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Abstract

Multi-viewpoint approaches allow stakeholders to 

design a system from stakeholder-specific viewpoints. By 

this, a separation of concerns is achieved, which makes 

designs more manageable. However, to construct a 

consistent multi-viewpoint design, the relations between 

viewpoints must be defined precisely, so that the 

consistency of designs from these viewpoints can be 

verified. The goal of this paper is to make the consistency 

rules between (a slightly adapted version of) the RM-

ODP enterprise and computational viewpoints more 

precise and to make checking the consistency between 

these viewpoints practically applicable. To achieve this 

goal, we apply a generic framework for relating 

viewpoints that includes reusable consistency rules. We 

implemented the consistency rules in a tool to show their 

applicability. 

1. Introduction 

Multi-viewpoint approaches are often used to cope 

with the complexity of distributed systems design. In such 

approaches different stakeholders design the system from 

their own perspective, or viewpoint. By doing this, they 

achieve separation of concerns and break up the overall 

design into smaller and more manageable parts. The 

implementation of the distributed system must be 

consistent with each of the viewpoint designs. However, 

to be able to build a system that is consistent with each of 

the viewpoint designs, the viewpoint designs must also be 

mutually consistent. 

The Reference Model for Open Distributed Processing  

(RM-ODP) [13, 14] prescribes a multi-viewpoint 

approach. Specifically, it prescribes the use of five 

viewpoints: enterprise, information, computational, 

engineering and technology. RM-ODP prescribes an 

abstract design language for each of the five viewpoints. 

It also prescribes consistency rules to maintain the 

consistency between viewpoint designs. In this paper we 

focus on the enterprise and computational viewpoints and 

the consistency rules between these two. We slightly 

adapt the original RM-ODP viewpoints, to make a strict 

distinction between behaviour and structure and to make 

some concepts more concrete. However, we clearly state 

where our enterprise and computational viewpoints 

deviate from the corresponding RM-ODP viewpoints. 

The goal of this paper is twofold. Firstly, we aim to 

make the consistency rules between the enterprise and 

computational viewpoints precise and to make checking 

consistency between designs from these viewpoints 

practically applicable. Secondly, we aim to evaluate the 

generic framework for relating viewpoints that we 

proposed in [6]. We evaluate it, by applying it to relate 

our enterprise and computational viewpoints. To show 

that our way to relate viewpoints is practically applicable, 

we implemented it in a prototype tool. The main 

contribution of our work is that we describe the relation 

between the enterprise and computational viewpoints 

precisely (section 6) and that we developed a tool to 

enforce this relation [22]. 

The remainder of this paper is organized as follows. 

Section 2 explains the generic framework from [6], which 

we use to relate the enterprise and computational 

viewpoints. Section 3 briefly describes a slightly adapted 

version of the RM-ODP basic modelling concepts, which 

we use to define the enterprise and computational 

viewpoints. Section 4 explains basic (consistency) 

relations that can exist between viewpoints. Section 5 

introduces our enterprise and computational viewpoints 

and shows how these viewpoints are defined in terms of 

the basic modelling concepts. Section 6 explains the 

(consistency) relation between the enterprise and 

computational viewpoints. These relations are based on 

the basic viewpoint relations from section 4. Section 7 

gives an example of an enterprise and computational 

viewpoint design. Also, it illustrates how the consistency 

between these views can be assessed. Finally, section 8 

presents related work and section 9 the conclusions. 

2. Generic framework for relating viewpoints 

According to the generic framework from [6] a 

viewpoint prescribes the means to construct a design that 

addresses the concerns of a particular stakeholder at a 
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particular level of detail. We call the design from a 

viewpoint a view. A viewpoint prescribes a set of 

concepts that a designer can use to construct a design. A 

concept is an abstraction of some common and essential 

properties of a system, such as: remote procedure call, 

distributable object and interface. 

Since all viewpoints deal with the same system, they 

are related to each other. In [6] we distinguish two basic 

viewpoint relations: the complement relation and the 

refinement relation. The complement relation exists 

between viewpoints that deal with different, partly 

overlapping, concerns at the same level of detail. The 

refinement relation exists between viewpoints that deal 

with the same concerns but regard these concerns at 

different levels of detail. Two views must be consistent 

with each other according to the relation that their 

viewpoints have. To verify consistency between two 

views, we defined consistency rules that match the 

relation between these views. If the consistency rules hold 

between the views we say that the views are consistent 

with each other. For example, if a viewpoint A has a 

refinement relation to another viewpoint B and two views 

a and b exist that are constructed from viewpoint A and B

respectively, then we apply refinement consistency rules 

to verify if view a is a correct refinement of view b. In 

this paper we focus on the refinement relation and the 

refinement consistency rules, because we found that this 

relation applies to the enterprise and computational 

viewpoints. Section 4 explains our notion of refinement 

and the basic forms of refinement that we distinguish. A 

refinement relation between two viewpoints can consist 

of one or more basic forms of refinement. Consequently, 

the consistency between two views can be verified using 

one or more refinement consistency rules. Section 6 

explains the refinement relation that exists between the 

enterprise and computational viewpoints. 

One way to verify the consistency between two views 

is via a basic viewpoint on which the basic viewpoint 

relations are defined as well as the consistency rules. 

Figure 1 illustrates this approach. The approach requires 

that mappings exist from each viewpoint to the basic 

viewpoint. If such mappings exist, we can verify the 

consistency between two views, a and b, constructed 

from viewpoint A and B respectively, by mapping them to 

view a’ and b’, which are constructed from the basic 

viewpoint. The consistency rules, which are defined in 

the basic viewpoint, can then be used to verify the 

consistency between a’ and b’. If a’ and b’ are consistent, 

we infer that a and b are also consistent. We define a 

meta-model for each of the viewpoints and meta-model 

transformations between the viewpoints. We do that to 

make it possible to define mappings precisely and to 

facilitate the development of tools to automate the 

mappings. 

The benefit of the approach is that all viewpoints that 

have a mapping to the basic viewpoint can reuse the 

viewpoint relations and consistency rules from the basic 

viewpoint. However, our approach only pays off when 

the benefit of reuse outweighs the cost of defining the 

mappings. 

Viewpoint A
meta-model

used to
construct

Viewpoint B
meta-model

View a

Basic viewpoint
meta-model

Basic view a’

View b

Basic viewpoint
relation

Basic view b’

used to
construct

defined on

maps to

mapping
defined to

mapping
defined to

maps to

relatesrelates

used to
construct

used to
construct

Consistency rules

used to verify
verifies consistency

between
verifies consistency

between

Figure 1. Relate views via a basic viewpoint 

We claim that the basic viewpoint approach to relate 

viewpoints is particularly suitable for RM-ODP, because 

RM-ODP already prescribes a set of basic modelling 

concepts [14 (part 2, clause 8)] and defines its viewpoint 

concepts in terms of these basic modelling concepts. 

Therefore, we can use the basic modelling concepts as a 

basic viewpoint. The mappings between the RM-ODP 

specific viewpoints and the basic viewpoint can be based 

on the definition of the viewpoint concepts in terms of the 

basic modelling concepts. 

3. Basic modelling concepts 

We make a distinction between structural concepts and 

behavioural concepts. We can use structural concepts to 

describe the things that exist and where these things exist 

in space and time, while we can use behavioural concepts 

to describe how things behave. 

We focus on the design of a system at a particular 

moment in time. This is also called a snapshot of a 

system. Hence, we do not consider dynamic changes in 

the structure of a system over time, while the  RM-ODP 

concepts do address this concern. We leave this as future 

work.
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Figure 2. Meta-model of the basic structural 
concepts
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3.1. Basic structural concepts 

Figure 2 presents the meta-model for our basic 

structural concepts. We further explain the concepts from 

the meta-model in the remainder of this subsection. 

An object represents a concrete or abstract thing of 

interest, such as a ‘CORBA object’ or a ‘server’. We 

associate an object with a name that identifies it uniquely. 

Objects can be grouped in a configuration. 

An interaction point represents a shared logical or 

physical mechanism through which two or more objects 

can interact, such as a ‘programming interface’ or a 

‘computer network’. An interaction point does not only 

exist between objects, but is also part of the objects. A 

‘computer network’ is a good example of an interaction 

point, since it consists of a ‘network cable’ and ‘network 

cards’, which are part of the interacting ‘computers’. 

We introduce the interaction point part concept to 

represents the (potential) participation of an object in an 

interaction point. Each interaction point is partitioned into 

the interaction point parts of its participating objects. 

Moreover, an object/interaction point pair uniquely 

identifies an interaction point part. 

RM-ODP prescribes that an interaction point exists 

during a time interval and at a location in (logical) space. 

In our design approach, the structural design that contains 

an interaction point is valid for a particular interval in 

time, because this design is a snapshot of the system 

structure. Hence, an interaction point that is used in a 

structural design is implicitly associated with a time 

interval. Therefore, we only associate an interaction point 

with a location. To represent interaction points that 

change over time, we have to draw different snapshots 

that represent different time intervals. The drawback of 

this approach is that it is hard to represent the relation 

between a time interval and the availability or location of 

an interaction point. The concern that addresses the 

dynamism of the structure of the system should address 

this issue. 

Our notion of interaction point differs slightly from the 

notion that RM-ODP uses, because RM-ODP does not 

distinguish between interaction points and interaction 

point parts. Rather than combining interaction point parts 

into interaction points to allow objects to interact, RM-

ODP states that objects interact at (bound) interfaces. 

However, we reserve the term interface for representing 

behavioural aspects (consistently with its definition in 

RM-ODP) and introduce the interaction point part 

concept as its structural counterpart. Therefore, we also 

say that objects interact at their interaction points or 

interaction point parts rather than at their interfaces. 

Figure 3 shows our notation for the basic structural 

concepts. We assume that interaction points are uniquely 

identified by the location at which they exist and that 

interaction point parts are uniquely identified by the 

location of the interaction point to which they belong and 

the name of the object of which they are a part. 

<location> <location>

a. Object b. Interaction point c. Interaction point part

<name>

Figure 3. A notation for basic structural 
concepts

3.2. Basic behavioural concepts 

Figure 4 presents the meta-model for our basic 

behavioural concepts. We further explain the concepts 

from the meta-model in the remainder of this subsection. 
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Figure 4. Meta-model of the basic behavioural 
concepts

A behaviour consists of a collection of actions and 

constraints on when these actions may occur. An action 

can either be assigned to a single behaviour, in which 

case we refer to it as an internal action, or it can be part of 

an interaction that is shared between behaviours, in which 

case we refer to it as an interaction contribution. 

To associate a behavioural semantics with the basic 

modelling concepts, we have to specify the form that 

constraints take. We express constraints by associating 

each action with a condition (or constraint) for its 

occurrence. In this way each constraint affects the 

occurrence of exactly one action, much like a pre-

condition. We specify the constraint of an action’s 

occurrence as a condition on the (non-)occurrence of 

other actions. For example, if action a is allowed to occur 

after b, we say that the constraint for a is the occurrence 

of b. If there is a choice between a and b, we say that the 

constraint for a is the non-occurrence of b and the 

constraint for b is the non-occurrence of a. By associating 
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each action with a constraint in this way, we get a causal 

automaton as explained in [11]. We defined a textual 

notation to express constraints. For the occurrence of an 

action we use its name, for the non-occurrence we prefix 

the name with the negation ( ) symbol. For the 

conjunction and disjunction of (non-)occurrences, we use 

the corresponding logical symbols (  and ). For 

example, if the constraint for a is the occurrence of b and 

the non-occurrence of c, we express this as: b c a.

A special constraint ‘always’ indicates that an action can 

always occur. [19, 21, 22] give a more detailed account of 

behaviour specification with this technique, along with a 

graphical notation. It also explains how the constraints 

can be extended with constraints on the time at which an 

action occurs, the information that is established in an 

action and the location at which an action occurs. 

This way of specifying relations between actions 

allows for a fully concurrent time model. Actions that are 

not causally related are independent and can therefore 

happen concurrently. If an action is enabled by another 

action it must happen after that action. If an action is 

disabled by another action it can happen before, but not 

after (or at the same time as) that action. Hence, at run-

time mechanisms must be implemented that make actions 

aware of the (non-)occurrence of actions to which they 

are causally related. 

Interactions are partitioned into interaction 

contributions in the same way as interaction points are 

partitioned into interaction point parts. The constraints on 

an interaction are specified as constraints on its 

interaction contributions. In this way, each behaviour that 

contributes to an interaction can specify its own 

constraints on when the interaction can occur. 

An interface is a particular type of behaviour. It 

represents a subset of the behaviour of an object that is 

intended to be performed at a particular interaction point 

(part). Interfaces can be bound to allow objects to 

interact. Therefore, we define interactions in the context 

of a binding. A binding maps onto a single interaction 

point and vice-versa and an interface maps onto a single 

interaction point part and vice versa. 

A role is an identifier for a behaviour. Hence, it is not 

a behaviour itself, but it refers to one. 

An action occurs at a time moment and a location. In 

addition to this, RM-ODP states that interactions convey 

information. However, we generalize this definition and 

say that interactions establish information. The difference 

between establishing information and conveying 

information is the following. In case of conveying 

information one interacting partner has already picked a 

value that must be accepted by the other partner. In case 

information is established, neither of the partners may 

have picked a value yet. Instead they establish a value in a 

negotiation (interaction), while abstracting from how this 

negotiation takes place. We say that internal actions also 

establish information, while RM-ODP does not prescribe 

this. To represent these properties of actions, we assign an 

information, a time and a location attribute to each 

internal action and interaction contribution. The 

information attribute represents the information values 

that can be established in the action, the time attribute 

represents the time at which the action can occur and the 

location attribute represents the locations at which the 

action can occur. When an action occurs, its attributes are 

associated with values that represent the information 

established and the time and location at which the action 

has occurred. All attributes are associated with a type that 

defines the range of values that an attribute may get. The 

type of the information attribute can be freely defined by 

the designer. The type of the time attribute is fixed and 

the type of the location attribute is the location concept 

from the structural meta-model. 

<name>

i: <type>
t: Time
l: Location

<name>

a. Behavior b. Internal action d. Attributesc. Interaction

Figure 5. A notation for basic behavioural 
concepts

Figure 5 shows our notation for the basic behavioural 

concepts. An interaction contribution is represented by a 

circle segment of an interaction. In case an interaction is 

formed by only two interaction contributions, the black 

dot in the middle may be left out. The attributes and the 

name of an action are associated with this action using a 

comment box, such as the one shown in figure 5.d. 
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Figure 6. The relation between the structural and 
behavioural meta-model 

3.3. Relation between structure and behaviour 

Figure 6 shows the relations between the structural and 

behavioural meta-models from the previous subsections. 

Each object is associated with its behaviour, while a 

behaviour may or may not be associated with an object. 
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An object can be authorized to fulfil one or more roles. At 

a moment in time it can fulfil one or more of the roles for 

which it is authorized. If a role is assigned to an object, 

that object must observe the behaviour of the role. Hence, 

the behaviour of an object must satisfy all roles that the 

object fulfils. The location attribute of an action in a 

behavioural design refers to a location in the 

corresponding structural design. This location 

corresponds to an interaction point or an interaction point 

part. Finally, each interface maps onto a single interaction 

point part and vice versa. Similarly, each binding maps 

onto a single interaction point and vice versa. 

4. Basic viewpoint relation: refinement 

In line with the distinction between structural and 

behavioural concepts, we distinguish between structural 

and behavioural refinement. Figure 7 shows the different 

forms of structural and behavioural refinement. 

d. Object decomposition e. Interaction point decomposition

a a’

a. Action refinement b. Behavior decomposition

a a b

c. Constraint refinement

b

Figure 7. Different forms of refinement 

We distinguish three basic forms of behavioural 

refinement: action refinement, behaviour decomposition 

and constraint refinement. In case of action refinement an 

action is refined into multiple actions. These actions 

achieve the same result, but represent a more detailed 

account of how that result is achieved. Figure 8.a shows 

an example of action refinement. When an action is 

refined, some of the actions from the refinement coincide 

with the completion of the original action. We call these 

actions reference actions. In the example, ‘send welcome 

letter’ and ‘verify client’s status’ are both reference 

actions for the original action ‘process new client’,

because the original action completes if both these actions 

complete. Actions from the refinement that do not 

coincide with the completion of the original action are 

inserted actions. In the example, ‘enter client details’ is 

an inserted action. In case of behaviour decomposition a 

behaviour is split up into two or more communicating 

behaviours. As a consequence internal actions of the 

original behaviour can be refined into interactions of the 

communicating behaviours. Figure 8.b shows an example 

of behaviour decomposition. In the example, actions 

‘request’ and ‘respond’ are refined into interactions. In 

case of constraint refinement a constraint is split up into 

two or more constraints that are related by actions that 

they have in common. These actions are again inserted 

actions, because they do not coincide with the completion 

of any of the original actions. Figure 8.c shows an 

example of constraint refinement. In the example, the 

action ‘send data to subsystem’ is inserted as the result of 

refining the constraint of the ‘process data’ action. 

We distinguish two basic forms of structural 

refinement: object decomposition and interaction point 

decomposition. In case of object decomposition an object 

is split up into two or more objects. As a consequence, the 

behaviour of the object must also be decomposed into 

communicating behaviours of its component objects. In 

case of interaction point decomposition an object is 

refined by decomposing its interaction points or 

interaction point parts into two or more interaction points 

or interaction point parts. As a consequence, the 

interactions that occurred at the original interaction point 

either have to be assigned to one of the interaction points 

from the decomposition, or have to be refined, after 

which the resulting interactions can be assigned to 

different interaction points from the decomposition. 

process
new client

enter client
details

send welcome
letter

verify client's
credit status

request

process

respond
client

server

respond

process

request

a. Action refinement example

b. Behavior decomposition example

enter data

process data

enter data

process data

send data to
subsystem

c. Constraint refinement example

Figure 8. Examples of refinement 

A viewpoint A can have a refinement relation with 

another viewpoint B using one or a combination of the 

forms of refinement mentioned above. A view a from 

viewpoint A then is consistent with a view b from 

viewpoint B if and only if a can be reached from b by 

applying the rules that relate A to B. For example, if A

relates to B through behavioural decomposition, then a is 

consistent with b if a can be obtained by decomposing b.

To verify consistency in this way, we have to know 

exactly which rules to apply and in which way and which 

order we have to apply them. However, designers do not 

like to be bound by rules when refining a design. They 

rather allow themselves complete freedom when 

constructing a ‘refined’ design. Hence, we do not know 

how the rules were applied to refine the design. Since 

there are many ways in which they can be applied, it is 

not feasible to verify consistency if we do not have this 

information. However, each time we apply a refinement 

rule, we add information to the design and there is only 

one way to remove this information again. Therefore, we 
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use abstraction instead of refinement to verify the 

consistency between a design and its refinement. 

Abstraction rules define how to remove the added 

information from a design. After this has been done, we 

can verify if the resulting design is equivalent to the 

design before refinement.  

We say that two behaviours are equivalent if each 

action from one appears in the other and the conditions of 

corresponding actions are equivalent. We call this strong 

equivalence. The benefit of this notion of equivalence is 

that it preserves causal relations between actions. The 

drawback is that it very strict. In contrast, other, less 

strict, notions of equivalence exist [10]. Some of these 

notions can be used via the semantics of our basic 

behavioural concepts in terms of Petri-nets [15] and 

partial orders [19]. The suitability of the different notions 

of equivalence in the context of our basic concepts 

requires further study. 

The abstraction rules are the inverse of the refinement 

rules. For example, if viewpoint A relates to viewpoint B

through behavioural decomposition, then a is consistent 

with b if we can apply the inverse of decomposition, 

namely composition, to a and end up with a design a’ that 

is equivalent to b. This approach to consistency 

verification requires us to define abstraction rules, as the 

inverse of the refinement rules above. We claim that, if 

we enforce the rule that abstraction can only be applied to 

actions or behaviours that exist, the order in which the 

abstraction rules are applied, is automatically the right 

order (i.e. the same order in which the refinement rules 

were applied). Hence, the designer does not have to keep 

track of the order in which he applies the refinement 

rules. To prove this claim, we must show that, if two 

refinement rules are applied in a particular order, either 

the corresponding abstraction rules must necessarily be 

applied in reverse order, or the refinement rules could 

have been applied in another order as well. A detailed 

proof is left out due to space limitations. 

We define the behaviour composition rule as the 

inverse of the behaviour decomposition rule. The 

composition rule composes the specified behaviours into 

a single behaviour and composes the interactions between 

these behaviours into internal actions. The condition of a 

composed internal action is the conjunction of the 

conditions of the interaction contributions of which it is 

composed. For example, because the conditions of the 

two contributions to the ‘respond’ interaction from figure 

8.b are always and ‘process’, the condition for this action 

in the composition is always  ‘process’, which equals 

‘process’.

We use the action abstraction rule as the inverse of the 

constraint refinement rule. The action abstraction rule 

removes the specified inserted actions (a1, a2, …) from a 

design. Also, it changes the conditions of actions that 

depend on a1, a2, …, such that where a1, a2, … appears 

in a condition it is replaced by the condition of a1, the 

condition of a2, …. For example, in figure 8.c ‘send data 

to subsystem’ is an inserted action. The condition of 

‘process data’ is ‘send data to subsystem’, and the 

condition of ‘send data to subsystem’ is ‘enter data’.

Therefore, when we remove the inserted action ‘send data 

to subsystem’, the condition of ‘process data’ becomes 

the condition of ‘send data to subsystem’, which is ‘enter

data’.

We use two rules as the inverse of action refinement: 

the action abstraction and action integration rule. Action 

abstraction abstracts from the specified inserted actions in 

an action refinement. Action integration integrates the 

specified reference actions from the action refinement 

into a single action. The condition of an integrated action 

depends on the way in which its reference actions 

correspond to the completion of the original action. Either 

the completion of all reference actions corresponds to the 

completion of the original action (conjunctive reference 

actions) or the completion of any of them (disjunctive 

reference actions). A combination of conjunctive and 

disjunctive reference actions is also possible. The 

designer must specify how the completion of reference 

actions corresponds to the completion of the original 

action in a completion condition. The condition of the 

integrated action then corresponds to the completion 

condition, where the reference actions are replaced by 

their conditions. As an example, consider the reference 

actions ‘send welcome letter’ and ‘verify client’s credit 

status’ from figure 8.a. The completion of both of these 

actions coincides with the completion of the original 

action ‘process new client’. Therefore, we say that the 

completion condition is ‘send welcome letter’  ‘verify

client’s credit status’. If we integrate these actions into a 

single action, ‘integrated’, the condition of ‘integrated’ is 

<the condition of ‘send welcome letter’>  <the condition 

of ‘verify client’s credit status’>. As the condition of both 

actions is ‘enter client details’, the condition of 

‘integrated’ is ‘enter client details’  ‘enter client 

details’, which equals ‘enter client details’. As another 

example, suppose that an action ‘deliver package’ was 

refined into the actions ‘deliver by airmail’ and ‘deliver

by sea mail’. Judging by the names of the actions, the 

occurrence of either one of them corresponds to the 

completion of the original action, such that the 

completion condition is ‘deliver by airmail’  ‘deliver by 

sea mail’. Hence, the condition of the integrated action 

becomes <the condition of ‘deliver by airmail’>  <the 

condition of ‘deliver by sea mail’>.

We defined the abstraction rules as operators that can 

be applied to basic viewpoint designs. Hence, if we focus 

on behaviour, we have the following design operators. 
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abstract: Action Behaviour Behaviour, where 

abstract({a1, a2, …}, b) returns the behaviour in which 

the inserted actions a1, a2, … are abstracted from.  

integrate:  (Condition Action) Behaviour

Behaviour, where integrate({(c1, a1), (c2, a2), …}, b)

returns the behaviour in the reference actions from the 

completion conditions c1, c2, … are integrated and 

named a1, a2, … respectively. 

compose: Behaviour Behaviour Behaviour, where 

compose(b1, b2) returns a single behaviour in which 

interactions between b1 and b2 are composed into internal 

actions. 

~: Behaviour Behaviour Boolean, where b1 ~ b2

returns true if and only if b1 and b2 are behaviourally 

equivalent. 

The theory that underlies our notion of refinement and the 

operators explained above is further explained in [19, 20]. 
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Figure 9. Meta-model of enterprise viewpoint 
concepts

5. Enterprise and computational viewpoint 

concepts

We define the enterprise and computational viewpoints 

as extensions of the basic concepts from section 3. 

5.1. Enterprise viewpoint concepts 

The enterprise viewpoint is used to design the relation 

of a system to its environment. The system and its 

environment form a community, which is a configuration 

of objects that is formed to meet an objective. A system is 

a special object, while the environment of the system 

consists of all objects that are not part of the system. A 

system can participate in more than one community.  

Each community is further defined in terms of an 

enterprise contract that constrains how the objects in that 

community collaborate. To this end an enterprise contract 

states the objective of the community, the intended 

structure and behaviour of the community and policies 

that govern the structure and behaviour of the community. 

In this paper we focus on the intended structure and 

behaviour of the community. 

There are two complementary approaches to specify 

the intended behaviour of a community: the role-based 

approach and the process-based approach. These 

approaches may both be used in the design of a 

community’s behaviour. In the role-based approach 

several behaviours are defined in the community, each of 

which is identified as a role. Objects can participate in the 

community by fulfilling one or more of the roles. If an 

object fulfils a role, it must satisfy the behaviour that the 

role identifies. In the process-based approach, the 

behaviour of a community is defined in terms of 

processes. A process is a collection of steps taking place 

in a pre-described manner and leading to an objective. A 

step is an abstraction of an action or interaction that may 

leave the objects that participate in it unspecified. We 

interpret the process and step concept in terms of basic 

concepts by considering a process as a (special case of) 

behaviour that only consists of internal actions. These 

internal actions are the steps of the process. We can 

assign a step to the role that performs it or the roles that 

perform it in collaboration. Subsequently, we can 

associate the role to an object, such that the object 

performs the step. Figure 9 shows the meta-model that is 

consistent with the observations above. We did not 

include the enterprise contract concept in the meta-model, 

because an enterprise contract is completely defined by its 

parts (structure, behaviour, policies and objective). Figure 

9 includes some of the basic modelling concepts. These 

concepts are shown in grey. The figure only shows the 

basic modelling concepts insofar as they are needed for 

the understanding of the enterprise viewpoint concepts. 

However, all basic modelling concepts from section 3 can 

be used to construct a design from the enterprise 

viewpoint. 

The meta-model shows that the enterprise concepts 

that we introduced can all be interpreted as basic concepts 

at a more generic level: a process is a behaviour, a step in 

a process is an internal action and a community is a 

configuration. Hence, an enterprise view can be 

transformed into a basic view by interpreting enterprise 

specific concepts as their generic counterparts. After 

transformation, the resulting basic enterprise design can 

be used for comparison with other (transformed) basic 

views. 

Since the transformation of an enterprise view into a 

basic view relies on generalization, certain information is 

lost in the transformation. This is because the generic 

concepts do not support all information of the specific 

concepts. For example, the relation between steps and the 

roles that perform them is lost, because the generic 
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counterpart of the step concept, the internal action 

concept, has no relation with the role concept. 
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Figure 10. Meta-model of computational 
viewpoint concepts 

5.2. Computational viewpoint concepts 

The computational viewpoint is used to specify the 

logical and functional decomposition of a system into 

interacting objects. The computational objects that 

comprise the system are represented in a configuration. 

In the RM-ODP computational viewpoint, objects are 

connected, or bound, via their interfaces. This suggests 

that interfaces and bindings represent the structural aspect 

of connections between objects, although interfaces are 

defined as purely behavioural. Indeed, specific 

computational specification languages, such as [1, 4, 18] 

use interfaces and bindings in a structural design to 

represent connections between objects. However, we 

want to maintain the strict distinction between structural 

and behavioural aspects that we introduced in the 

presentation of the basic concepts. Therefore, we reserve 

the interaction point concept to represent connections 

between objects and the interface and binding concepts to 

represent the behavioural aspects of this connection. 

The computational viewpoint distinguishes between 

primitive and compound bindings. A primitive binding 

directly connects two objects (via an interaction point), 

while a compound binding connects two or more objects 

via an intermediate object, which is called the binding 

object. A compound binding can be defined in terms of 

primitive bindings between the objects that participate in 

the compound binding and the binding object. 

Finally, the computational viewpoint defines three 

specific kinds of interactions, signals, flows and 

operations, as well as the corresponding kinds of 

interfaces signal interfaces, stream interfaces and 

operation interfaces, respectively. A signal is an atomic 

interaction between two objects. A flow is an abstraction 

of a sequence of interactions between two objects. An 

operation is a request/response mechanism, where a 

request, called an invocation, is sent from one object to 

another and an optional response, called a termination, to 

this request is sent in the opposite direction as a result. If 

an operation consists of only an invocation, we call it an 

announcement. If it consists of both an invocation and a 

termination, we call it an interrogation.

Figure 10 shows the meta-model that describes the 

computational viewpoint concepts. Again, the figure 

shows the basic modelling concepts in grey insofar as 

they are needed for the understanding of the 

computational viewpoint concepts. 

As with the enterprise concepts, computational 

concepts can be interpreted as basic concepts by 

generalization: binding objects specialize objects, 

compound and primitive bindings specialize bindings, 

signal, stream and operation interfaces specialize 

interfaces and signals specialize interactions.

Flows and operations can not be interpreted as 

interactions, because their semantics differs from that of 

an (atomic) interaction. Moreover, RM-ODP states that 

flows and operations can be interpreted as a composition 

of signals [14 (part 3, clause 7.2.2.5)] and therefore of 

basic interactions. An operation can be interpreted as a 

composition of basic interactions, by considering both an 

invocation and a termination as composed of two 

interactions, one for each communicating partner. Since 

the termination of an operation is optional, an operation is 

composed of either two or four basic interactions. A flow 

can be interpreted as a sequence of basic interactions. 

Hence, to interpret flows and operations in terms of basic 

modelling concepts we need a more sophisticated relation 

than generalization. This also means that we need more 

sophisticated tooling mechanisms to map flows and 

operations to basic interactions. We intend to use model 

transformations for this purpose, but we leave this for 

future work. 

Note that, when we transform a computational view 

into a basic view according to these interpretation rules, 

we lose all information about the constituents of the 

compound bindings. As a result, binding objects are 

interpreted as regular objects with a regular behaviour 

and primitive bindings with other objects. We do not 

consider this loss of information a problem for comparing 

a computational view to the enterprise viewpoint, because 

from an enterprise perspective it is only relevant to know 

the behaviour of a (binding) object. Whether this 
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behaviour relates to a connection between objects or to 

application logic is unimportant. 

6. The relation between the enterprise and 

computational viewpoints 

An enterprise view represents the relation between a 

system under design and its environment, while a 

computational view represents the functional 

decomposition of that system. Therefore, we claim that 

the computational viewpoint is related to the enterprise 

viewpoint by delimitation and refinement. A 

computational view is delimited with respect to an 

enterprise view, because an enterprise view describes the 

system and its environment, while the computational 

view only describes the system. Therefore, actions can 

exist in the enterprise view, which are not considered in 

the computational view. These are the actions that are 

performed by the environment of the system. 

Furthermore, a computational view is a refinement of an 

enterprise view, because an enterprise view describes the 

system as a whole, while the computational view 

describes the functional decomposition of the system. A 

computational view may also describe the actions that the 

system performs in more detail than the enterprise view 

does. These observations are supported by the 

consistency rules that RM-ODP prescribes between the 

enterprise and computational viewpoints [13]. 

If a combination of the role-based and the process-

based approach is used in the enterprise viewpoint, it is 

likely that some enterprise actions are only considered in 

the process-based part while others are only considered in 

the role-based part.

Process-based part

a b

c

a d b

Role-based part

Enterprise view

a1 a2

a3

b1 b2

d

a3 d

c

Computational view

behavioral
refinement

behavioral
+

structural
refinement

a b

System

Part 1 Part 3

Part 2

System

Figure 11. Example of relations between 
computational and enterprise models 

Figure 11 illustrates the relation between the 

computational viewpoint and the enterprise viewpoint. It 

shows an enterprise view and a computational view. The 

computational view is a structural decomposition of the 

enterprise view, because the enterprise view represents 

the system as a whole, while the computational view 

represents the system as a composition of three parts. The 

computational view also is a delimitation of the enterprise 

view, because the computational view does not show the 

enterprise object that is part of the environment of the 

system. Moreover, the process-based part of the 

enterprise view does not make a distinction between the 

actions that are performed by the system and the actions 

that are performed by the environment of the system. 

Finally, the computational view is a behavioural 

refinement of the enterprise view, because the 

computational view describes the actions that the system 

performs in more detail. Specifically, it decomposes 

action a into actions a1, a2 and a3 and action b into 

actions b1 and b2. The figure shows action d, which is 

only considered in the process-based part of the enterprise 

view, and action c, which is only considered in the role-

based part of the enterprise view. 

Based on these observations, we define rules to verify 

the consistency between an enterprise and a 

computational view. These rules lead to a formula for 

verifying the consistency between a computational view 

and an enterprise view, which we define in terms of the 

operators from section 4. We verify the consistency 

between the computational view and the process-based 

part separately from the consistency between the 

computational view and the role-based part. We do this, 

because the process-based part considers actions that the 

role-based part does not consider and vice versa. To 

verify the consistency, the designer must first specify the 

relations that exist between elements from the 

computational view and elements from the enterprise 

view. These relations are used as input when verifying the 

consistency. 

Since the behaviour of the system in the computational 

view is a decomposition of the behaviour of the system in 

the enterprise view, the designer must specify which 

behaviours in the computational view represent parts of 

the system. To verify consistency, these behaviours must 

be composed into a single system behaviour. Hence, for 

computational behaviours cb1, cb2, cb3 that represent the 

behaviours of the system parts: 

cb = compose(compose(cb1, cb2), cb3)

When we verify the consistency between the 

computational view and the role-based part, the designer 

must specify which actions are not considered in the role-

based part. To verify the consistency between the 

computational view and the role-based part, we must 

abstract from these actions. Hence, for a computational 

behaviour cb and a set of actions unconsidered that are 

not considered in the role based behaviour: 

cb’ = abstract(cb, unconsidered)

Similarly, when verifying the consistency with the 

process-based part, we must abstract from actions that are 

only considered in the role-based part. 
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Since the computational view only considers the 

system, the designer must specify which actions in the 

enterprise view are performed by the environment of the 

system. To verify the consistency, we must abstract from 

these actions in the enterprise behaviour. Hence, for an 

enterprise behaviour eb (that can be either a role-based or 

a process-based behaviour) and a set of actions 

environmentactions from the environment of the system: 

eb’ = abstract(eb, environmentactions)

Since the computational view also considers the 

actions in the enterprise view on a more detailed level, the 

designer must specify the relation between actions in the 

computational and enterprise view. Some computational 

actions can be inserted with respect to enterprise actions.  

Since these actions represent design information that is 

added between the enterprise and the computational 

viewpoint, they must be removed in the abstraction step. 

We say that these actions are abstracted from. Other 

computational actions can be reference actions for 

enterprise actions. For reference actions, the designer has 

to specify the completion condition and the enterprise 

action to which they correspond. The reference actions 

have to be integrated. Hence, for a computational 

behaviour cb, a set of inserted actions inserted, and a set 

of completion conditions c1, c2, … on reference actions 

that specify the completion of the original actions a1, a2,

…:

cb’= integrate(abstract(cb’, inserted),{(c1,a1),(c2,a2), …}) 

Finally, we have to compare the resulting enterprise 

and computational behaviour, using the equivalence 

operator.

As an example consider figure 11, with a role-based 

behaviour rb, a process-based behaviour pb and a 

computational behaviour that consists of the behaviours 

cb1, cb2 and cb3 of the system parts. Further, we say that 

the completion of a1 and a2 corresponds to the completion 

of a and the completion of either b1 or b2 corresponds to 

the completion of b. Hence, action a3 is an inserted 

action. Now, to assess whether the computational 

behaviour is consistent with rb, we use the formulae: 

cb’’’ ~ rb’

where:

rb’ = abstract(rb, environmentactions)

cb’’’ = integrate(cb’’, reference)

cb’’ = abstract(cb’, inserted)

cb’ = abstract(cb, unconsidered)

cb = compose(compose(cb1, cb2), cb3)

reference = {(a1 a2, a), (b1 b2, b), (c, c)}

inserted = {a3}

unconsidered = {d}

environmentactions = 

Figure 12 illustrates how these formulae affect the 

computational behaviour. 

To assess whether cb is consistent with pb, we use the 

same formulae, but with rb replaced by pb and:  

unconsidered = {c}

reference = {(a1 a2, a), (b1 b2, b), (d, d)}.

cb

a1 a2

a3

b1 b2

d

a3 d

c

cb1 cb3

cb2

cb = compose(compose(cb1, cb2), cb3)

a1 a2 b1 b2

c

da3
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a1 a2 b1 b2

c

a3
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c

cb’’ = abstract(cb’, inserted)

a b

c

cb’’’ = integrate(cb’’, reference)

cb’’

cb’’’

Figure 12. Relations between abstractions of 
computational behaviour 

From the above, we can deduce that the designer must 

make considerable effort to specify the relation between 

an enterprise and a computational behaviour. Such effort 

may cause the designer to ignore the consistency check. 

However, the consistency check can be simplified. 

Observe that all actions, other than the ones that appear in 

the reference set, are abstracted from. Hence, the designer 

only has to specify the reference set. Then, a tool can 

automatically abstract from all other actions. 

Process-based and role-based parts can partly deal 

with the same actions. In figure 11 this is the case for 

actions a and b. Because the role-based and the process-

based parts of the enterprise viewpoint partly deal with 

the same actions, we also say that they are complementing 

viewpoint designs. Therefore, the consistency between 

the role-based and the process-based part should be 

verified to construct a consistent enterprise view. 

However, we do not do this here, because our goal is to 

verify the consistency between an enterprise and a 

computational view. 

7. Example 

As an example, we relate the enterprise view from 

figure 13 to the computational view from figure 14. We 

represented both views with UML as a concrete syntax. 

The benefit of using UML as a concrete syntax is that 

existing UML tools can be reused for enterprise and 

computational viewpoint design. The drawback of using 

UML is that it uses different concepts than the ones 

proposed for enterprise and computational design in 

section 5. Hence, before we can analyze or compare the 
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designs as enterprise or computational designs, we have 

to transform the UML models into designs that use the 

viewpoint concepts from section 5. To make this feasible, 

meta-model transformation techniques are proposed, 

specifically for transforming a concrete syntax into an 

abstract syntax [1, 2]. 
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bill

credit

pay

remind

enterdata

approve

reject

confirm

payout

Administrative
Worker

Client Information
System

Loan Information
System

Client

Commercial
Worker

:Frontoffice Employee

:Backoffice Employee

:Payment System

:Client Information System

:Loan Information System
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bill
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pay

remind

Payment
System

Figure 13. A representation of an enterprise view 
with UML 

Figure 13 represents the enterprise view. An activity 

diagrams represents the business processes. A use case 

diagram represents the contribution of roles to steps from 

the business processes. An object diagram represents the 

objects that are part of the community. The enterprise 

view shows two business processes that describe the 

behaviour of the community to which the system under 

design belongs. The first business process describes how 

a loan application is processed. First the details of the 

application are entered into a computer system, then the 

loan is either approved or rejected and, if the loan is 

approved, a confirmation is sent and the loan is paid out. 

The second business process describes how monthly 

payments for the loan are cashed. Depending on the kind 

of contract of the client, the client’s account is credited 

directly or a bill is sent to the client. If the client does not 

pay the bill or the client’s account could not be credited, 

he receives a reminder. The roles that are involved in the 

business process are indicated as actors in a use case 

diagram. Each of the steps in the business processes is an 

abstraction of an interaction between several roles, as 

indicated by the use case diagram. 

The system under design belongs to a community that 

consists of five objects: two employees and three software 

systems. These objects fulfil roles in the enterprise, 

although we did not model this with UML. The front 

office employee fulfils both the role of administrative 

worker and of commercial worker, the back office 

employee fulfils only the role of administrative worker 

and the software systems fulfil the roles with the same 

names. The client role is not fulfilled by any object from 

the enterprise community. 
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Figure 14. A representation of a computational 
view with UML 

Figure 14 represents the computational view. A 

component diagram represents the objects and their 

connections. state machines represent the behaviour of the 

objects. The computational view shows the realization of 

the payment system that was identified in the enterprise 

view. The view shows that the system is composed of 

three interacting parts. The parts communicate via 

interaction points. In addition to this, the financial 

transaction subsystem and the payment management 

subsystem have interaction point parts that can form 

interaction points with objects outside of the payment 

system. The state machines show that, in the database, we 

can either modify a record or request a record by some 

SQL query. The financial transaction subsystem allows 

the bank to debit the accounts of its clients. Also, it 

allows an account to be credited, either by the bank or by 

the owner of the account. The bank can request an 

account to be credited with the creditreq interaction and 

the client can request this with the paymentreq

interaction. Crediting an account fails if there is not 

enough money in the account. The payment management 

subsystem manages the payment of the loan to the client 

and the monthly payment of the fees associated with the 

loan. The financial transaction subsystem performs the 

payment of the loan on request (of the payment 

management subsystem). Upon payment, the payment 

management subsystem stores information about the 

payment in the database. Each month, upon a timeout, the 

payment subsystem checks in the database if the client 

has to pay. If a payment is due and the preferred method 

of payment is sending a bill, then the bank sends a bill to 

the client and waits for the client to pay. If the preferred 

method of payment is by directly crediting the client’s 

account, then the financial transaction subsystem is told 
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to credit the client’s account. If crediting the account fails 

or the client does not pay his bill within a certain period, 

the client is sent reminders until he pays. 

To verify the consistency of the enterprise and 

computational view, we must transform them to the 

abstract syntax of their viewpoints as explained above. 

Subsequently, we must transform them to the abstract 

syntax of the basic viewpoint from section 3. This is 

trivial because the relations between concepts from the 

enterprise and computational viewpoints and the basic 

viewpoint are mostly generalization relations. Therefore, 

without presenting the exact transformations, we claim 

that the enterprise view corresponds to the basic 

viewpoints design from figure 15 and the computational 

view to the design from figure 16. 

enterdata

approve

reject

confirm

payout

always -> enterdata
enterdata /\ ¬reject -> approve
enterdata /\ ¬approve -> reject
approve -> confirm
approve -> payout

bill

credit

pay

remind

¬credit -> bill
¬bill -> credit
(bill /\ ~remind) \/ remind -> pay
(bill /\ ~pay) \/ (credit /\ ~pay) -> remind

Figure 15. A basic enterprise view 

Finally, we must compare the resulting basic 

viewpoint designs by comparing the computational 

behaviour to each of the business processes from the 

enterprise view. To compare the views, we must specify 

the precise correspondence between their actions. Also, 

we must specify which behaviours from the 

computational view are a decomposition of a behaviour 

from the enterprise view.  

The correspondence between behaviours is such that 

all behaviours from the computational view are a 

decomposition of the behaviour of the payment system 

from the enterprise view. The enterprise system engages 

in the actions: payout, bill, credit, pay and remind. The 

correspondences between the actions from the 

computational behaviour and the first business process 

are as follows. The action of storing details about the loan 

payment in the database corresponds to the completion of 

the payout step in the business process. The payoutreq,

debitreq and debitnot actions are inserted actions and the 

other actions and steps are not considered in the 

comparison. Figure 17 illustrates this relation graphically. 

It shows how the computational view could have been 

reached from the enterprise view by behaviour 

decomposition and action refinement. The 

correspondence between the actions from the 

computational behaviour and the second business process 

are as follows. The sendbill action corresponds to the bill

step and paymentind corresponds to pay. The occurrence 

of either credit(acc) or credit(rej) corresponds to the 

credit step, because the credit step is indifferent about 

whether crediting the account succeeded or not. That 

decision is only made after the attempt to credit the 

account was made. Similarly, the occurrence of either 

sendreminder or sendcreditfailed correspond to the 

remind step. The other actions and steps are either 

inserted or not considered in the other view.  
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debitnot -> modifyrecord
always -> timeout1
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sendbill -> timeout2
timeout2 /\ ¬paymentind -> sendremind
(sendbill /\ (sendremind \/ ¬sendremind) \/ sendcreditfailed
  -> paymentind
recordrsp [due /\ ¬bill] -> creditreq
creditreq -> creditcnf(acc)
creditreq -> creditcnf(rej)
creditcnf(rej) -> sendcreditfailed

Figure 16. A basic computational view 
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Figure 17. Refinement relations 

We can assess straightforwardly that the computational 

behaviour is consistent with the first business process. To 

verify the consistency between the computational 

behaviour and the second business process, pb2, we use 

the following formulae: 

cb’’’ ~ pb2’

where:

pb2’ = abstract(pb, environmentactions)

cb’’’ = integrate(cb’’, reference)

cb’’ = abstract(cb’, inserted)

cb’ = abstract(cb, unconsidered)

cb = compose(compose(FTSB, PMSB), DSB)

reference = {(sendbill, bill), (paymentind, pay),

(credit(acc) credit(rej), credit) , (sendreminder

sendcreditfailed, remind)}

inserted = {timeout1, timeout2, recordreq, recordrsp, 

paymentreq, paymentrej, creditreq}

environmentactions = 

unconsidered = {payoutreq, debitreq, debitnot, 

modifyrecord} 

The actions that can be abstracted from are all actions 

that do not appear as reference actions. This allows us to 
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simplify the formulae, because we do not have to define 

each set of actions that we have to abstract from 

explicitly. We can simply abstract from all actions in the 

design that are not reference actions. We invite the reader 

to verify the conformance. For this purpose a tool and a 

manual for using that tool is available on [22]. 

8. Related work 

The work closest to ours is the Systemic Enterprise 

Architecture Methodology (SEAM) [23]. SEAM also 

proposes the use of basic modelling concepts as a basis 

for relating different viewpoints in enterprise application 

design. It makes these concepts more precise using both 

an ontological semantics [16] and a behavioural semantics 

[3]. However, while SEAM focuses on defining the basic 

concepts and their semantics precisely, our work focuses 

on defining the relations between viewpoints precisely. 

Other work on relating RM-ODP viewpoints includes 

that described in [5]. This work differs from ours in that it 

relates viewpoints without using the RM-ODP basic 

modelling concepts. Using the basic concepts has the 

benefit that the semantics and operations defined on the 

basic concepts can be reused. 

Other frameworks for viewpoint consistency 

verification are discussed in [7], [8] and [9]. These 

frameworks rely on the designer to specify (Boolean) 

constraints that define the relations between viewpoints. 

These constraints can be evaluated to verify the 

consistency between concrete views. These frameworks 

are more generic than our framework. However, our 

framework includes reusable operators, which make it 

more powerful for relating behavioural views. 

9. Conclusions 

In this paper we describe an approach to precisely 

define the relations between an RM-ODP based enterprise 

and computational viewpoints. We show how the 

approach can be used to verify the consistency between 

an enterprise and a computational viewpoint design and 

illustrate the approach with an example. So far the 

approach focuses on consistency between behavioural 

concerns of viewpoint designs. 

Another goal of this paper has been to evaluate our 

framework for relating viewpoints [6] by applying it. We 

conclude that the framework can be successfully applied 

to relate the behavioural aspects of our enterprise and 

computational viewpoints. However, we expect that the 

framework is generic enough to be applied to other 

viewpoints as well. A point of attention, when applying 

the framework to relate other viewpoints, is that the 

relation between those viewpoints and the basic 

viewpoint may not be as straightforward as in RM-ODP. 

This means that the designer may have to spend some 

time on defining this relation, which may annul the time 

saved with reusing the basic viewpoint relations. 

The generic framework is also expected to be useful in 

the context of Model Driven Architecture (MDA) [17] 

and IEEE 1471 [12] compliant design trajectories. These 

trajectories acknowledge the existence of different 

viewpoints and the importance of specifying the relations 

between these viewpoints. In MDA the relations between 

viewpoints take the form of (automated) model 

transformations. However, we claim that it is not always 

feasible to relate viewpoints by means of transformations. 

Therefore, our approach to consistency verification 

between viewpoints can complement the MDA approach. 

To illustrate the practical applicability of the 

framework we implemented it in a prototype tool [22]. 

The tool implements the design operators that we 

introduced in section 4. Section 6 explains how these 

design operators can be applied to verify the consistency 

between an enterprise and a computational view. The tool 

only uses RM-ODP basic modelling concepts. 

Currently, we are adding support for meta-model 

transformation to the tool, such that it can interact with 

other tools, such as Poseidon or Rational Rose, which 

implement other (viewpoint specific) notations. In 

addition to this we plan to add support to the framework 

and the tool for verifying consistency with respect to 

other design concerns, more specifically: information and 

structure. We also plan to add support for verifying 

consistency between viewpoints that have a complement 

relation rather than a refinement relation. 

To fully support consistency verification in RM-ODP 

based design approaches, we need to address other 

concerns than the behavioural concerns. Policies and 

dynamism of the structure of a system are examples of 

such concerns. Expressing policies is already possible to 

the extent of obligations, which represent that an object 

must perform a certain behaviour, and permissions, which 

represent that an object is allowed to perform a certain 

behaviour. These policies can be represented at a basic 

level by must and may conditions [19, 20], respectively. 
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