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A RIGIDITY RESULT FOR KÄHLERIAN MANIFOLDS

ENDOWED WITH CLOSED CONFORMAL VECTOR FIELDS

ANTONIO CAMINHA

Abstract. We show that if a connected compact Kählerian surface M with
nonpositive Gaussian curvature is endowed with a closed conformal vector
field ξ whose singular points are isolated, then M is isometric to a flat torus
and ξ is parallel. We also consider the case of a connected complete Kählerian
manifod M of complex dimension n > 1 and endowed with a nontrivial closed
conformal vector field ξ. In this case, it is well known that the singularities
of ξ are automatically isolated and the nontrivial leaves of the distribution
generated by ξ and Jξ are totally geodesic in M . Assuming that one such
leaf is compact, has torsion normal holonomy group and that the holomorphic
sectional curvature of M along it is nonpositive, we show that ξ is parallel
and M is foliated by a family of totally geodesic isometric tori and also by a
family of totally geodesic isometric complete Kählerian manifolds of complex
dimension n − 1. In particular, the universal covering of M is isometric to a
Riemannian product having R2 as a factor. We also comment on a generic
class of compact complex symmetric spaces not possessing nontrivial closed
conformal vector fields, thus showing that we cannot get rid of the hypothesis
of nonpositivity of the holomorphic sectional curvature in the direction of ξ.

1. Introduction

A conformal vector field ξ on a semi-Riemannian manifold M is closed if its
metrically dual 1-form is closed. In this case, if ∇ stands for the Levi-Civita
connection of M , one has ∇Xξ = ψX for some smooth function ψ on M (the
conformal factor of ξ) and every X ∈ X(M).

The geometry of Riemannian submanifolds of Lorentzian and Riemannian man-
ifolds in which either the submanifold or the ambient space is endowed with a
closed conformal vector field has been the object of intense research in recent years
(see, for instance, [1, 3, 6, 7] and the references therein). The presence of such
a (nontrivial) vector field also imposes strong restrictions on the structure of the
ambient manifold M itself. For example, it is a well known fact (cf. [4] and [7])
that, in a neighborhood of each nonsingular point, M is isometric to a warped
product structure.
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In what concerns Kählerian manifolds, a canonical class of examples possessing
closed conformal vector fields is that of the warped products Mn = I ×t N

2n−1

(n standing for the complex dimension of M and t for the I-variable), where N is
a (2n− 1)-dimensional Sasakian manifold; in this case, ξ = t∂t is closed conformal
and ψ = 1 is its conformal factor. Another one is that of the Riemannian products
Mn = Nn−1 ×T, where N is a Kählerian manifold of complex dimension n−1 and
T is a flat torus of complex dimension 1; in this case, the conformal vector field ξ is
the lift, to M , of a parallel vector field in T, and ψ = 0 is its conformal factor. In
both of these classes of examples, the holomorphic sectional curvature of M in the
direction of ξ vanishes identically and, if J stands for the quasi-complex structure
of M , then the leaves of the distribution generated by ξ and Jξ are totally geodesic
in M . However, in the first class such leaves are noncompact, whereas in the second
class they are compact.

On the other hand, if (Mn, J, g) is a compact complex symmetric space of com-
plex dimension n, positive scalar curvature, vanishing first De Rham cohomology
group and not isometric to S2n, then [8, Theorem 1] implies that M does not
possess a nontrivial closed conformal vector field. A particular instance of this sit-
uation is that of CPn endowed with the Fubini–Study metric. Therefore, covering
space theory shows that if (Mn, J, g) is a compact connected Kählerian manifold of
positive constant holomorphic sectional curvature (n being its complex dimension),
then M does not possess a nontrivial closed conformal vector field.

The purpose of this paper is to show that, under a reasonable set of conditions
on the closed conformal vector field ξ, the second class of examples presented in
the third paragraph is essentially the only one. More precisely, we first show that
if a connected compact Riemann surface M , endowed with a Kählerian metric of
nonpositive Gaussian curvature, possesses a closed conformal vector field ξ whose
singular points are isolated, then M is isometric to a flat torus and ξ is parallel.
We then consider the case of a connected complete Kählerian manifod Mn, of
complex dimension n > 1 and endowed with a nontrivial closed conformal vector
field ξ. In this case, it is a well known fact (cf. [7]) that the singularities of ξ
are automatically isolated and the nontrivial leaves of the distribution generated
by ξ and Jξ are totally geodesic in M . Assuming that one such leaf is compact,
has torsion normal holonomy group and that the holomorphic sectional curvature
of M along it is nonpositive, we show that ξ is parallel and M is foliated by a
family of totally geodesic isometric tori, and also by a family of totally geodesic,
isometric complete Kählerian manifolds of complex dimension n− 1. In particular,
the universal covering of M is isometric to a Riemannian product having R2 as a
factor.

Our approach is based on a certain kind of deformation of the original Kählerian
metric of M , which is interesting in itself and generalizes the way the metric of Cn

deforms into that of CHn.
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2. Deforming Kählerian metrics

In the sequel, we let (Mn, J, g) be an n-dimensional Hermitian manifold, where
n stands for its complex dimension (hence, M has real dimension 2n). We also let
ω ∈ Ω2(M) denote the corresponding Kählerian form, so that ω(X,Y ) = 〈JX, Y 〉
for all X,Y ∈ X(M). It is a standard fact that M is a Kählerian manifold if and
only if J is parallel with respect to the Levi-Civita connection ∇ of g.

Whenever convenient, we write g = 〈·, ·〉 and let | · | denote the corresponding
norm. Also, for X ∈ X(M), we let θX denote the 1-form metrically dual to X , so
that θX(Y ) = 〈X,Y 〉 for Y ∈ X(M); we also let θ2

X denote the symmetrization of
θX ⊗ θX .

We recall that a conformal vector field ξ on (M, g,∇) is said to be closed con-
formal if θξ is a closed 1-form. These conditions are readily seen to be equivalent
to the existence of a smooth function ψ on M (called the conformal factor of ξ)
such that ∇Xξ = ψX for all X ∈ X(M).

If (M,J, g,∇) is endowed with a nontrivial closed conformal vector field, the
following result presents a simple way to construct, out of g, a new Kählerian
metric on (M,J).

Proposition 2.1. Let (M,J, g = 〈·, ·〉) be a Kählerian manifold with Levi-Civita

connection ∇, and ξ ∈ X(M) be a nontrivial closed conformal vector field on M . If

|ξ|2 < c on M for some positive constant c and µ = (c− |ξ|2)−1, then the covariant

symmetric 2-tensor field

g̃ = µg + µ2(θ2
ξ + θ2

Jξ) (2.1)

defines another Kählerian metric on (M,J).

Proof. We briefly sketch the (simple) proof. The 2-tensor g̃ is clearly positive
definite, and thus defines a Riemannian metric on M . On the other hand, for
X,Y ∈ X(M), the Hermitian character of 〈·, ·〉 with respect to J readily implies
that of g̃ (also with respect to J).

Next, if ω and ω̃ stand for the Kählerian forms of (M,J, g) and (M,J, g̃), re-
spectively, then another straightforward computation gives ω̃ = µω + µ2θξ ∧ θJξ,
and hence

dω̃ = dµ ∧ ω + 2µdµ ∧ θξ ∧ θJξ − µ2θξ ∧ dθJξ.

Letting ψ be the conformal factor of ξ and X ∈ X(M), one also computes dµ =
2ψµ2θξ and dθJξ = 2ψω. Therefore,

dω̃ = 2ψµ2θξ ∧ ω + 4ψµ3θξ ∧ θξ ∧ θJξ − µ2θξ ∧ (2ψω) = 0. �

Our next result gives a set of conditions under which (M,J, g̃) is a complete
Riemannian manifold.

Lemma 2.2. Under the hypotheses of Proposition 2.1, assume that the conformal

factor ψ of ξ is bounded and does not vanish outside a compact subset of M . If

|ξ|2 : M → [0,+∞) is proper and such that supM |ξ|2 = c, then (M, g̃) is complete.

Proof. Let ℓ̃(·) denote length with respect to g̃. Standard Riemannian geometry
assures that it suffices to show that if a smooth curve γ : [0,+∞) → M escapes
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from all compact subsets of M , then ℓ̃(γ) = +∞. To this end, we start by observing
that

g̃(v, v) = µg(v, v) + µ2(〈ξ, v〉2 + 〈Jξ, v〉2) ≥ (µ〈ξ, v〉)2.

Now, choose K ⊂ M to be a compact set such that ψ 6= 0 on Kc, and t0 > 0 such
that γ(t) /∈ K for t > t0. Letting supM |ψ| = α < +∞, we estimate

ℓ̃(γ|[0,t]) ≥
∫ t

t0

g̃(γ′(s), γ′(s))1/2ds ≥
∫ t

t0

|µ(γ(s))〈ξ(γ(s)), γ′(s)〉| ds

=

∫ t

t0

1

|ψ(γ(s))| · 1

c− |ξ(γ(s))|2
∣
∣〈ξ(γ(s)),∇γ′(s)ξ〉

∣
∣ ds

≥ 1

2α

∣
∣
∣
∣

∫ t

t0

1

c− |ξ(γ(s))|2
d

ds
|ξ(γ(s))|2 ds

∣
∣
∣
∣

=
1

2α

∣
∣log(c− |ξ(γ(t0))|2) − log(c− |ξ(γ(t))|2)

∣
∣ .

Let ǫ > 0 be given. Since |ξ|2 is proper, |ξ|2 < c and supM |ξ|2 = c, there exists
a compact subset Lǫ of M such that |ξ|2 > c− ǫ in Lc

ǫ. Since γ is divergent, there
exists tǫ > t0 such that γ(t) ∈ Lc

ǫ for t > tǫ. Hence, for t > t0, tǫ, the above
computations give

ℓ̃(γ|[0,t]) ≥ 1

2α

(
log(c− |ξ(γ(t0))|2) − log ǫ

)
,

so that ℓ̃(γ) = limt→+∞ ℓ̃(γ|[0,t]) = +∞. �

Remark 2.3. The previous result continues to hold if we assume that (in the nota-
tions of the proof) ψ−1(0) ∩ Kc is a set of isolated points. It suffices to split the
trace of γ into pieces along each of which ψ 6= 0, estimate the length of each such
piece as we did above and add the results.

Example 2.4. In the complex Euclidean n-space Cn, let J be the standard quasi-
complex structure, g = 〈·, ·〉 the standard metric and Bn = {z ∈ Cn; |z| < 1}.
Since the vector field ξ(p) = p is closed and conformal, the previous construction
endows Bn with a Kählerian metric g̃, such that

g̃ =
1

1 − |ξ|2 〈·, ·〉 +
1

(1 − |ξ|2)2
(θ2

ξ + θ2
Jξ).

An immediate application of the previous result establishes the completeness of
(Bn, g̃). Therefore, the formula of Lemma 2.7 for the holomorphic sectional curva-
ture of (Bn, J, g̃), together with the Hawley–Igusa theorem, shows that (Bn, J, g̃) is
nothing but the complex hyperbolic space CHn.

Example 2.5. Let (Nn−1, JN , gN) be a Kählerian manifold (of complex dimension
n − 1) and T be a flat torus with its standard quasi-complex structure. If Mn =
N×T is endowed with the product quasi-complex structure and the product metric,
then Mn is a Kählerian manifold. Moreover, if T is the quotient of the lattice L
in R2 and Z stands for the canonical vector field along one of the directions of the
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lattice, then Z induces a nontrivial parallel smooth vector field on T, which can be
lifted to a corresponding one on M .

Henceforth, we let (Mn, J, g) be a Kählerian manifold, ξ ∈ X(M) be a nontrivial
closed conformal vector field with conformal factor ψ and such that |ξ|2 < c, and g̃
be the Kählerian metric on (M,J) given as in Proposition 2.1. We want to relate
the holomorphic sectional curvatures of (M,J, g) and (M,J, g̃), and to this end we
start by relating their Levi-Civita connections.

Lemma 2.6. If ∇ and ∇̃ stand for the Levi-Civita connections of g and g̃, respec-

tively, then

∇̃XY = ∇XY + ψµ
(
〈ξ,X〉Y + 〈ξ, Y 〉X + 〈Jξ,X〉JY + 〈Jξ, Y 〉JX

)
. (2.2)

Proof. The proof is a somewhat lengthy, though straightforward computation. On
the one hand, for X,Y, Z ∈ X(M) we have

2g̃(∇̃XY, Z) = 2µ〈∇̃XY + µ〈∇̃XY, ξ〉ξ + µ〈∇̃XY, Jξ〉Jξ, Z〉.
On the other, Koszul’s formula gives

2g̃(∇̃XY, Z) = X(g̃(Y, Z)) + Y (g̃(Z,X)) − Z(g̃(X,Y ))

− g̃(X, [Y, Z]) + g̃(Y, [Z,X ]) + g̃(Z, [X,Y ]).

By computing each summand at the right hand side of the last expression above
we obtain, after some cancellations,

2g̃(∇̃XY, Z) = 2µ〈∇XY + ψµ(〈ξ,X〉Y + 〈ξ, Y 〉X)

+ 2ψµ2(〈ξ,X〉〈ξ, Y 〉ξ + 〈ξ,X〉〈Jξ, Y 〉Jξ)
+ 2ψµ2(〈Jξ,X〉〈ξ, Y 〉Jξ − 〈Jξ,X〉〈Jξ, Y 〉ξ)
+ µ(〈∇XY, ξ〉ξ + 〈∇XY, Jξ〉Jξ)
+ µ(ψ〈Jξ, Y 〉JX + ψ〈Jξ,X〉JY ), Z〉.

Setting W = ∇̃XY − ∇XY and comparing the two expressions for 2g̃(∇̃XY, Z),
we arrive at

W + µ〈W, ξ〉ξ + µ〈W,Jξ〉Jξ = µF (X,Y ), (2.3)

where

F (X,Y ) = ψ(〈ξ,X〉Y + 〈ξ, Y 〉X + 〈Jξ, Y 〉JX + 〈Jξ,X〉JY )

+ 2ψµ(〈ξ,X〉〈ξ, Y 〉 − 〈Jξ,X〉〈Jξ, Y 〉)ξ
+ 2ψµ(〈ξ,X〉〈Jξ, Y 〉 + 〈Jξ,X〉〈ξ, Y 〉)Jξ.

Taking the inner product of (2.3) with ξ and Jξ, respectively, and recalling that
1 + µ〈ξ, ξ〉 = cµ, we successively get 〈W, ξ〉 = c−1〈F (X,Y ), ξ〉 and 〈W,Jξ〉 =
c−1〈F (X,Y ), Jξ〉, whence

W = µ(F (X,Y ) − c−1〈F (X,Y ), ξ〉ξ − c−1〈F (X,Y ), Jξ〉Jξ).
However, 〈Jξ, ξ〉 = 0 gives 〈F (X,Y ), ξ〉 = 2ψµc(〈ξ,X〉〈ξ, Y 〉 − 〈Jξ,X〉〈Jξ, Y 〉) and
〈F (X,Y ), Jξ〉J = 2ψµc(〈ξ,X〉〈Jξ, Y 〉+〈ξ, Y 〉〈Jξ,X〉). Substituting these formulas
in the right hand side of the expression of W , we arrive at (2.2). �
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Before we can proceed to relate the holomorphic sectional curvatures of g = 〈·, ·〉
and g̃, we need a few more preliminaries. Firstly, the closed conformal condition
on ξ ∈ X(Mn) (recall that n stands for the complex dimension of M) readily gives

ψ =
1

2n
div ξ,

and Lemma 1 of [7] shows that

|ξ|2∇(div ξ) = −2nRic(ξ)ξ,

where ∇(div ξ) stands for the gradient of the divergence of ξ with respect to g
and Ric(ξ) for the normalized Ricci curvature of (M, g) in the direction of ξ. In
particular, at each point where ξ 6= 0, we get

∇ψ = − Ric(ξ̂)ξ, (2.4)

where ξ̂ = ξ
|ξ| .

Lemma 2.7. Let (Mn, J, g) be a Kählerian manifold, ξ ∈ X(M) be a closed confor-

mal vector field with isolated zeros and such that |ξ|2 < c on M , ψ be the conformal

factor of ξ, and g̃ be the Kählerian metric on (M,J) given as in Proposition 2.1.

For X ∈ TpM unitary with respect to g, let K(X) and K̃(X) denote the holomor-

phic sectional curvatures of (M,J, g) and (M,J, g̃) with respect to X, respectively.

Then,

K̃(X) =
1

g̃(X,X)2
{µK(X) + µ2 Ric(ξ̂)(〈X, ξ〉2 + 〈X, Jξ〉2)}

+
1

g̃(X,X)
· 2µRic(ξ̂)(〈X, ξ〉2 + 〈X, Jξ〉2) − 4ψ2,

(2.5)

with Ric(ξ̂) being taken as 0 if ξ(p) = 0.

Proof. We first perform the computations at a point p ∈ M such that ξ(p) 6= 0.
Letting R̃ denote the curvature tensor of (M, g̃), we have

K̃(X) =
g̃(R̃(X, JX)JX,X)

g̃(X,X)g̃(JX, JX) − g̃(X, JX)2

=
1

g̃(X,X)2
{X(g̃(∇̃JXJX,X)) − g̃(∇̃JXJX, ∇̃XX) − JX(g̃(∇̃XJX,X))

+ g̃(∇̃XJX, ∇̃JXX) − g̃(∇̃[X,JX]JX,X)}.

Extend X to a neighborhood of p, with (∇vX)(p) = 0 and (∇vJX)(p) = 0 for
all v ∈ TpM (with e1(p) = Xp, the parallelism of J allows us to take a Hermitian
geodesic frame (e1, Je1, . . . , en, Jen) around p); hence, [X, JX ] = 0 at p. Setting
α = 2ψµ〈X, ξ〉 and β = 2ψµ〈X, Jξ〉, relation (2.2) gives, at the point p and after
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some straightforward computations,

K̃(X) =
1

g̃(X,X)2
{X(g̃(∇JXJX,X)) − JX(g̃(∇XJX,X))
︸ ︷︷ ︸

I

}

+
1

g̃(X,X)
{−X(α) + 2(α2 + β2) + JX(β)
︸ ︷︷ ︸

II

}

+
1

g̃(X,X)2
{−αX(g̃(X,X)) + βJX(g̃(X,X))
︸ ︷︷ ︸

III

}.

(2.6)

Computing each of I , II and III at p, we get

I = µK(X) + µ2〈R(X, JX)JX, ξ〉〈X, ξ〉 + µ2〈R(X, JX)JX, Jξ〉〈X, Jξ〉,
II = 2µRic(ξ̂)〈X, ξ〉2 + 2µRic(ξ̂)〈X, Jξ〉2

+ 4ψ2
(
µ+ µ2(〈X, ξ〉2 + 〈X, Jξ〉2)

)
− 8ψ2µ

= 2µRic(ξ̂)(〈X, ξ〉2 + 〈X, Jξ〉2) + 4ψ2g̃(X,X) − 8ψ2µ,

and

III = −2ψµ〈X, ξ〉{4ψµ〈X, ξ〉g̃(X,X) + 2ψµ2〈X, ξ〉 − 2ψµ2〈X, ξ〉}
+ 2ψµ〈X, Jξ〉{4ψµ〈JX, ξ〉g̃(X,X) − 2ψµ2〈X, Jξ〉 − 2ψµ2〈JX, ξ〉}

= −8ψ2µ2(〈X, ξ〉2 + 〈X, Jξ〉2)g̃(X,X).

Substituting these expressions in (2.6), we obtain

K̃(X) =
1

g̃(X,X)2
{µK(X) + µ2〈R(X, JX)JX, ξ〉〈X, ξ〉

+ µ2〈R(X, JX)JX, Jξ〉〈X, Jξ〉}

+
1

g̃(X,X)
· 2µRic(ξ̂)(〈X, ξ〉2 + 〈X, Jξ〉2) − 4ψ2.

Now, by invoking Lemma 1 of [7] once more, we obtain

〈R(X, JX)JX, ξ〉 = − Ric(ξ̂)(〈JX, ξ〉〈X, JX〉 − 〈X, ξ〉〈JX, JX〉)
= Ric(ξ̂)〈X, ξ〉

and, similarly, 〈R(X, JX)JX, Jξ〉 = Ric(ξ̂)〈X, Jξ〉. Substituting these formulas in
the last expression above for K̃(X), we finally arrive at the formula displayed in
the statement of the theorem.

If ξ(p) = 0, take a sequence (pj)j≥1 inM , converging to p and such that ξ(pj) 6= 0
(such a sequence does exist, for we are assuming that the zeros of ξ are isolated).

Compute (2.5) at pj and let j → +∞. Since Ric(ξ̂(pj))(〈X, ξ〉2
pj

+〈X, Jξ〉2
pj

)
j−→ 0,

that relation is still valid at p, provided we interpret Ric(ξ̂) as equal to 0 at p. �

The corollary below extends, to a general deformation g 7→ g̃ as above, the
phenomenon of holomorphic sectional curvature decay that takes place when we
pass from Cn to CHn.
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Corollary 2.8. Let (M,J, g) be a Kählerian manifold, ξ ∈ X(M) be a closed

conformal vector field with isolated zeros and such that |ξ|2 < c on M , and g̃ be

the Kählerian metric on (M,J) given as in Proposition 2.1. For X ∈ TpM unitary

with respect to g and such that K(X) ≥ 0, we have:

(a) If X⊥ξ, Jξ, then K̃(X) ≤ cK(X) − 4ψ2.

(b) For a general X, and if M has nonnegative Ricci curvature, then

K̃(X) ≤ cK(X) + 2c Ric(ξ̂) − 4ψ2,

with Ric(ξ̂) being taken as 0 if ξ(p) = 0.

Proof. If X⊥ξ, Jξ, then g̃(X,X) = µ. Therefore, our previous result gives

K̃(X) = (c− |ξ|2)K(X) − 4ψ2 ≤ cK(X) − 4ψ2.

For a general X ∈ TpM unitary, let A = 〈X, ξ〉2 + 〈X, Jξ〉2 and write

K̃(X) =
µ

g̃(X,X)2
·K(X) +

(µ2 + 2µg̃(X,X))A

g̃(X,X)2
· Ric(ξ̂) − 4ψ2,

For the first summand, note that

1 + µA =
c− |ξ|2 + 〈X, ξ〉2 + 〈JX, ξ〉2

c− |ξ|2 ≥ c− |ξ|2
c− |ξ|2 = 1;

hence,
µ

g̃(X,X)2
=

1

µ(1 + µA)2
≤ 1

µ
≤ c.

For the second summand, substituting g̃(X,X) = µ+ µ2A we get

(µ2 + 2µg̃(X,X))A

g̃(X,X)2
=

(3 + 2µA)A

(1 + µA)2
=

1

µ
· 3y + 2y2

1 + 2y + y2
,

where y = µA. It now suffices to observe that 1
µ ≤ c and (since y ≥ 0)

3y + 2y2

1 + 2y + y2
= 2 − 1

y + 1
− 1

(y + 1)2
< 2. �

3. Two rigidity results for Kählerian manifolds

We now use the metric deformation discussed in the previous section to study the
structure of a connected complete Kählerian manifold endowed with a nontrivial
closed conformal vector field. We start by looking at the compact case, for which
we need the following result.

Lemma 3.1. Let (M1, g, J) be a compact Kählerian surface endowed with a closed

conformal vector field ξ ∈ X(M), with isolated zeros and conformal factor ψ. Let

c > 0 be such that c > maxM |ξ|2 and g̃ be the metric on M defined as in (2.1).
If dMg and dMg̃ stand for the volume elements of M with respect to g and g̃,
respectively, then dM = cµ2dMg.
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Proof. Since the singular points of ξ are isolated by hypothesis, it suffices to deduce
the stated relation at the points where ξ 6= 0. At such a point p, if e1 = ξ

g̃(ξ,ξ)1/2
=

ξ√
cµ|ξ| and e2 = Jξ

g̃(ξ,ξ)1/2
= Jξ√

cµ|ξ| , then {e1, e2} is a positive orthonormal basis

of TpM with respect to g̃. Hence, if {θ̃1, θ̃2} is the metrically dual basis, then

dg̃M = θ̃1 ∧ θ̃2 at p. For a vector v ∈ TpM , a direct computation gives

θ̃1(v) =
1√
cµ|ξ| g̃(v, ξ) =

1√
cµ|ξ|

(
µ+ µ2|ξ|2

)
θξ(v) =

√
cµθξ̂(v),

so that θ̃1 =
√
cµθξ̂. Likewise, θ̃2 =

√
cµθJξ̂. However, since {ξ̂, J ξ̂} is a positive

orthonormal basis for TpM with respect to g, we have

dMg̃ = θ̃1 ∧ θ̃2 = cµ2θξ̂ ∧ θJξ̂ = cµ2dMg. �

We have finally arrived at our first main result.

Theorem 3.2. Let (M1, g, J) be a connected, compact Kählerian surface with

Gaussian curvature K ≤ 0. If M possesses a closed conformal vector field ξ ∈
X(M) whose zeros are all isolated, then K ≡ 0, ξ is parallel, and M is isometric

to a flat torus.

Proof. As before, let ψ be the conformal factor of ξ, choose a real number c > 0
such that c > maxM |ξ|2, and let g̃ be defined as in (2.1).

Since ξ−1(0) is a set of isolated points and M is compact, we conclude that
ξ−1(0) is finite. Therefore, if K̃ stands for the Gaussian curvature of (M, g̃), then,

at every point of M \ξ−1(0) and in the notations of Lemma 2.7, we have K = K(ξ̂)

and K̃ = K̃(ξ̂). That result also furnishes

K̃ =
1

g̃(ξ̂, ξ̂)2
{µK+µ2K(〈ξ̂, ξ〉2 +〈ξ̂, Jξ〉2)}+

1

g̃(ξ̂, ξ̂)
·2µK(〈ξ̂, ξ〉2 +〈ξ̂, Jξ〉2)−4ψ2.

Since 〈ξ̂, Jξ〉 = 0 and g̃(ξ̂, ξ̂) = cµ2, we obtain, after some simple algebra,

K̃ =
(c+ |ξ|2

cµ

)

K − 4ψ2.

By continuity, this last formula relating K and K̃ holds in all of M .
We now apply Gauss–Bonnet theorem twice, with the aid of Lemma 3.1:

2πX (M) =

∫

M

K̃ dMg̃ =

∫

M

(c+ |ξ|2
c− |ξ|2

)

K dMg − 4c

∫

M

ψ2µ2 dMg

≤
∫

M

K dMg = 2πX (M).

Thus, the inequality above must be an equality, which implies K ≡ 0 and ψ ≡ 0
and, in turn, X (M) = 0. This means that M is diffeomorphic to a torus and ξ is
parallel. Also, since ∇J = 0, we get that Jξ is also parallel. Therefore, |ξ| = |Jξ|
are constant on M , and since ξ is nontrivial, neither of these vectors does vanish
on M .
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Since M is diffeomorphic to a torus, a theorem of Cartan assures the existence
of closed geodesics γ1 and γ2 in M , representing the free homotopy classes of a set
of generators of π1(M). Letting the flow of ξ act (by isometries, since ξ is parallel)
on γ1 and γ2, we can assume that both of them start and end at the same point
p of M , so that π1(M ; p) is generated by [γ1] and [γ2]. If γ′

1(0) = αξ + βJξ, for
some α, β > 0, then the parallelism of ξ and Jξ give that γ′

1 = αξ + βJξ along γ1,
so that γ1 is a geodesic loop based at p. Accordingly, so is γ2 (see Figure 1).

p

γ′
1(0)

γ′
2(0)

o
γ̃1

−→u1 γ̃1(a1)

γ̃2

γ̃2(a2)

−→u2

Figure 1. Closed geodesics in Σ.

Since K ≡ 0 and K is diffeomorphic to a torus, its universal covering, endowed
with the covering metric, is R

2 with its standard flat metric. Let π : R2 → M be
the covering map, o ∈ π−1(p), and γ̃1 and γ̃2 be the liftings of γ1 and γ1 passing
through p, respectively. Since π is a local isometry, γ̃1 and γ̃2 are straight lines
through o. Letting γ̃1(0) = γ̃2(0) = o, we can assume that dπo maps γ̃′

j(0) to γ′
j(0),

for j = 1, 2, as well as that ∠(γ̃′
1(0), γ̃′

2(0)) = ∠(γ′
1(0), γ′

2(0)) as oriented angles.
Suppose further (also without loss of generality) that γ1 and γ2 (and so γ̃1 and γ̃2)
are normalized, and let ℓ(γj) = aj , for j = 1, 2. If −→u 1 and −→u 2 are the vectors in
R2 that go from o to γ̃1(a1) and γ̃2(a2), respectively, and L is the lattice in R2

generated by −→u 1 and −→u 2, then a standard covering argument shows that M is
isometric to the flat torus R2/Deck(π), quotient of the fundamental domain of L
by π. �

Remark 3.3. The nonpositivity of the holomorphic sectional curvature and the
compactness of M cannot be relaxed, as shown by the examples of S2 and R2, both
of which possess nonparallel closed conformal vector fields.

We now turn to the case of a complete Kählerian manifold Mn of complex
dimension n > 1, and first recall (cf. [7, Lemma 1]) that if it has a closed conformal
vector field ξ ∈ X(M) \ {0}, then the zeros of ξ are automatically isolated. We first
need some auxiliary results.

Lemma 3.4. Let n > 1 and (Mn, g, J) be a Kählerian manifold endowed with a

closed conformal vector field ξ ∈ X(M) \ {0}. Then, the distribution D generated
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by ξ and Jξ is involutive in M \ ξ−1(0), and its leaves are totally geodesic and

Kählerian in the induced metric.

Proof. The parallelism of J and the closed conformal character of ξ give [ξ, Jξ] =
∇ξJξ − ∇Jξξ = J∇ξξ − ψJξ = 0. Moreover, if Σ is a leaf of D and we let N
denote the Nijenhuis tensor of Σ, it is immediate to see that N = 0, so that Σ is a
complex curve in (Mn, J, g) and the restriction of g to Σ (which we shall also call
g) is Kählerian. Now, let α be the second fundamental form of Σ and (·)⊥ denote
orthogonal projection onto T (Σ, g)⊥. Then, α(ξ, Jξ) = (∇ξJξ)

⊥ = (J∇ξξ)
⊥ =

(ψJξ)⊥ = 0. �

Lemma 3.5. Let n > 1 and (Mn, g, J) be a connected Kählerian manifold endowed

with a closed conformal vector field ξ ∈ X(M) \ {0}. If there exists a nontrivial leaf

Σ of the distribution D generated by ξ and Jξ such that the conformal factor of ξ
vanishes on Σ, then it vanishes on M . In particular, ξ and Jξ are parallel and do

not vanish at any point of M .

Proof. By hypothesis, we have ξ 6= 0 on Σ. For p ∈ Σ, take a neighborhood V of p
in M \ ξ−1(0) such that there exists in V a smooth vector field X , with X⊥ξ, Jξ.
Letting ψ stand for the conformal factor of ξ and α be an integral curve of X
starting at q ∈ V ∩ Σ, it follows from (2.4) that

d

dt
ψ(α(t)) = 〈∇ψ(α(t)), α′(t)〉 = −〈Ric(ξ̂)ξ,X〉α(t) = 0.

Hence, ψ is constant along α and, since ψ(q) = 0, we get that ψ ≡ 0 along α.
Since X was arbitrarily chosen subjected to the condition X⊥ξ, Jξ, we conclude
that ψ ≡ 0 in a neighborhood of p in M \ ξ−1(0).

The discussion on [5, Section 1] assures that ψ and ξ are uniquely determined by
the values of ψ, ∇ψ, ξ, and ∇ξ at a single point of M . Therefore, since ψ vanishes
on an open subset of M \ ξ−1(0), and (as we have observed above, for n > 1) such
a set is connected, we conclude that ψ ≡ 0 on M \ ξ−1(0). However, since ξ−1(0)
is a set of isolated points, we actually have that ψ ≡ 0 on M . In turn, this shows
that both ξ and Jξ (since ∇J = 0) are parallel on M .

Finally, for X ∈ X(M) we have X〈ξ, ξ〉 = 2〈ψX, ξ〉 = 0, so that |ξ|2 is constant
on M . Since ξ = 0 at most at a set of isolated points, this implies that |Jξ| = |ξ|
is constant and positive on M . �

Lemma 3.6. Let M be a Riemannian manifold, η ∈ X(M) \ {0} be a parallel and

complete vector field with flow Φ : R × M → M , and α : [0, 1] → M be a geodesic

preserved by Φ. If Pα : Tα(0)M → Tα(1)M stands for the parallel transport along

α, then Pα = (dΦ1)α(0).

Proof. Let p = α(0) and v ∈ TpM . It suffices to show that t 7→ (dΦt)p(v) is parallel
along α. To this end, let δ : (−ǫ, ǫ) → M be such that δ(0) = p and δ′(0) = v.
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Then,

D

dt
(dΦt)p(v) =

D

dt

∂

∂s
Φ(t, δ(s))

∣
∣
∣
s=0

=
D

ds

∂

∂t
Φ(t, δ(s))

∣
∣
∣
s=0

=
D

ds
η
(
Φ(t, δ(s))

)
∣
∣
∣
s=0

=
(

∇ d
ds Φ(t,δ(s))η

)

Φ(t,p)
= 0,

since η is parallel. �

For what follows, we recall that, given a connected submanifold N of a Rie-
mannian manifold M , p ∈ N , and a closed and piecewise differentiable curve
α : [0, 1] → N such that α(0) = p, parallel translation along α defines a linear
operator Pα : TpN

⊥ → TpN
⊥. More precisely, for v ∈ TpN

⊥, we set Pα(v) = V (1),
where t 7→ V (t) is the parallel transport of v along α. It is immediate to check
that the set of such linear operators, endowed with the product Pα · Pβ = Pα·β ,
form a closed subgroup of O(TpN

⊥), called the normal holonomy subgroup of N

at p and denoted by Hol⊥p (N) (for more details, see [2, Chapter 4]). If q ∈ N and

δ is a piecewise smooth curve in N joining p and q, we have Hol⊥p (N) ≃ Hol⊥q (N)
via Pα 7→ Pδ−1·α·δ. Therefore, from now on we shall refer to the normal holonomy
group of N , which will henceforth be denoted by Hol⊥(N).

We then have our second main result.

Theorem 3.7. Let n > 1 be an integer and (Mn, g, J,∇) be a connected, complete

Kählerian manifold endowed with a closed, conformal and nontrivial vector field ξ.
Let D denote the distribution in M \ ξ−1(0) generated by ξ and Jξ, and assume

that D has a compact leaf Σ. If the holomorphic sectional curvature of M along Σ
is nonpositive and Hol⊥(Σ) is a torsion group, then:

(a) ξ−1(0) = ∅ and both ξ and Jξ are parallel along M .

(b) The leaves of D, endowed with the induced metric, form a family of totally

geodesic isometric tori.

(c) The distribution D⊥ is integrable and, in the induced metric, their leaves

are totally geodesic, isometric complete Kählerian manifolds of complex

dimension n− 1.

Proof. Lemma 3.4 assures that Σ is totally geodesic in M , so that its Gaussian
curvature KΣ coincides with the holomorphic sectional curvature of M along Σ.
Therefore, KΣ ≤ 0, and we can apply Theorem 3.2 to conclude that Σ is isometric
to a flat torus (hence, KΣ ≡ 0) and the conformal factor ψ of ξ vanishes along it.
Lemma 3.5 then shows that ψ ≡ 0 on M , ξ−1(0) = ∅, and ξ and Jξ are parallel
along M . This establishes (a).

For (b), let dM stand for the Riemannian distance on M . Given q ∈ M , the
compactness of Σ assures the existence of a point p ∈ Σ such that dM (p, q) =
dM (p; Σ). Since M is complete, the Hopf–Rinow theorem guarantees the existence
of a normalized geodesic γ : [0, l] → M such that γ(0) = p, γ(l) = q, and l =
ℓ(γ) = dM (p; q). In particular, it is a well known fact that γ′(0)⊥TpΣ, so that
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〈γ′(0), ξp〉 = 〈γ′(0), Jξp〉 = 0. Now, the parallelism of ξ assures that, along γ,

d

ds
〈γ′, ξ〉γ(s) = 〈Dγ

′

ds
, ξ〉γ(s) + 〈γ′,

Dξ

ds
〉γ(s) = 0.

Then, 〈γ′, ξ〉 is constant along γ, so that 〈γ′, ξ〉q = 〈γ′, ξ〉p = 0. Analogously,
〈γ′, Jξ〉q = 0. On the other hand, if Σq is the leaf of D passing through q, then
TqΣq is generated by ξq and Jξq, so that γ′(l)⊥TqΣq (cf. Figure 2).

Σq

γ(l) = q

Σ

γ(0) = p

w

ξp

Jξp

ξq

Jξq

v
β

Figure 2. Comparing Σ to Σq.

By Lemma 3.4, Σq is totally geodesic in M . For v ∈ TqΣq, the maximal geodesic
of Σq departing from q with velocity v coincides with that of M , which is complete.
Hence, Σq is also complete. Let KΣq stand for the Gaussian curvature of Σq and
K(ξ, Jξ) for the holomorphic sectional curvature of M along the planes generated
by ξ and Jξ. Letting R denote the curvature operator of M , the parallelism of ξ and
Jξ give R(Jξ, ξ)ξ = 0, so that K(ξ, Jξ) ≡ 0. However, since Σq is totally geodesic
in M , we conclude that KΣq = K(ξ, Jξ)|Σq

= 0. Therefore, being a connected,
complete flat surface, Σq is isometric to a torus, a plane or a cylinder over a plane
curve. In what comes next, we shall show that is is isometric to a torus.

The proof of Theorem 3.2 assures the existence of geodesic loops α1 and α2 in
Σ, based at p and such that π1(Σ; p) is generated by [α1] and [α2]. Let α = α1 :
[0, 1] → Σ and write α′(0) = v = aξp + bJξp, for some a, b ∈ R. If v = aξq + bJξq,
we already know that v ∈ TqΣq. If β is the geodesic of Σq departing from q with
velocity v, we claim that β is a geodesic loop, with length ℓ(β) = ℓ(α). We shall
prove this in two steps (cf. Figure 3):

(i) Let w = γ′(0) ∈ T⊥
p Σ and η = aξ + bJξ, which is a parallel and (by the

completeness of M) complete vector field in M . If Φ : R × M → M is the flow
of η, then Φt : M → M is an isometry, so that γt(s) := Φ(t, γ(s)) is a geodesic
of M joining α(t) to β(t). The parallelism of η assures, through Lemma 3.6, that
w(t) = (dΦt)pw is parallel along α and normal to Σ. Hence, w(1) = Pα(w), with
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q

p

w

γ

β

α

α(t)

β(t)

γt

Figure 3. β is also a geodesic loop.

Pα ∈ Hol⊥(Σ). Since this is a torsion group by hypothesis, there exists an integer
m ≥ 1 such that Pm

α = Id : T⊥
p Σ → T⊥

p Σ; in particular, Pm
α (w) = w. However,

since Pm
α = Pα·...·α (m times), if we set c = ℓ(α · . . . ·α) = mℓ(α) we conclude that

γc : [0, l] → M is a geodesic joining p = (α · . . . · α)(0) = p to β(c) and with initial
velocity w. Then by uniqueness we get γc = γ, so that β(c) = γc(l) = γ(l) = q.
Since β′(0) is parallel to α′(0) along γ, β′(c) is parallel to α′(c) along γc, and
α′(0) = α′(c), γ = γc, we conclude that β′(0) = β′(c).

(ii) For 0 ≤ t ≤ l, let vt ∈ Σγ(t) denote the parallel transport of v along γ|[0,t] and
(according to the discussion in (i)) let δt be the geodesic loop that departs from
γ(t) with initial velocity vt, so that δ0 = α and δl = β (cf. Figure 4). Since exp :
TM → M is smooth, the function t 7→ ℓ(δt) is continuous; on the other hand (also

from (i)), ℓ(δt)
ℓ(α) ∈ Z for each t ∈ [0, l]. In particular, ℓ(β) = ℓ(δl) = ℓ(δ0) = ℓ(α).

γ(t)

γ(l) = q

γ(0) = p
α = δ0

δt

β = δl

Figure 4. Computing the length of β.

The argument in (i) guarantees that the geodesics β1 and β2 of Σq, obtained from
α1 and α2 by parallel transporting α′

1(0) and α′
2(0) along γ, are distinct geodesic
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loops in Σq. Since a plane has no closed geodesics and a cylinder over a plane curve
has only one geodesic loop through each one of its points, we conclude that Σq is a
torus. Also, it follows by construction that 〈α′

1(0), α′
2(0)〉 = 〈β′

1(0), β′
2(0)〉, and (ii)

assures that ℓ(α1) = ℓ(β1) and ℓ(α2) = ℓ(β2). Therefore, the last part of the proof
of Theorem 3.2 assures that Σq is isometric to Σ.

We now turn to (c). If X and Y are smooth vector fields in D⊥, then the
parallelism of ξ and Jξ give 〈∇XY, ξ〉 = 0 and 〈∇XY, Jξ〉 = 0. In particular,
[X,Y ] ∈ D⊥, so that D⊥ is integrable. Letting N denote a leaf of D⊥ and α its
second fundamental form, we have

α(X,Y ) = 〈∇XY, ξ〉
ξ

|ξ|2 + 〈∇XY, Jξ〉
Jξ

|ξ|2 = 0,

and N is totally geodesic in M . The completeness of N (in the induced metric)
now follows from that of M , together with the fact that geodesics in N are also
geodesics in M .

It is immediate to check that X ∈ X(N) ⇒ JX ∈ X(N). Therefore, J is an
almost complex structure on N , and the fact that the Levi-Civita connection of N
is the restriction of that of M guarantees that J is parallel on N . Finally, since the
Nijenhuis tensor of N is the restriction of that of M , which vanishes identically, we
conclude that N is a Kählerian manifold in the induced metric.

For the last part, we argue pretty much as in (i). To this end, let N1 and
N2 be two distinct leaves of D⊥, and take p1 ∈ N1 ∩ Σ and p2 ∈ N2 ∩ Σ. Let
δ : [0, a] → Σ be a geodesic of Σ joining p1 to p2, and δ′(0) = aξp1

+ bJξp1
for

some a, b ∈ R. The parallelism of ξ and Jξ assure that δ′ is the restriction of the
parallel (hence, complete) vector field η = aξ + bJξ to δ. If Φ : R × M → M
denotes the flow of η, then Φa : M → M is an isometry such that Φa(p1) = p2 and
(dΦa)p1

(Tp1
N1) = Tp2

N2. Since N1 and N2 are connected, complete and totally
geodesic in M , an argument pretty much like the one presented in the proof of (b)
guarantees that Φa applies geodesics in N1 to geodesics in N2. Hence, Φa(N1) ⊂ N2

and, likewise, Φ−a(N2) ⊂ N1. Thus, Φa(N1) = N2. �

Corollary 3.8. Let n > 1 be an integer and (Mn, g, J,∇) be a connected, complete

Kählerian manifold satisfying the hypotheses of the previous result. If M̃ stands for

the universal covering of M , endowed with the covering metric, then M̃ is isomet-

ric to a Riemannian product Ñ × R
2, where Ñ is a connected, simply connected,

complete Kählerian manifold.

Proof. Letting g̃ denote the covering metric, the covering map π : M̃ → M turns
into a local isometry, so that M̃ is naturally a Kählerian manifold. Moreover,
the orthogonal foliations on M lift to two orthogonal foliations of M̃ with totally
geodesic leaves, and one of which has leaves isometric to R2. Since M̃ is simply con-
nected, it now suffices to apply the complex version of the De Rham decomposition
theorem. �
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