
A Rigorous Approach to Relate Enterprise and Computational Viewpoints

Remco M. Dijkman Dick A.C. Quartel Luís Ferreira Pires Marten J. van Sinderen

University of Twente, Centre for Telematics and Information Technology

{r.m.dijkman|d.a.c.quartel|l.ferreirapires|m.j.vansinderen}@utwente.nl

Abstract

Multi-viewpoint approaches allow stakeholders to

design a system from stakeholder-specific viewpoints. By

this, a separation of concerns is achieved, which makes

designs more manageable. However, to construct a

consistent multi-viewpoint design, the relations between

viewpoints must be defined precisely, so that the

consistency of designs from these viewpoints can be

verified. The goal of this paper is to make the consistency

rules between (a slightly adapted version of) the RM-

ODP enterprise and computational viewpoints more

precise and to make checking the consistency between

these viewpoints practically applicable. To achieve this

goal, we apply a generic framework for relating

viewpoints that includes reusable consistency rules. We

implemented the consistency rules in a tool to show their

applicability.

1. Introduction

Multi-viewpoint approaches are often used to cope

with the complexity of distributed systems design. In such

approaches different stakeholders design the system from

their own perspective, or viewpoint. By doing this, they

achieve separation of concerns and break up the overall

design into smaller and more manageable parts. The

implementation of the distributed system must be

consistent with each of the viewpoint designs. However,

to be able to build a system that is consistent with each of

the viewpoint designs, the viewpoint designs must also be

mutually consistent.

The Reference Model for Open Distributed Processing

(RM-ODP) [13, 14] prescribes a multi-viewpoint

approach. Specifically, it prescribes the use of five

viewpoints: enterprise, information, computational,

engineering and technology. RM-ODP prescribes an

abstract design language for each of the five viewpoints.

It also prescribes consistency rules to maintain the

consistency between viewpoint designs. In this paper we

focus on the enterprise and computational viewpoints and

the consistency rules between these two. We slightly

adapt the original RM-ODP viewpoints, to make a strict

distinction between behaviour and structure and to make

some concepts more concrete. However, we clearly state

where our enterprise and computational viewpoints

deviate from the corresponding RM-ODP viewpoints.

The goal of this paper is twofold. Firstly, we aim to

make the consistency rules between the enterprise and

computational viewpoints precise and to make checking

consistency between designs from these viewpoints

practically applicable. Secondly, we aim to evaluate the

generic framework for relating viewpoints that we

proposed in [6]. We evaluate it, by applying it to relate

our enterprise and computational viewpoints. To show

that our way to relate viewpoints is practically applicable,

we implemented it in a prototype tool. The main

contribution of our work is that we describe the relation

between the enterprise and computational viewpoints

precisely (section 6) and that we developed a tool to

enforce this relation [22].

The remainder of this paper is organized as follows.

Section 2 explains the generic framework from [6], which

we use to relate the enterprise and computational

viewpoints. Section 3 briefly describes a slightly adapted

version of the RM-ODP basic modelling concepts, which

we use to define the enterprise and computational

viewpoints. Section 4 explains basic (consistency)

relations that can exist between viewpoints. Section 5

introduces our enterprise and computational viewpoints

and shows how these viewpoints are defined in terms of

the basic modelling concepts. Section 6 explains the

(consistency) relation between the enterprise and

computational viewpoints. These relations are based on

the basic viewpoint relations from section 4. Section 7

gives an example of an enterprise and computational

viewpoint design. Also, it illustrates how the consistency

between these views can be assessed. Finally, section 8

presents related work and section 9 the conclusions.

2. Generic framework for relating viewpoints

According to the generic framework from [6] a

viewpoint prescribes the means to construct a design that

addresses the concerns of a particular stakeholder at a

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

particular level of detail. We call the design from a

viewpoint a view. A viewpoint prescribes a set of

concepts that a designer can use to construct a design. A

concept is an abstraction of some common and essential

properties of a system, such as: remote procedure call,

distributable object and interface.

Since all viewpoints deal with the same system, they

are related to each other. In [6] we distinguish two basic

viewpoint relations: the complement relation and the

refinement relation. The complement relation exists

between viewpoints that deal with different, partly

overlapping, concerns at the same level of detail. The

refinement relation exists between viewpoints that deal

with the same concerns but regard these concerns at

different levels of detail. Two views must be consistent

with each other according to the relation that their

viewpoints have. To verify consistency between two

views, we defined consistency rules that match the

relation between these views. If the consistency rules hold

between the views we say that the views are consistent

with each other. For example, if a viewpoint A has a

refinement relation to another viewpoint B and two views

a and b exist that are constructed from viewpoint A and B

respectively, then we apply refinement consistency rules

to verify if view a is a correct refinement of view b. In

this paper we focus on the refinement relation and the

refinement consistency rules, because we found that this

relation applies to the enterprise and computational

viewpoints. Section 4 explains our notion of refinement

and the basic forms of refinement that we distinguish. A

refinement relation between two viewpoints can consist

of one or more basic forms of refinement. Consequently,

the consistency between two views can be verified using

one or more refinement consistency rules. Section 6

explains the refinement relation that exists between the

enterprise and computational viewpoints.

One way to verify the consistency between two views

is via a basic viewpoint on which the basic viewpoint

relations are defined as well as the consistency rules.

Figure 1 illustrates this approach. The approach requires

that mappings exist from each viewpoint to the basic

viewpoint. If such mappings exist, we can verify the

consistency between two views, a and b, constructed

from viewpoint A and B respectively, by mapping them to

view a’ and b’, which are constructed from the basic

viewpoint. The consistency rules, which are defined in

the basic viewpoint, can then be used to verify the

consistency between a’ and b’. If a’ and b’ are consistent,

we infer that a and b are also consistent. We define a

meta-model for each of the viewpoints and meta-model

transformations between the viewpoints. We do that to

make it possible to define mappings precisely and to

facilitate the development of tools to automate the

mappings.

The benefit of the approach is that all viewpoints that

have a mapping to the basic viewpoint can reuse the

viewpoint relations and consistency rules from the basic

viewpoint. However, our approach only pays off when

the benefit of reuse outweighs the cost of defining the

mappings.

Viewpoint A
meta-model

used to
construct

Viewpoint B
meta-model

View a

Basic viewpoint
meta-model

Basic view a’

View b

Basic viewpoint
relation

Basic view b’

used to
construct

defined on

maps to

mapping
defined to

mapping
defined to

maps to

relatesrelates

used to
construct

used to
construct

Consistency rules

used to verify
verifies consistency

between
verifies consistency

between

Figure 1. Relate views via a basic viewpoint

We claim that the basic viewpoint approach to relate

viewpoints is particularly suitable for RM-ODP, because

RM-ODP already prescribes a set of basic modelling

concepts [14 (part 2, clause 8)] and defines its viewpoint

concepts in terms of these basic modelling concepts.

Therefore, we can use the basic modelling concepts as a

basic viewpoint. The mappings between the RM-ODP

specific viewpoints and the basic viewpoint can be based

on the definition of the viewpoint concepts in terms of the

basic modelling concepts.

3. Basic modelling concepts

We make a distinction between structural concepts and

behavioural concepts. We can use structural concepts to

describe the things that exist and where these things exist

in space and time, while we can use behavioural concepts

to describe how things behave.

We focus on the design of a system at a particular

moment in time. This is also called a snapshot of a

system. Hence, we do not consider dynamic changes in

the structure of a system over time, while the RM-ODP

concepts do address this concern. We leave this as future

work.

-name: String

Object InteractionPoint

InteractionPointPart

of

0..*

of

2..*

0..*

2..*

1 0..*

-name: String

Location

at

at 1

1

2..*

0..1

Configuration

0..*

0..*

in

Figure 2. Meta-model of the basic structural
concepts

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

3.1. Basic structural concepts

Figure 2 presents the meta-model for our basic

structural concepts. We further explain the concepts from

the meta-model in the remainder of this subsection.

An object represents a concrete or abstract thing of

interest, such as a ‘CORBA object’ or a ‘server’. We

associate an object with a name that identifies it uniquely.

Objects can be grouped in a configuration.

An interaction point represents a shared logical or

physical mechanism through which two or more objects

can interact, such as a ‘programming interface’ or a

‘computer network’. An interaction point does not only

exist between objects, but is also part of the objects. A

‘computer network’ is a good example of an interaction

point, since it consists of a ‘network cable’ and ‘network

cards’, which are part of the interacting ‘computers’.

We introduce the interaction point part concept to

represents the (potential) participation of an object in an

interaction point. Each interaction point is partitioned into

the interaction point parts of its participating objects.

Moreover, an object/interaction point pair uniquely

identifies an interaction point part.

RM-ODP prescribes that an interaction point exists

during a time interval and at a location in (logical) space.

In our design approach, the structural design that contains

an interaction point is valid for a particular interval in

time, because this design is a snapshot of the system

structure. Hence, an interaction point that is used in a

structural design is implicitly associated with a time

interval. Therefore, we only associate an interaction point

with a location. To represent interaction points that

change over time, we have to draw different snapshots

that represent different time intervals. The drawback of

this approach is that it is hard to represent the relation

between a time interval and the availability or location of

an interaction point. The concern that addresses the

dynamism of the structure of the system should address

this issue.

Our notion of interaction point differs slightly from the

notion that RM-ODP uses, because RM-ODP does not

distinguish between interaction points and interaction

point parts. Rather than combining interaction point parts

into interaction points to allow objects to interact, RM-

ODP states that objects interact at (bound) interfaces.

However, we reserve the term interface for representing

behavioural aspects (consistently with its definition in

RM-ODP) and introduce the interaction point part

concept as its structural counterpart. Therefore, we also

say that objects interact at their interaction points or

interaction point parts rather than at their interfaces.

Figure 3 shows our notation for the basic structural

concepts. We assume that interaction points are uniquely

identified by the location at which they exist and that

interaction point parts are uniquely identified by the

location of the interaction point to which they belong and

the name of the object of which they are a part.

<location> <location>

a. Object b. Interaction point c. Interaction point part

<name>

Figure 3. A notation for basic structural
concepts

3.2. Basic behavioural concepts

Figure 4 presents the meta-model for our basic

behavioural concepts. We further explain the concepts

from the meta-model in the remainder of this subsection.

-name: String

Behavior

-name: String

Action

-name: String
-value: DataType

Attribute

InformationAttribute

-value: Time

TimeAttribute

-value: Location

LocationAttribute

InternalAction

Interaction

InteractionContribution

0..* 1..*

1..* 1..*

11

1

2..*

-name: String

Role

of

Constraint

1

1

of

of

of

Interface

identifies0..1

1

Binding

of

binds

0..*2..*

1 of

1..*

Figure 4. Meta-model of the basic behavioural
concepts

A behaviour consists of a collection of actions and

constraints on when these actions may occur. An action

can either be assigned to a single behaviour, in which

case we refer to it as an internal action, or it can be part of

an interaction that is shared between behaviours, in which

case we refer to it as an interaction contribution.

To associate a behavioural semantics with the basic

modelling concepts, we have to specify the form that

constraints take. We express constraints by associating

each action with a condition (or constraint) for its

occurrence. In this way each constraint affects the

occurrence of exactly one action, much like a pre-

condition. We specify the constraint of an action’s

occurrence as a condition on the (non-)occurrence of

other actions. For example, if action a is allowed to occur

after b, we say that the constraint for a is the occurrence

of b. If there is a choice between a and b, we say that the

constraint for a is the non-occurrence of b and the

constraint for b is the non-occurrence of a. By associating

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

each action with a constraint in this way, we get a causal

automaton as explained in [11]. We defined a textual

notation to express constraints. For the occurrence of an

action we use its name, for the non-occurrence we prefix

the name with the negation () symbol. For the

conjunction and disjunction of (non-)occurrences, we use

the corresponding logical symbols (and). For

example, if the constraint for a is the occurrence of b and

the non-occurrence of c, we express this as: b c a.

A special constraint ‘always’ indicates that an action can

always occur. [19, 21, 22] give a more detailed account of

behaviour specification with this technique, along with a

graphical notation. It also explains how the constraints

can be extended with constraints on the time at which an

action occurs, the information that is established in an

action and the location at which an action occurs.

This way of specifying relations between actions

allows for a fully concurrent time model. Actions that are

not causally related are independent and can therefore

happen concurrently. If an action is enabled by another

action it must happen after that action. If an action is

disabled by another action it can happen before, but not

after (or at the same time as) that action. Hence, at run-

time mechanisms must be implemented that make actions

aware of the (non-)occurrence of actions to which they

are causally related.

Interactions are partitioned into interaction

contributions in the same way as interaction points are

partitioned into interaction point parts. The constraints on

an interaction are specified as constraints on its

interaction contributions. In this way, each behaviour that

contributes to an interaction can specify its own

constraints on when the interaction can occur.

An interface is a particular type of behaviour. It

represents a subset of the behaviour of an object that is

intended to be performed at a particular interaction point

(part). Interfaces can be bound to allow objects to

interact. Therefore, we define interactions in the context

of a binding. A binding maps onto a single interaction

point and vice-versa and an interface maps onto a single

interaction point part and vice versa.

A role is an identifier for a behaviour. Hence, it is not

a behaviour itself, but it refers to one.

An action occurs at a time moment and a location. In

addition to this, RM-ODP states that interactions convey

information. However, we generalize this definition and

say that interactions establish information. The difference

between establishing information and conveying

information is the following. In case of conveying

information one interacting partner has already picked a

value that must be accepted by the other partner. In case

information is established, neither of the partners may

have picked a value yet. Instead they establish a value in a

negotiation (interaction), while abstracting from how this

negotiation takes place. We say that internal actions also

establish information, while RM-ODP does not prescribe

this. To represent these properties of actions, we assign an

information, a time and a location attribute to each

internal action and interaction contribution. The

information attribute represents the information values

that can be established in the action, the time attribute

represents the time at which the action can occur and the

location attribute represents the locations at which the

action can occur. When an action occurs, its attributes are

associated with values that represent the information

established and the time and location at which the action

has occurred. All attributes are associated with a type that

defines the range of values that an attribute may get. The

type of the information attribute can be freely defined by

the designer. The type of the time attribute is fixed and

the type of the location attribute is the location concept

from the structural meta-model.

<name>

i: <type>
t: Time
l: Location

<name>

a. Behavior b. Internal action d. Attributesc. Interaction

Figure 5. A notation for basic behavioural
concepts

Figure 5 shows our notation for the basic behavioural

concepts. An interaction contribution is represented by a

circle segment of an interaction. In case an interaction is

formed by only two interaction contributions, the black

dot in the middle may be left out. The attributes and the

name of an action are associated with this action using a

comment box, such as the one shown in figure 5.d.

-name: String

Location LocationAttribute

1

0..*

-name: String

Behavior

-name: String

Object

0..1

value

1

of

-name: String

Role

1..*1..*
authorized

to fulfillfulfills

0..*

0..*

Binding Interface

InteractionPointPartInteractionPoint

1

1correponds to

1

1correponds to

Figure 6. The relation between the structural and
behavioural meta-model

3.3. Relation between structure and behaviour

Figure 6 shows the relations between the structural and

behavioural meta-models from the previous subsections.

Each object is associated with its behaviour, while a

behaviour may or may not be associated with an object.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

An object can be authorized to fulfil one or more roles. At

a moment in time it can fulfil one or more of the roles for

which it is authorized. If a role is assigned to an object,

that object must observe the behaviour of the role. Hence,

the behaviour of an object must satisfy all roles that the

object fulfils. The location attribute of an action in a

behavioural design refers to a location in the

corresponding structural design. This location

corresponds to an interaction point or an interaction point

part. Finally, each interface maps onto a single interaction

point part and vice versa. Similarly, each binding maps

onto a single interaction point and vice versa.

4. Basic viewpoint relation: refinement

In line with the distinction between structural and

behavioural concepts, we distinguish between structural

and behavioural refinement. Figure 7 shows the different

forms of structural and behavioural refinement.

d. Object decomposition e. Interaction point decomposition

a a’

a. Action refinement b. Behavior decomposition

a a b

c. Constraint refinement

b

Figure 7. Different forms of refinement

We distinguish three basic forms of behavioural

refinement: action refinement, behaviour decomposition

and constraint refinement. In case of action refinement an

action is refined into multiple actions. These actions

achieve the same result, but represent a more detailed

account of how that result is achieved. Figure 8.a shows

an example of action refinement. When an action is

refined, some of the actions from the refinement coincide

with the completion of the original action. We call these

actions reference actions. In the example, ‘send welcome

letter’ and ‘verify client’s status’ are both reference

actions for the original action ‘process new client’,

because the original action completes if both these actions

complete. Actions from the refinement that do not

coincide with the completion of the original action are

inserted actions. In the example, ‘enter client details’ is

an inserted action. In case of behaviour decomposition a

behaviour is split up into two or more communicating

behaviours. As a consequence internal actions of the

original behaviour can be refined into interactions of the

communicating behaviours. Figure 8.b shows an example

of behaviour decomposition. In the example, actions

‘request’ and ‘respond’ are refined into interactions. In

case of constraint refinement a constraint is split up into

two or more constraints that are related by actions that

they have in common. These actions are again inserted

actions, because they do not coincide with the completion

of any of the original actions. Figure 8.c shows an

example of constraint refinement. In the example, the

action ‘send data to subsystem’ is inserted as the result of

refining the constraint of the ‘process data’ action.

We distinguish two basic forms of structural

refinement: object decomposition and interaction point

decomposition. In case of object decomposition an object

is split up into two or more objects. As a consequence, the

behaviour of the object must also be decomposed into

communicating behaviours of its component objects. In

case of interaction point decomposition an object is

refined by decomposing its interaction points or

interaction point parts into two or more interaction points

or interaction point parts. As a consequence, the

interactions that occurred at the original interaction point

either have to be assigned to one of the interaction points

from the decomposition, or have to be refined, after

which the resulting interactions can be assigned to

different interaction points from the decomposition.

process
new client

enter client
details

send welcome
letter

verify client's
credit status

request

process

respond
client

server

respond

process

request

a. Action refinement example

b. Behavior decomposition example

enter data

process data

enter data

process data

send data to
subsystem

c. Constraint refinement example

Figure 8. Examples of refinement

A viewpoint A can have a refinement relation with

another viewpoint B using one or a combination of the

forms of refinement mentioned above. A view a from

viewpoint A then is consistent with a view b from

viewpoint B if and only if a can be reached from b by

applying the rules that relate A to B. For example, if A

relates to B through behavioural decomposition, then a is

consistent with b if a can be obtained by decomposing b.

To verify consistency in this way, we have to know

exactly which rules to apply and in which way and which

order we have to apply them. However, designers do not

like to be bound by rules when refining a design. They

rather allow themselves complete freedom when

constructing a ‘refined’ design. Hence, we do not know

how the rules were applied to refine the design. Since

there are many ways in which they can be applied, it is

not feasible to verify consistency if we do not have this

information. However, each time we apply a refinement

rule, we add information to the design and there is only

one way to remove this information again. Therefore, we

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

use abstraction instead of refinement to verify the

consistency between a design and its refinement.

Abstraction rules define how to remove the added

information from a design. After this has been done, we

can verify if the resulting design is equivalent to the

design before refinement.

We say that two behaviours are equivalent if each

action from one appears in the other and the conditions of

corresponding actions are equivalent. We call this strong

equivalence. The benefit of this notion of equivalence is

that it preserves causal relations between actions. The

drawback is that it very strict. In contrast, other, less

strict, notions of equivalence exist [10]. Some of these

notions can be used via the semantics of our basic

behavioural concepts in terms of Petri-nets [15] and

partial orders [19]. The suitability of the different notions

of equivalence in the context of our basic concepts

requires further study.

The abstraction rules are the inverse of the refinement

rules. For example, if viewpoint A relates to viewpoint B

through behavioural decomposition, then a is consistent

with b if we can apply the inverse of decomposition,

namely composition, to a and end up with a design a’ that

is equivalent to b. This approach to consistency

verification requires us to define abstraction rules, as the

inverse of the refinement rules above. We claim that, if

we enforce the rule that abstraction can only be applied to

actions or behaviours that exist, the order in which the

abstraction rules are applied, is automatically the right

order (i.e. the same order in which the refinement rules

were applied). Hence, the designer does not have to keep

track of the order in which he applies the refinement

rules. To prove this claim, we must show that, if two

refinement rules are applied in a particular order, either

the corresponding abstraction rules must necessarily be

applied in reverse order, or the refinement rules could

have been applied in another order as well. A detailed

proof is left out due to space limitations.

We define the behaviour composition rule as the

inverse of the behaviour decomposition rule. The

composition rule composes the specified behaviours into

a single behaviour and composes the interactions between

these behaviours into internal actions. The condition of a

composed internal action is the conjunction of the

conditions of the interaction contributions of which it is

composed. For example, because the conditions of the

two contributions to the ‘respond’ interaction from figure

8.b are always and ‘process’, the condition for this action

in the composition is always ‘process’, which equals

‘process’.

We use the action abstraction rule as the inverse of the

constraint refinement rule. The action abstraction rule

removes the specified inserted actions (a1, a2, …) from a

design. Also, it changes the conditions of actions that

depend on a1, a2, …, such that where a1, a2, … appears

in a condition it is replaced by the condition of a1, the

condition of a2, …. For example, in figure 8.c ‘send data

to subsystem’ is an inserted action. The condition of

‘process data’ is ‘send data to subsystem’, and the

condition of ‘send data to subsystem’ is ‘enter data’.

Therefore, when we remove the inserted action ‘send data

to subsystem’, the condition of ‘process data’ becomes

the condition of ‘send data to subsystem’, which is ‘enter

data’.

We use two rules as the inverse of action refinement:

the action abstraction and action integration rule. Action

abstraction abstracts from the specified inserted actions in

an action refinement. Action integration integrates the

specified reference actions from the action refinement

into a single action. The condition of an integrated action

depends on the way in which its reference actions

correspond to the completion of the original action. Either

the completion of all reference actions corresponds to the

completion of the original action (conjunctive reference

actions) or the completion of any of them (disjunctive

reference actions). A combination of conjunctive and

disjunctive reference actions is also possible. The

designer must specify how the completion of reference

actions corresponds to the completion of the original

action in a completion condition. The condition of the

integrated action then corresponds to the completion

condition, where the reference actions are replaced by

their conditions. As an example, consider the reference

actions ‘send welcome letter’ and ‘verify client’s credit

status’ from figure 8.a. The completion of both of these

actions coincides with the completion of the original

action ‘process new client’. Therefore, we say that the

completion condition is ‘send welcome letter’ ‘verify

client’s credit status’. If we integrate these actions into a

single action, ‘integrated’, the condition of ‘integrated’ is

<the condition of ‘send welcome letter’> <the condition

of ‘verify client’s credit status’>. As the condition of both

actions is ‘enter client details’, the condition of

‘integrated’ is ‘enter client details’ ‘enter client

details’, which equals ‘enter client details’. As another

example, suppose that an action ‘deliver package’ was

refined into the actions ‘deliver by airmail’ and ‘deliver

by sea mail’. Judging by the names of the actions, the

occurrence of either one of them corresponds to the

completion of the original action, such that the

completion condition is ‘deliver by airmail’ ‘deliver by

sea mail’. Hence, the condition of the integrated action

becomes <the condition of ‘deliver by airmail’> <the

condition of ‘deliver by sea mail’>.

We defined the abstraction rules as operators that can

be applied to basic viewpoint designs. Hence, if we focus

on behaviour, we have the following design operators.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

abstract: Action Behaviour Behaviour, where

abstract({a1, a2, …}, b) returns the behaviour in which

the inserted actions a1, a2, … are abstracted from.

integrate: (Condition Action) Behaviour

Behaviour, where integrate({(c1, a1), (c2, a2), …}, b)

returns the behaviour in the reference actions from the

completion conditions c1, c2, … are integrated and

named a1, a2, … respectively.

compose: Behaviour Behaviour Behaviour, where

compose(b1, b2) returns a single behaviour in which

interactions between b1 and b2 are composed into internal

actions.

~: Behaviour Behaviour Boolean, where b1 ~ b2

returns true if and only if b1 and b2 are behaviourally

equivalent.

The theory that underlies our notion of refinement and the

operators explained above is further explained in [19, 20].

1..*

0..1

Community

-name: String

Object

-name: String

Behavior

Process

-name: String

Role

Interaction InternalAction Step

represents

allowed to fulfill

fulfills

identifies

assigned to

abstraction of

1

0..1

0..1

1..*

0..*

0..*

0..*

0..*

0..1 0..10..1

0..1 1

of

Configuration

0..*

0..*

in

0..1abstraction of

Figure 9. Meta-model of enterprise viewpoint
concepts

5. Enterprise and computational viewpoint

concepts

We define the enterprise and computational viewpoints

as extensions of the basic concepts from section 3.

5.1. Enterprise viewpoint concepts

The enterprise viewpoint is used to design the relation

of a system to its environment. The system and its

environment form a community, which is a configuration

of objects that is formed to meet an objective. A system is

a special object, while the environment of the system

consists of all objects that are not part of the system. A

system can participate in more than one community.

Each community is further defined in terms of an

enterprise contract that constrains how the objects in that

community collaborate. To this end an enterprise contract

states the objective of the community, the intended

structure and behaviour of the community and policies

that govern the structure and behaviour of the community.

In this paper we focus on the intended structure and

behaviour of the community.

There are two complementary approaches to specify

the intended behaviour of a community: the role-based

approach and the process-based approach. These

approaches may both be used in the design of a

community’s behaviour. In the role-based approach

several behaviours are defined in the community, each of

which is identified as a role. Objects can participate in the

community by fulfilling one or more of the roles. If an

object fulfils a role, it must satisfy the behaviour that the

role identifies. In the process-based approach, the

behaviour of a community is defined in terms of

processes. A process is a collection of steps taking place

in a pre-described manner and leading to an objective. A

step is an abstraction of an action or interaction that may

leave the objects that participate in it unspecified. We

interpret the process and step concept in terms of basic

concepts by considering a process as a (special case of)

behaviour that only consists of internal actions. These

internal actions are the steps of the process. We can

assign a step to the role that performs it or the roles that

perform it in collaboration. Subsequently, we can

associate the role to an object, such that the object

performs the step. Figure 9 shows the meta-model that is

consistent with the observations above. We did not

include the enterprise contract concept in the meta-model,

because an enterprise contract is completely defined by its

parts (structure, behaviour, policies and objective). Figure

9 includes some of the basic modelling concepts. These

concepts are shown in grey. The figure only shows the

basic modelling concepts insofar as they are needed for

the understanding of the enterprise viewpoint concepts.

However, all basic modelling concepts from section 3 can

be used to construct a design from the enterprise

viewpoint.

The meta-model shows that the enterprise concepts

that we introduced can all be interpreted as basic concepts

at a more generic level: a process is a behaviour, a step in

a process is an internal action and a community is a

configuration. Hence, an enterprise view can be

transformed into a basic view by interpreting enterprise

specific concepts as their generic counterparts. After

transformation, the resulting basic enterprise design can

be used for comparison with other (transformed) basic

views.

Since the transformation of an enterprise view into a

basic view relies on generalization, certain information is

lost in the transformation. This is because the generic

concepts do not support all information of the specific

concepts. For example, the relation between steps and the

roles that perform them is lost, because the generic

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

counterpart of the step concept, the internal action

concept, has no relation with the role concept.

binds

Binding ObjectObject

Interface

Binding

Primitive Binding

Behavior

Compound Binding

2..*

0..1

2..*

0..1

of

1

0..1of

1

1

represents

Interaction

Signal

Flow

Operation

Interrogation

Announcement

Interface

Operation Interface

Signal Interface

Stream Interface

0..1

0..1

0..*2..4

of

of

Figure 10. Meta-model of computational
viewpoint concepts

5.2. Computational viewpoint concepts

The computational viewpoint is used to specify the

logical and functional decomposition of a system into

interacting objects. The computational objects that

comprise the system are represented in a configuration.

In the RM-ODP computational viewpoint, objects are

connected, or bound, via their interfaces. This suggests

that interfaces and bindings represent the structural aspect

of connections between objects, although interfaces are

defined as purely behavioural. Indeed, specific

computational specification languages, such as [1, 4, 18]

use interfaces and bindings in a structural design to

represent connections between objects. However, we

want to maintain the strict distinction between structural

and behavioural aspects that we introduced in the

presentation of the basic concepts. Therefore, we reserve

the interaction point concept to represent connections

between objects and the interface and binding concepts to

represent the behavioural aspects of this connection.

The computational viewpoint distinguishes between

primitive and compound bindings. A primitive binding

directly connects two objects (via an interaction point),

while a compound binding connects two or more objects

via an intermediate object, which is called the binding

object. A compound binding can be defined in terms of

primitive bindings between the objects that participate in

the compound binding and the binding object.

Finally, the computational viewpoint defines three

specific kinds of interactions, signals, flows and

operations, as well as the corresponding kinds of

interfaces signal interfaces, stream interfaces and

operation interfaces, respectively. A signal is an atomic

interaction between two objects. A flow is an abstraction

of a sequence of interactions between two objects. An

operation is a request/response mechanism, where a

request, called an invocation, is sent from one object to

another and an optional response, called a termination, to

this request is sent in the opposite direction as a result. If

an operation consists of only an invocation, we call it an

announcement. If it consists of both an invocation and a

termination, we call it an interrogation.

Figure 10 shows the meta-model that describes the

computational viewpoint concepts. Again, the figure

shows the basic modelling concepts in grey insofar as

they are needed for the understanding of the

computational viewpoint concepts.

As with the enterprise concepts, computational

concepts can be interpreted as basic concepts by

generalization: binding objects specialize objects,

compound and primitive bindings specialize bindings,

signal, stream and operation interfaces specialize

interfaces and signals specialize interactions.

Flows and operations can not be interpreted as

interactions, because their semantics differs from that of

an (atomic) interaction. Moreover, RM-ODP states that

flows and operations can be interpreted as a composition

of signals [14 (part 3, clause 7.2.2.5)] and therefore of

basic interactions. An operation can be interpreted as a

composition of basic interactions, by considering both an

invocation and a termination as composed of two

interactions, one for each communicating partner. Since

the termination of an operation is optional, an operation is

composed of either two or four basic interactions. A flow

can be interpreted as a sequence of basic interactions.

Hence, to interpret flows and operations in terms of basic

modelling concepts we need a more sophisticated relation

than generalization. This also means that we need more

sophisticated tooling mechanisms to map flows and

operations to basic interactions. We intend to use model

transformations for this purpose, but we leave this for

future work.

Note that, when we transform a computational view

into a basic view according to these interpretation rules,

we lose all information about the constituents of the

compound bindings. As a result, binding objects are

interpreted as regular objects with a regular behaviour

and primitive bindings with other objects. We do not

consider this loss of information a problem for comparing

a computational view to the enterprise viewpoint, because

from an enterprise perspective it is only relevant to know

the behaviour of a (binding) object. Whether this

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

behaviour relates to a connection between objects or to

application logic is unimportant.

6. The relation between the enterprise and

computational viewpoints

An enterprise view represents the relation between a

system under design and its environment, while a

computational view represents the functional

decomposition of that system. Therefore, we claim that

the computational viewpoint is related to the enterprise

viewpoint by delimitation and refinement. A

computational view is delimited with respect to an

enterprise view, because an enterprise view describes the

system and its environment, while the computational

view only describes the system. Therefore, actions can

exist in the enterprise view, which are not considered in

the computational view. These are the actions that are

performed by the environment of the system.

Furthermore, a computational view is a refinement of an

enterprise view, because an enterprise view describes the

system as a whole, while the computational view

describes the functional decomposition of the system. A

computational view may also describe the actions that the

system performs in more detail than the enterprise view

does. These observations are supported by the

consistency rules that RM-ODP prescribes between the

enterprise and computational viewpoints [13].

If a combination of the role-based and the process-

based approach is used in the enterprise viewpoint, it is

likely that some enterprise actions are only considered in

the process-based part while others are only considered in

the role-based part.

Process-based part

a b

c

a d b

Role-based part

Enterprise view

a1 a2

a3

b1 b2

d

a3 d

c

Computational view

behavioral
refinement

behavioral
+

structural
refinement

a b

System

Part 1 Part 3

Part 2

System

Figure 11. Example of relations between
computational and enterprise models

Figure 11 illustrates the relation between the

computational viewpoint and the enterprise viewpoint. It

shows an enterprise view and a computational view. The

computational view is a structural decomposition of the

enterprise view, because the enterprise view represents

the system as a whole, while the computational view

represents the system as a composition of three parts. The

computational view also is a delimitation of the enterprise

view, because the computational view does not show the

enterprise object that is part of the environment of the

system. Moreover, the process-based part of the

enterprise view does not make a distinction between the

actions that are performed by the system and the actions

that are performed by the environment of the system.

Finally, the computational view is a behavioural

refinement of the enterprise view, because the

computational view describes the actions that the system

performs in more detail. Specifically, it decomposes

action a into actions a1, a2 and a3 and action b into

actions b1 and b2. The figure shows action d, which is

only considered in the process-based part of the enterprise

view, and action c, which is only considered in the role-

based part of the enterprise view.

Based on these observations, we define rules to verify

the consistency between an enterprise and a

computational view. These rules lead to a formula for

verifying the consistency between a computational view

and an enterprise view, which we define in terms of the

operators from section 4. We verify the consistency

between the computational view and the process-based

part separately from the consistency between the

computational view and the role-based part. We do this,

because the process-based part considers actions that the

role-based part does not consider and vice versa. To

verify the consistency, the designer must first specify the

relations that exist between elements from the

computational view and elements from the enterprise

view. These relations are used as input when verifying the

consistency.

Since the behaviour of the system in the computational

view is a decomposition of the behaviour of the system in

the enterprise view, the designer must specify which

behaviours in the computational view represent parts of

the system. To verify consistency, these behaviours must

be composed into a single system behaviour. Hence, for

computational behaviours cb1, cb2, cb3 that represent the

behaviours of the system parts:

cb = compose(compose(cb1, cb2), cb3)

When we verify the consistency between the

computational view and the role-based part, the designer

must specify which actions are not considered in the role-

based part. To verify the consistency between the

computational view and the role-based part, we must

abstract from these actions. Hence, for a computational

behaviour cb and a set of actions unconsidered that are

not considered in the role based behaviour:

cb’ = abstract(cb, unconsidered)

Similarly, when verifying the consistency with the

process-based part, we must abstract from actions that are

only considered in the role-based part.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

Since the computational view only considers the

system, the designer must specify which actions in the

enterprise view are performed by the environment of the

system. To verify the consistency, we must abstract from

these actions in the enterprise behaviour. Hence, for an

enterprise behaviour eb (that can be either a role-based or

a process-based behaviour) and a set of actions

environmentactions from the environment of the system:

eb’ = abstract(eb, environmentactions)

Since the computational view also considers the

actions in the enterprise view on a more detailed level, the

designer must specify the relation between actions in the

computational and enterprise view. Some computational

actions can be inserted with respect to enterprise actions.

Since these actions represent design information that is

added between the enterprise and the computational

viewpoint, they must be removed in the abstraction step.

We say that these actions are abstracted from. Other

computational actions can be reference actions for

enterprise actions. For reference actions, the designer has

to specify the completion condition and the enterprise

action to which they correspond. The reference actions

have to be integrated. Hence, for a computational

behaviour cb, a set of inserted actions inserted, and a set

of completion conditions c1, c2, … on reference actions

that specify the completion of the original actions a1, a2,

…:

cb’= integrate(abstract(cb’, inserted),{(c1,a1),(c2,a2), …})

Finally, we have to compare the resulting enterprise

and computational behaviour, using the equivalence

operator.

As an example consider figure 11, with a role-based

behaviour rb, a process-based behaviour pb and a

computational behaviour that consists of the behaviours

cb1, cb2 and cb3 of the system parts. Further, we say that

the completion of a1 and a2 corresponds to the completion

of a and the completion of either b1 or b2 corresponds to

the completion of b. Hence, action a3 is an inserted

action. Now, to assess whether the computational

behaviour is consistent with rb, we use the formulae:

cb’’’ ~ rb’

where:

rb’ = abstract(rb, environmentactions)

cb’’’ = integrate(cb’’, reference)

cb’’ = abstract(cb’, inserted)

cb’ = abstract(cb, unconsidered)

cb = compose(compose(cb1, cb2), cb3)

reference = {(a1 a2, a), (b1 b2, b), (c, c)}

inserted = {a3}

unconsidered = {d}

environmentactions =

Figure 12 illustrates how these formulae affect the

computational behaviour.

To assess whether cb is consistent with pb, we use the

same formulae, but with rb replaced by pb and:

unconsidered = {c}

reference = {(a1 a2, a), (b1 b2, b), (d, d)}.

cb

a1 a2

a3

b1 b2

d

a3 d

c

cb1 cb3

cb2

cb = compose(compose(cb1, cb2), cb3)

a1 a2 b1 b2

c

da3

cb’

cb’ = abstract(cb, unconsidered)

a1 a2 b1 b2

c

a3

a1 a2 b1 b2

c

cb’’ = abstract(cb’, inserted)

a b

c

cb’’’ = integrate(cb’’, reference)

cb’’

cb’’’

Figure 12. Relations between abstractions of
computational behaviour

From the above, we can deduce that the designer must

make considerable effort to specify the relation between

an enterprise and a computational behaviour. Such effort

may cause the designer to ignore the consistency check.

However, the consistency check can be simplified.

Observe that all actions, other than the ones that appear in

the reference set, are abstracted from. Hence, the designer

only has to specify the reference set. Then, a tool can

automatically abstract from all other actions.

Process-based and role-based parts can partly deal

with the same actions. In figure 11 this is the case for

actions a and b. Because the role-based and the process-

based parts of the enterprise viewpoint partly deal with

the same actions, we also say that they are complementing

viewpoint designs. Therefore, the consistency between

the role-based and the process-based part should be

verified to construct a consistent enterprise view.

However, we do not do this here, because our goal is to

verify the consistency between an enterprise and a

computational view.

7. Example

As an example, we relate the enterprise view from

figure 13 to the computational view from figure 14. We

represented both views with UML as a concrete syntax.

The benefit of using UML as a concrete syntax is that

existing UML tools can be reused for enterprise and

computational viewpoint design. The drawback of using

UML is that it uses different concepts than the ones

proposed for enterprise and computational design in

section 5. Hence, before we can analyze or compare the

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

designs as enterprise or computational designs, we have

to transform the UML models into designs that use the

viewpoint concepts from section 5. To make this feasible,

meta-model transformation techniques are proposed,

specifically for transforming a concrete syntax into an

abstract syntax [1, 2].

enterdata

approve

reject

confirm

payout

bill

credit

pay

remind

enterdata

approve

reject

confirm

payout

Administrative
Worker

Client Information
System

Loan Information
System

Client

Commercial
Worker

:Frontoffice Employee

:Backoffice Employee

:Payment System

:Client Information System

:Loan Information System

CommunityBusiness processes

Roles and interactions

bill

credit

pay

remind

Payment
System

Figure 13. A representation of an enterprise view
with UML

Figure 13 represents the enterprise view. An activity

diagrams represents the business processes. A use case

diagram represents the contribution of roles to steps from

the business processes. An object diagram represents the

objects that are part of the community. The enterprise

view shows two business processes that describe the

behaviour of the community to which the system under

design belongs. The first business process describes how

a loan application is processed. First the details of the

application are entered into a computer system, then the

loan is either approved or rejected and, if the loan is

approved, a confirmation is sent and the loan is paid out.

The second business process describes how monthly

payments for the loan are cashed. Depending on the kind

of contract of the client, the client’s account is credited

directly or a bill is sent to the client. If the client does not

pay the bill or the client’s account could not be credited,

he receives a reminder. The roles that are involved in the

business process are indicated as actors in a use case

diagram. Each of the steps in the business processes is an

abstraction of an interaction between several roles, as

indicated by the use case diagram.

The system under design belongs to a community that

consists of five objects: two employees and three software

systems. These objects fulfil roles in the enterprise,

although we did not model this with UML. The front

office employee fulfils both the role of administrative

worker and of commercial worker, the back office

employee fulfils only the role of administrative worker

and the software systems fulfil the roles with the same

names. The client role is not fulfilled by any object from

the enterprise community.

Idle

payoutreq/^debitreq

timeout/^recordreq

S2

recordrsp

S3
[!due]

[due && !bill]/^creditreq[due && bill]/^sendbill

S6

creditcnf(acc)

creditcnf(rej)/^sendcreditfailed

paymentind

timeout/^sendreminder

timeout/^sendreminderpaymentind

Idle

modifyrecord,
recordreq/^recordrsp

Idle debitreq/^debitnot

S2

creditreq
/^creditcnf(rej)

/^creditcnf(acc)

S1

paymentreq /^paymentind

/^paymentrej

Financial Transaction Subsystem

Behavior (FTSB)

Payment Management Subsystem Behavior (PMSB)

Database System Behavior

(DSB)

Financial
Transaction
Subsystem

Database
System

Payment
Management
Subsystem

System configuration
S1

debitnot/^modifyrecord

S4 S5

Figure 14. A representation of a computational
view with UML

Figure 14 represents the computational view. A

component diagram represents the objects and their

connections. state machines represent the behaviour of the

objects. The computational view shows the realization of

the payment system that was identified in the enterprise

view. The view shows that the system is composed of

three interacting parts. The parts communicate via

interaction points. In addition to this, the financial

transaction subsystem and the payment management

subsystem have interaction point parts that can form

interaction points with objects outside of the payment

system. The state machines show that, in the database, we

can either modify a record or request a record by some

SQL query. The financial transaction subsystem allows

the bank to debit the accounts of its clients. Also, it

allows an account to be credited, either by the bank or by

the owner of the account. The bank can request an

account to be credited with the creditreq interaction and

the client can request this with the paymentreq

interaction. Crediting an account fails if there is not

enough money in the account. The payment management

subsystem manages the payment of the loan to the client

and the monthly payment of the fees associated with the

loan. The financial transaction subsystem performs the

payment of the loan on request (of the payment

management subsystem). Upon payment, the payment

management subsystem stores information about the

payment in the database. Each month, upon a timeout, the

payment subsystem checks in the database if the client

has to pay. If a payment is due and the preferred method

of payment is sending a bill, then the bank sends a bill to

the client and waits for the client to pay. If the preferred

method of payment is by directly crediting the client’s

account, then the financial transaction subsystem is told

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

to credit the client’s account. If crediting the account fails

or the client does not pay his bill within a certain period,

the client is sent reminders until he pays.

To verify the consistency of the enterprise and

computational view, we must transform them to the

abstract syntax of their viewpoints as explained above.

Subsequently, we must transform them to the abstract

syntax of the basic viewpoint from section 3. This is

trivial because the relations between concepts from the

enterprise and computational viewpoints and the basic

viewpoint are mostly generalization relations. Therefore,

without presenting the exact transformations, we claim

that the enterprise view corresponds to the basic

viewpoints design from figure 15 and the computational

view to the design from figure 16.

enterdata

approve

reject

confirm

payout

always -> enterdata
enterdata /\ ¬reject -> approve
enterdata /\ ¬approve -> reject
approve -> confirm
approve -> payout

bill

credit

pay

remind

¬credit -> bill
¬bill -> credit
(bill /\ ~remind) \/ remind -> pay
(bill /\ ~pay) \/ (credit /\ ~pay) -> remind

Figure 15. A basic enterprise view

Finally, we must compare the resulting basic

viewpoint designs by comparing the computational

behaviour to each of the business processes from the

enterprise view. To compare the views, we must specify

the precise correspondence between their actions. Also,

we must specify which behaviours from the

computational view are a decomposition of a behaviour

from the enterprise view.

The correspondence between behaviours is such that

all behaviours from the computational view are a

decomposition of the behaviour of the payment system

from the enterprise view. The enterprise system engages

in the actions: payout, bill, credit, pay and remind. The

correspondences between the actions from the

computational behaviour and the first business process

are as follows. The action of storing details about the loan

payment in the database corresponds to the completion of

the payout step in the business process. The payoutreq,

debitreq and debitnot actions are inserted actions and the

other actions and steps are not considered in the

comparison. Figure 17 illustrates this relation graphically.

It shows how the computational view could have been

reached from the enterprise view by behaviour

decomposition and action refinement. The

correspondence between the actions from the

computational behaviour and the second business process

are as follows. The sendbill action corresponds to the bill

step and paymentind corresponds to pay. The occurrence

of either credit(acc) or credit(rej) corresponds to the

credit step, because the credit step is indifferent about

whether crediting the account succeeded or not. That

decision is only made after the attempt to credit the

account was made. Similarly, the occurrence of either

sendreminder or sendcreditfailed correspond to the

remind step. The other actions and steps are either

inserted or not considered in the other view.

paymentindpaymentrej

debitnot

debitreq

creditreq

creditcnf(rej)

creditcnf(acc)

payoutreq

timeout2

timeout1

sendbill sendremind sendcreditfailed

recordreq

recordrsp

modifyrecord

paymentreq

always -> paymentreq
paymentreq /\ ¬paymentind -> paymentrej
paymentreq /\ ¬paymentrej -> paymentind
always -> debitreq
debitreq -> debitnot
always -> creditreq
creditreq /\ ¬creditcnf(acc) -> creditcnf(rej)
creditreq /\ ¬creditcnf(rej) -> creditcnf(acc)

always -> recordreq
recordreq -> recordrsp
always -> modifyrecord

always -> payoutreq
payoutreq -> debitreq
debitreq -> debitnot
debitnot -> modifyrecord
always -> timeout1
timeout1 -> recordreq
recordreq -> recordrsp
recordrsp [due /\ bill] -> sendbill
sendbill -> timeout2
timeout2 /\ ¬paymentind -> sendremind
(sendbill /\ (sendremind \/ ¬sendremind) \/ sendcreditfailed
 -> paymentind
recordrsp [due /\ ¬bill] -> creditreq
creditreq -> creditcnf(acc)
creditreq -> creditcnf(rej)
creditcnf(rej) -> sendcreditfailed

Figure 16. A basic computational view

payout

payoutreq debitreq debitnot modifyrecord

debitnot

debitreq payoutreq

modifyrecord

action refinement

behavior decomposition

Figure 17. Refinement relations

We can assess straightforwardly that the computational

behaviour is consistent with the first business process. To

verify the consistency between the computational

behaviour and the second business process, pb2, we use

the following formulae:

cb’’’ ~ pb2’

where:

pb2’ = abstract(pb, environmentactions)

cb’’’ = integrate(cb’’, reference)

cb’’ = abstract(cb’, inserted)

cb’ = abstract(cb, unconsidered)

cb = compose(compose(FTSB, PMSB), DSB)

reference = {(sendbill, bill), (paymentind, pay),

(credit(acc) credit(rej), credit) , (sendreminder

sendcreditfailed, remind)}

inserted = {timeout1, timeout2, recordreq, recordrsp,

paymentreq, paymentrej, creditreq}

environmentactions =

unconsidered = {payoutreq, debitreq, debitnot,

modifyrecord}

The actions that can be abstracted from are all actions

that do not appear as reference actions. This allows us to

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

simplify the formulae, because we do not have to define

each set of actions that we have to abstract from

explicitly. We can simply abstract from all actions in the

design that are not reference actions. We invite the reader

to verify the conformance. For this purpose a tool and a

manual for using that tool is available on [22].

8. Related work

The work closest to ours is the Systemic Enterprise

Architecture Methodology (SEAM) [23]. SEAM also

proposes the use of basic modelling concepts as a basis

for relating different viewpoints in enterprise application

design. It makes these concepts more precise using both

an ontological semantics [16] and a behavioural semantics

[3]. However, while SEAM focuses on defining the basic

concepts and their semantics precisely, our work focuses

on defining the relations between viewpoints precisely.

Other work on relating RM-ODP viewpoints includes

that described in [5]. This work differs from ours in that it

relates viewpoints without using the RM-ODP basic

modelling concepts. Using the basic concepts has the

benefit that the semantics and operations defined on the

basic concepts can be reused.

Other frameworks for viewpoint consistency

verification are discussed in [7], [8] and [9]. These

frameworks rely on the designer to specify (Boolean)

constraints that define the relations between viewpoints.

These constraints can be evaluated to verify the

consistency between concrete views. These frameworks

are more generic than our framework. However, our

framework includes reusable operators, which make it

more powerful for relating behavioural views.

9. Conclusions

In this paper we describe an approach to precisely

define the relations between an RM-ODP based enterprise

and computational viewpoints. We show how the

approach can be used to verify the consistency between

an enterprise and a computational viewpoint design and

illustrate the approach with an example. So far the

approach focuses on consistency between behavioural

concerns of viewpoint designs.

Another goal of this paper has been to evaluate our

framework for relating viewpoints [6] by applying it. We

conclude that the framework can be successfully applied

to relate the behavioural aspects of our enterprise and

computational viewpoints. However, we expect that the

framework is generic enough to be applied to other

viewpoints as well. A point of attention, when applying

the framework to relate other viewpoints, is that the

relation between those viewpoints and the basic

viewpoint may not be as straightforward as in RM-ODP.

This means that the designer may have to spend some

time on defining this relation, which may annul the time

saved with reusing the basic viewpoint relations.

The generic framework is also expected to be useful in

the context of Model Driven Architecture (MDA) [17]

and IEEE 1471 [12] compliant design trajectories. These

trajectories acknowledge the existence of different

viewpoints and the importance of specifying the relations

between these viewpoints. In MDA the relations between

viewpoints take the form of (automated) model

transformations. However, we claim that it is not always

feasible to relate viewpoints by means of transformations.

Therefore, our approach to consistency verification

between viewpoints can complement the MDA approach.

To illustrate the practical applicability of the

framework we implemented it in a prototype tool [22].

The tool implements the design operators that we

introduced in section 4. Section 6 explains how these

design operators can be applied to verify the consistency

between an enterprise and a computational view. The tool

only uses RM-ODP basic modelling concepts.

Currently, we are adding support for meta-model

transformation to the tool, such that it can interact with

other tools, such as Poseidon or Rational Rose, which

implement other (viewpoint specific) notations. In

addition to this we plan to add support to the framework

and the tool for verifying consistency with respect to

other design concerns, more specifically: information and

structure. We also plan to add support for verifying

consistency between viewpoints that have a complement

relation rather than a refinement relation.

To fully support consistency verification in RM-ODP

based design approaches, we need to address other

concerns than the behavioural concerns. Policies and

dynamism of the structure of a system are examples of

such concerns. Expressing policies is already possible to

the extent of obligations, which represent that an object

must perform a certain behaviour, and permissions, which

represent that an object is allowed to perform a certain

behaviour. These policies can be represented at a basic

level by must and may conditions [19, 20], respectively.

Acknowledgement

This work is partly supported by the Dutch Freeband

programme in the context of the A-MUSE project.

References

[1] D. Akehurst, J. Derrick, and A. Waters. Addressing

computational viewpoint design. In: Proc. of the 7th IEEE

Conf. on Enterprise Distributed Object Computing,

Brisbane, Australia, September 2003.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

[2] D. Akehurst and S. Kent. A relational approach to defining

transformations in a metamodel. In: Proc. of the 5th Intl.

Conf. on the Unified Modeling Language, Dresden,

Germany, 2002.

[3] P. Balabko and A. Wegmann. From RM-ODP to the

Formal Behavior Representation. In: Practical

Foundations of Business and System Specifications,

Kluwer Academic Publishers, September 2003.

[4] G. Blair and J. Stefani. Open Distributed Processing and

Multimedia, Addison-Wesley, 1997.

[5] H. Bowman, E. Boiten, J. Derrick, and M. Steen.

Viewpoint consistency in ODP, a general interpretation.

In: Proc. of Formal Methods for Open Object-Based

Distributed Systems, Chapman and Hall, 1996.

[6] R. Dijkman, D. Quartel, L. Ferreira Pires, and M. van

Sinderen. An approach to relate viewpoints and modeling

languages. In: Proc. of the 7th IEEE Conf. on Enterprise

Distributed Object Computing, Brisbane, Australia,

September 2003.

[7] A. Egyed. Heterogeneous View Integration and its

Automation. PhD thesis, University of Southern California,

Los Angeles CA, USA, 2000.

[8] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B.

Nuseihbeh. Inconsistency handling in multi-perspective

specifications. IEEE Transactions on Software

Engineering, 20(8):569–578, August 1994.

[9] P. Fradet, D. Le Métayer, and M. Périn. Consistency

checking for multiple view software architectures. In:

Proc. of the 7th European engineering conference,

Springer Verlag, 1999.

[10] R. van Glabbeek. The linear time – branching time

spectrum I: the semantics of concrete sequential processes.

In: Handbook of Process Algebra, pages 3– 99. Elsevier

Science, 2001.

[11] J. Gunawardena. Causal automata. Theoretical Computer

Science, 101(2):265–288, 1992.

[12] IEEE Architecture Working Group. IEEE recommended

practice for architectural description of software-intensive

systems, IEEE-Std 1471-2000, 2000.

[13] ITU-T / ISO. Information Technology - Open Distributed

Processing Reference Model – Enterprise Language, ITU-

T Spec. ITU-T 911, and ISO/IEC Spec. ISO/IEC 16414,

1999.

[14] ITU-T / ISO. Open Distributed Processing Reference

Model Part 1-4, ITU-T Spec. ITU-T 901..4 and ISO/IEC

Spec. ISO/IEC 10746-1..4, 1995.

[15] J.-P. Katoen. Causal Behaviours and Nets. In: Proc. of the

16th Intl. Conf. on Application and Theory of Petri Nets,

Torino, Italy, 1995.

[16] A. Naumenko. Triune Continuum Paradigm: a Paradigm

for General System Modeling and its Application for UML

and RM-ODP. PhD thesis, Swiss Federal Institute of

Technology, Lausanne, Switzerland, 2002.

[17] OMG. Model Driven Architecture, OMG Specification

ormsc/02-07-01, 2001.

[18] J. Putman. Architecting with RM-ODP, Prentice Hall,

2001.

[19] D. Quartel. Action Relations - Basic Design Concepts for

Behaviour Modelling and Refinement. PhD thesis,

University of Twente, Enschede, The Netherlands, 1998.

[20] D. Quartel, L. Ferreira Pires, and M. van Sinderen. On

architectural support for behavior refinement in distributed

systems design. Journal of Integrated Design and Process

Science, 6(1), March 2002.

[21] D. Quartel, L. Ferreira Pires, M. van Sinderen, H. Franken,

and C. Vissers. On the role of basic design concepts in

behaviour structuring. Computer Networks and ISDN

Systems, 29(4):413–436, 1997.

[22] D. Quartel. ISDL home: http://isdl.ctit.utwente.nl/, n.d.

[23] A. Wegmann. On the systemic enterprise architecture

methodology (SEAM). In: Proc. of the Intl. Conf. on

Enterprise Information Systems, Berlin, Germany, 2003.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

