , and let � := ρ(�).
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Define a function:

f : � → R

y �→ maxx∈ρ−1(y) f (x).

Then � is convex, and f is a smooth, strictly concave function on �.

Proof. It is quite obvious that� is convex, and also that f is smooth since f is strictly
concave.

Let c: [0, 1]→ � be a geodesic segment, parametrized at constant speed. By defini-
tion of f , there exist points x0, x1 ∈ � such that

c(0) = ρ(x0), c(1) = ρ(x1), f ◦ c(0) = f (x0), f ◦ c(1) = f (x1).

Let c: [0, 1] → � be the geodesic segment parametrized at constant speed such that
c(0) = x0 and c(1) = x1. Since ρ is linear, c = ρ ◦ c.

Moreover, since f is strictly concave

∀t ∈ (0, 1), f ◦ c(t) > t f ◦ c(0)+ (1− t) f ◦ c(1).

Therefore, the definition of f shows that

∀t ∈ (0, 1), f ◦c(t) ≥ f ◦c(t) > t f ◦c(0)+ (1− t) f ◦c(1) = f ◦c(0)+ f ◦c(1).

This shows that f is strictly concave.

Proof of Theorem E. It follows directly from the previous remark (applied with � =
P , f = V and ρ = α) and from Lemmas 3.5 and 3.7. Note that this proves that
V is a strictly concave function on a larger deformation space, of which P is an
affine subspace.

Proof of Theorem C. By the previous lemma, each non-trivial first-order deformation
of P induces a non-trivial first-order variation of the differential of V . By the Schläfli
formula (2), the coefficients of dV are the edge lengths, and the result follows.

Note that the proof actually shows a little bit more: the infinitesimal deformations of
P are locally parametrized by the variation of its edge lengths. Lemma 1.3 shows that
the same result is also true for Euclidean polyhedra under the hypothesis of Theorem B.
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