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A Rigorous Approach to the Robust Design

of Continuous-Time Σ∆ Modulators
Bart De Vuyst, Pieter Rombouts Member, IEEE, and Georges Gielen Fellow, IEEE

Abstract—In this paper we present a framework for robust
design of continuous-time Σ∆ modulators. The approach allows
to find a modulator which maintains its performance (stability,
guaranteed peak SNR, . . . ) over all the foreseen parasitic effects,
provided it exists. For this purpose, we have introduced the
S-figure as a criterion for the robustness of a continuous-time
Σ∆ modulator. This figure, inspired by the worst-case-distance
methodology, indicates how close a design is to violating one of
its performance requirements. Optimal robustness is obtained
by optimizing this S-figure. The approach is illustrated through
various design examples and is able to find modulators that are
robust to excess loop delay, clock jitter and coefficient variations.
As an application of the approach, we have quantified the effect
of coefficient trimming. Even with poor trim resolution, good
performance can be achieved provided beneficial initial system
parameters are chosen. Another example illustrates the fact that
also the out-of-band peaking behaviour of the signal transfer
function can be controlled with our design framework.

Index Terms—analog-to-digital (A/D) conversion, continuous-
time sigma-delta (Σ∆) modulation, robust stability, robust per-
formance.

I. INTRODUCTION

Σ∆ modulation has become a standard technique for

high-accuracy analog-to-digital (A/D) conversion. For high-

bandwidth applications the family of continuous-time (CT)

Σ∆ modulators has shown substantial advantages over the

more traditional discrete-time (DT) variant in the last few

years [1]–[3]. To achieve good performance over a large band-

width, these modulators usually combine a low oversampling

ratio (OSR) with a multibit quantizer, which is also the focus

of this paper.

Fig. 1 shows the general block diagram of such a CT

Σ∆ modulator with multibit quantization. It consists of a CT

loop filter H(s), a feedback digital-to-analog converter (DAC)

which is represented by the transfer function HDAC(s) and a

multibit quantizer sampled at fs. It is well justified to replace

this quantizer by an additive DT white noise source Q(z). By

using the impulse-invariant-transformation (IIT) an equivalent

DT loop filter Heq(z) can be identified which can be linked
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Fig. 1. General block diagram of a CT Σ∆ modulator with identification
of the equivalent DT loop filter and the linearized quantizer model.

to the discrete-time (DT) noise transfer function (NTF) [4]:

Heq(z) = IIT{H(s)HDAC(s)} =
1−NTF (z)

NTF (z)
(1)

With the introduction of the NTF, the output of the modulator

can be written as:

Vout(z) =
[
H(s)NTF (es)
︸ ︷︷ ︸

STF (s)

Vin(s)
]∗

+NTF (z)Q(z) (2)

The ∗-operator denotes the sample operation as in [5]. The

signal transfer function (STF) indicates the contribution of

the input signal and should be close to unity in the signal

band. The contribution of the quantization noise signal Q(z)
is similar to DT Σ∆ modulators.

A well-established design methodology for CT Σ∆ mod-

ulators consists of first choosing the NTF according to one

of the design strategies from DT modulators [6], [7]. In a

second step this NTF is mapped on a CT loop filter H(s)
using the inverse IIT. However, it is well known that CT Σ∆
modulators are sensitive to various parasitic effects, which are

much less pronounced in DT modulators. Amongst them are

integrator coefficient RC variations, excess loop delay (ELD),

parasitic poles and zeros in the integrator transfer functions

and increased clock jitter sensitivity [8]–[11]. All these effects

make that the actual implemented NTF deviates from the

desired one [12]. This way, the modulator’s performance can

vary largely from wafer to wafer or even from die to die. To

tackle these problems, current designs often add features such

as trimming and/or calibration options [1], [2].

In this paper we present a new design strategy which already

incorporates the knowledge on realistic parasitic effects. We

will choose the system parameters directly in the CT domain,

in such a way that the system maintains its performance

requirements over all foreseen parasitic effects. In section II

we will give a brief overview of possible parasitic effects and
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Fig. 2. Third-order CT Σ∆ modulator architecture with the loop filter in a
feedforward (FF) topology.

how they are incorporated in our system model. Section III in-

troduces a framework for robustness consisting of a parametric

system model, normalized parameter variations and modulator

performance requirements. The S-figure is introduced as a

figure of merit to express the modulator’s robustness. In

section IV we focus on how to calculate the S-figure and on its

use as a design optimization criterion. Section V contains some

design examples and finally, section VI gives a conclusion.

II. PARASITIC EFFECTS IN CONTINUOUS-TIME Σ∆
MODULATORS

We will now briefly review some important parasitic effects

in a CT modulator which are required for the remainder of the

paper. Without loss of generality, we will use the third-order

CT Σ∆ modulator architecture shown in fig. 2 to illustrate the

main effects. The loop filter is a feedforward (FF) topology

with zero spreading in the signal band. It is common practice

to relax the settling of the quantizer by introducing a flip-flop

in the feedback path. Here the delay is set to half a clock cycle.

This way explicit ELD is introduced, which is compensated

by a direct feedback path to the input of the quantizer [1], [2],

[8], [10], [13]. A current-steering feedback DAC is present,

which generates a non-return-to-zero (NRZ) pulse:

HDAC(s) =
1− e−sTs

s
(3)

It is important to notice that this architecture is purely instruc-

tive and that the effects described here are equally present in

a feedback (FB) or a hybrid FF/FB topology, potentially also

with other types of feedback DACs.

A. Coefficient Variations

The loop filter integrators can be implemented by opamp-

RC circuits or alternatively by using gmC-integrators. Either

way the integration coefficients ci are determined by a com-

bination of a capacitance and a resistance. Since these are

two devices of a different type, large process variations are

expected on the integrator coefficients:

ci,actual = ci,nominal(1 + δIC) (4)

Here δIC is a statistical parameter and can easily range up to

± 20 %:

−|δIC,max| ≤ δIC ≤ |δIC,max| (5)
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Fig. 3. Effect on the NTF for ± 20 % coefficient variations in the architecture
of fig 2. (a1 = 1, a2 = 1, a3 = 1, c1 = 1.6845, c2 = 0.5927, c3 = 0.2588,
d = 0.7236, g = 0.1508, τ = 0)

where |δIC,max| equals 20 %. Although mismatch can also

create deviations between the integrator coefficient errors, we

assume δIC is equal here for all integrator coefficients within

the same modulator. By design the mismatch error can indeed

be made quite small (1% or less), while the process variations

cannot be avoided.

The other coefficients in the system model are assumed

to be exact. In a typical implementation the ai feedforward

coefficients (or feedback coefficients in a FB topology) are

determined by a ratio of resistor or capacitor values. This is

also true for the direct feedback coefficient d. Hence they are

only subject to mismatch (which is neglected here).

Fig. 3 shows the effect of coefficient variations of ± 20 %

on the NTF for a typical 3rd-order modulator design. The

nominal NTF is shown in black, while the gray band indicates

the influence of the variations. All modulators remained stable

but from the figure it is clear that the out-of-band gain (H∞)

varies over more than 5 dB. As such, for an OSR of 16

and a 3-bit quantizer, the signal-to-noise ratio (SNR) of the

nominal system was 77.8 dB while the actual modulators (with

coefficient variations) reached SNR values in the range of 69

to 79 dB.

B. Excess Loop Delay (ELD)

Although the ELD seems fixed here by an explicit synchro-

nization flip-flop in the feedback path (the factor z−1/2 in

fig. 2), this does not completely resolve the issue for high-

bandwidth designs. In this case the parasitic delay τ of the

synchronisation latch is no longer negligible compared to the

sampling period Ts. Moreover this parasitic loop delay is

sensitive to process-voltage-temperature (PVT) variations. In

a design with up to GHz clock frequency [1], [14] its nominal

value may well be as high as 10 % of the sampling period,

with a variation of 50 %. Formally this leads to:

τactual = τnominal(1 + δτ ) (6)
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where τnominal can be e.g. Ts/10 and δτ is bounded:

−|δτ,max| ≤ δτ ≤ |δτ,max| (7)

with |δτ,max| equal to 50 %.

C. Parasitic Poles and Zeros

Depending on the actual integrator circuit topology (single-

stage opamp-RC, two-stage opamp-RC with Miller compen-

sation, gmC, . . . ), the integrator coefficient ci may be affected

and multiple parasitic poles and zeros can be present. If needed

all of these can be incorporated in the design framework

presented here. Usually it is sufficient to take the dominant

parasitic pole into account:

TFint,actual ≈
ci
sTs

1

1 + sτp
(8)

In most cases the parasitic time constant τp corresponds to the

opamp’s GBW [9]. This way, τp is largely controlled by the

designer, but similar to the integrator coefficients, there is an

uncertainty of up to ±20% or more on its value.

D. Clock Jitter

Finally, a CT Σ∆ modulator is known to be sensitive to

clock jitter [10]. This gives rise to an additional in-band noise

component, depending on the DAC pulse used. In the case of

an NRZ pulse the in-band noise contribution for the case of

wideband white jitter equals [11]:

IBNjitt =
σ2
∆Ts

T 2
s

1

2πOSR

∫ 2π

0

|(1−e−jω)NTF (ejω)|2∆
2

12
dω

(9)

Here σ2
∆Ts

corresponds to the jitter variance. The jitter noise

contribution gets worse for a more aggressive NTF (higher

H∞).

III. A FRAMEWORK FOR ROBUSTNESS

We will now set up a framework to find a system-level

design which maintains its performance (peak SNR, stabil-

ity, . . . ) against possible parasitic effects that can occur. The

design framework consists of 3 elements: a parametric system

model (such as the one from fig. 2), normalized variations on

some of the system parameters and performance requirements.

These 3 elements are combined into one number, the S-figure.

It expresses the degree in which the current system parameter

selection is able to meet all the performance requirements,

even in the presence of variations on these parameters.

We will clarify the design framework by means of a one

dimensional example. This means that only one parameter

variation is present. This will be extended in Section IV.

A. System Model

The system model describes the construction of the loop

filter and its design parameters. As system model we use the

3rd-order modulator architecture from fig. 3 here. However, we

will fix some of the parameters by forehand. We choose all

feedforward coefficients (ai’s) equal to 1. As such we do not

account for scaling of the integrator outputs, which can always

be done afterwards. Also we do not account for parasitic loop

delay here, which makes τ = 0. In each integrator transfer

function we introduce a fixed parasitic pole at 2 fs according

to equation (8). The only design parameters which remain

this way, are the integrator coefficients ci, the zero spreading

coefficient g and the direct feedback coefficient d. As DAC

type we choose a NRZ-DAC. The OSR is fixed at 16 in

combination with a 3-bit quantizer.

B. Parameter Variations

In this illustrative example we will only introduce one

parameter variation, namely the RC variation on the integrator

coefficients. As described by equation (5) we can expect up to

say 20 % variation. In our framework we will normalize the

parameter variations:

∆IC =
δIC

|δIC,max|
(10)

This way equation (5) can be rewritten as:

−1 ≤ ∆IC ≤ 1 (11)

The procedure for including other variations, such as par-

asitic loop delay described by equation (7) or variation on

the parasitic pole and/or zero locations, is straightforward and

leads to similar normalized ∆’s.

C. Performance Requirements

The third step consists of the formulation of the performance

requirements. An obvious requirement is of course stability.

The poles pi of the NTF must always stay inside the unit

circle, independent of the parameter variations. Next to this

also the peak SNR must be preserved, which can be calculated

through the maximum stable amplitude (MSA) [10] as:

SNRpeak ≈ (MSA)2

2IBN
(12)

where IBN corresponds to the in-band quantisation noise:

IBN =
1

2π

∫ π

OSR

0

|NTF (ejω)|2 ∆2

12π
dω (13)

The MSA on itself can be estimated by the following

equation:

MSA ≈ VFS − 3

2

√

1

2π

∫ 2π

0

|NTF (ejω)− 1|2∆
2

12
dω (14)

where ∆ symbolizes the quantization step and equals

∆ =
2VFS

2B − 1
(15)

with VFS the full scale quantizer voltage and B the number of

quantization bits. Equation (14) originates from the rms value

of the contribution of the quantization noise to the input signal

of the quantizer, Vquant(z) in fig. 1:

Vquant(z) = [STF (s)V in(s)]∗ + [NTF (z)− 1]Q(z) (16)

It is important to note that the MSA is defined here with

regard to the full-scale output signal of the modulator, and
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not with regard to the input. However, as the STF should be

close to unity in the signal band, for in-band input signals this

MSA-expression is also valid for input amplitudes. Through

extensive time-domain computer simulations, we found that

equation (14) has a worst-case inaccuracy of about 2 dB as

long as the calculated MSA is larger than -3 dB relative to full

scale. Fortunately, this is a commonly desired input range.

Also other predictions of the MSA e.g. [7] can be used in

our approach, but these were found to be too conservative.

Equation (14) indicates that, a more aggressive NTF will have

a higher risk for quantizer overloading and thus a lower MSA.

As an extra criterion we also require a minimum value

for the MSA, such that the modulator can process at least

-3 dB input signals. In total we thus have 3 performance

requirements for our modulator:

∀i, |pi| < 1 (17)

SNRpeak > SNRpeak,guaranteed (18)

MSA >
1√
2

(19)

D. The S-figure

We now introduce the S-figure, our figure of merit to

quantify the robustness of a CT Σ∆ modulator. We will start

by choosing the system parameters such that a maximally flat

NTF [6] is designed (with out-of-band gain H∞ = 2.5). In

fact, this leads to the design shown in fig. 3. The nominal peak

SNR equals 76.8 dB and we propose a guaranteed peak SNR of

75.5 dB for this design. Variations in the integrator coefficients

are inserted, by sweeping the normalized parameter variation

∆IC according to equation (11). It is instructive to represent

this graphically, by drawing the performance boundaries on

the ∆IC axis (see fig. 4). The valid range for the integrator

coefficients is on the ∆IC interval [−1, 1]. The performance

requirements of equation (17)-(19) are represented by their

boundaries as dashed vertical lines. To the left side, as the

integrator coefficients become smaller, we expect the peak

SNR to drop. In this case, when the relative variation of

the integrator coefficients becomes −0.24, the peak SNR of

75.5 dB cannot be guaranteed anymore. To the right side,

the integrator coefficients rise, and the NTF becomes more

aggressive. We therefore expect both the stability and the MSA

boundary to eventually be broken. The MSA requirement is

broken when ∆IC = 0.64. Stability is only broken outside the

valid parameter range, namely when ∆IC is already 1.45. As

such, the maximally flat design example will remain stable

over all foreseen parameter variations. However, it is not

possible to meet the peak SNR and MSA requirement over

the entire variation range. The S-figure is now identified as

the minimum normalized variation that will cause one of the

performance boundaries to be broken. In this case, the S-figure

is connected to breaking the SNR contrstaint and equals 0.24.

We now propose a different parameter selection for the

design which will prove to be more robust than the maximally

flat design. The coefficients are c1 = 2.0252, c2 = 0.3805,

c3 = 0.6289, g = 0.1532, d = 0.8435. Again all FF

coefficients are equal to 1. The nominal NTF reaches a peak

∆IC
0−1 1

SNR < 75.5 dB MSA < 1√
2

∃i, |pi| > 1

valid parameter range

S

Fig. 4. Graphical representation of the performance boundaries on the ∆IC

axis for a 3rd-order maximally flat design with only one parameter variation.

∆IC
0−1 1

SNR < 75.5 dB MSA < 1√
2

valid parameter range

S

Fig. 5. Graphical representation of the performance boundaries on the ∆IC

axis for a 3rd-order optimal design with only one parameter variation.

SNR of 77.4 dB here, only slightly more than the maximally

flat design. Fig. 5 again shows the graphical representation

of the performance boundaries. We get a completely different

image here. The distance to breaking the stability boundary

is not shown in the figure anymore, as this only happens for

∆IC = 3.2. Both the distances to the peak SNR and MSA

boundary are 1 and the resulting S-figure thus equals 1. This

means that the system is robust against the full 20 % variation

of the integrator coefficients. Suppose now that S was larger

than 1. This would mean that the system could tolerate higher

variations than foreseen and either it could achieve a higher

peak SNR or a higher MSA. Furthermore, the nominal system

is perfectly centered between the performance boundaries, as

this always leads to the maximum S-figure. As such, we

denote this system as the optimal system, as it is perfectly

centered between at least two of the performance boundaries

with distance to these boundaries (or S) equal to 1.

Fig. 6 shows the resulting NTFs of the optimal system

with the influence of the parameter variations. Similar to the

maximally flat design of fig. 3, H∞ is about 9 dB. However,

as we can see, the maximally flat design can have a worst-case

H∞ of 19 dB due to parameter variations while in the optimal

system the out-of-band gain only rises to 12 dB. Clearly the

maximally flat design can be identified as a more aggressive

system and therefore the MSA criterion cannot be fulfilled

over all variations. Also the peak SNR can drop to 69 dB,

while the optimal design always achieves a guaranteed peak

SNR of 75.5 dB.

Time-domain simulations were performed on perturbated

versions of the optimal system. The MSA criterion was always

met for input signals in the signal band. However, for out-of-

band tones, it is well known that the STF of a FF topology

shows peaking and equation (14) is no longer valid. In this

case the out-of-band peaking for the optimal modulator was

15.6 dB. Later on, we will show that we can also control the

STF with our design framework, to limit the amplification of

these out-of-band interferers.
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Fig. 6. NTFs with parameter variation influence for the 3rd-order optimal
design with only one parameter variation.

IV. CALCULATION AND OPTIMIZATION OF THE S -FIGURE

In the previous section we have illustrated the meaning

of the S-figure in a graphical way. Furthermore, only one

variation was present which allowed an easy interpretation.

Here we will extend the S-figure to multiple dimensions and

we will provide an effective calculation method. This allows

us to use the S-figure as an optimization criterion to find the

optimal CT Σ∆ modulator design.

A. The S-figure in Multiple Dimensions

A similar graphical representation as in the previous section

is shown in fig. 7 for the case where there are two parameter

variations ∆j and three design specs. In the origin we have

the nominal system which should meet the required design

specifications by definition. The performance boundaries are

again indicated by the dashed lines. Consider now the vector

~v1 which makes an angle θ1 with the ∆1 axis. If we increase

the norm of this vector, we will cross design spec 2 at the point

(∆1, ~v1 ;∆2, ~v1 ). We identify the maximum absolute value of

these two coordinates as the “local S-figure” for the direction

θ1, in this case:

Slocal,θ1 = max
[
|∆1, ~v1 |; |∆2, ~v1 |

]
= |∆2, ~v1 | (20)

We can now repeat this procedure for all other angles. A

special type of angle is formed by the corner points of the

variation space, for which both coordinates change equally

when increasing the vector norm in that direction. This is for

example the case for the direction θ2 in fig. 7. Design spec 3

is crossed here and the local S-figure equals:

Slocal,θ2 = |∆1, ~v2 | = |∆2, ~v2 | (21)

The S-figure is now defined as the minimum of all these “local

S-figures”:

S = min
∀i

[
Slocal,θi

]
(22)

∆2

∆1

spec 2

spec
1

1

-1

1

-1 spe
c 3

θ1 ~v1

θ2
~v2

(∆1, ~v1;∆2, ~v1)

(∆1, ~v2;∆2, ~v2)

S

Fig. 7. Graphical representation of the performance boundaries in a 2D
parameter variation situation.

As such, in two dimensions the S-figure equals half of the

side of the largest inner square which can be drawn around the

origin in the variation plane, without breaking the performance

requirements. If the normalized parameter variations remain

smaller than S the system will definitely satisfy all the

specifications. The concept can be extended to 3 or more

dimensions where the inner square then becomes a cube or

a hypercube.

B. Calculating the S-figure

The S-figure is one of the variants of the “worst case

distance” methodology [15]. Obviously, determining this S-

figure is non-trivial. There are many possible ways to calculate

it [15]. Summarizing there are two important aspects. First, we

need an efficient algorithm to calculate the “local S-figure”

for a given direction. By investigating only one direction, this

has become a scalar problem which can always be solved as

follows: we start from the origin and we gradually increase the

vector norm until the corresponding system violates the design

constraints. In our implementation we first made a rough

sweep which determines an upper and lower boundary for

Slocal,θi . Then we use a bisectional (binary search) algorithm

to obtain a more accurate result.

Second, we need to scan all the possible directions, to

find the worst-case “local S-figure”. Obviously, this proce-

dure would be numerically intensive. We therefore make the

assumption that this worst-case always lies in the direction

of one of the diagonals of the search space. E.g. in the

2D example of fig. 7 the location of the S-figure coincides

with the direction of vector ~v2 at an angle of 135 ◦. These

diagonal directions correspond to the corners of the square,

cube or hypercube built around the origin. Although it cannot

be guaranteed that this is always the case, there is a strong

intuitive feeling to it. In fig. 7 increasing ∆2 and decreasing

∆1 both deteriorate design spec 3. By identifying θ2 as the

worst-case direction, we assume that specification 3 decays
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fastest when introducing parameter variations of the same

magnitude. Empirically, we have found that this assumption

is valid for each of the examples considered in this paper.

This extremely simplifies the problem and provides a fast

and effective way of determining the robustness of a CT Σ∆
modulator. In fact, this is only possible by choosing the square

variant from [15] (using the ℓ∞ norm). In this way, we really

consider the worst case parameter variations, without making

any assumptions about the statistics of these variations. For

our 2D example this means that we only have to execute

the algorithm for finding the “local S-figure” four times. The

resulting S is selected as the minimum of these four values.

C. Optimization of the S-figure

From the discussion above it is clear that this S-figure is an

unambiguous figure of merit to assess the robustness of a CT

Σ∆ modulator against foreseeable imperfections, and hence it

can be used as an optimization target. Finding the most robust

modulator now boils down to maximization of the S-figure in

function of the design parameters. We used a popular genetic

algorithm to perform this optimization [16]. However, this

algorithm is only used as a black-box solution to perform the

optimization and other global optimization algorithms could

be used equally well. The authors want to emphasize that the

core of finding the optimal modulator lies in the use of the

S-figure and its effective calculation method described in the

previous section.

However, we only require the the modulator to be robust

against all parameter variations that can occur in practice. In

this way, it is sufficient that the modulator has an S-figure

that is equal to or larger than 1. Hence we define the optimal

modulator as the modulator with the best performance that

has an S-figure that is equal to or larger than 1. To find

this optimal modulator, we first perform the optimization for

reduced performance specs, which are easy to attain even in

the presence of parameter variations. In our design examples

we first performed the optimization for a low peak SNR. This

results in an S-figure much larger than 1. As this system

is more robust than needed, we gradually increase the peak

SNR and rerun the optimization, with the previously found

system included as one of the initial population points for the

genetic algorithm. We continue this step until we have found

an optimized design with S reaching 1. If we would further

increase the specification on the peak SNR, the design will not

be robust against all parameter variations anymore. We identify

this design as the optimal CT Σ∆ modulator for the expected

parameter variations and for the required performance specs.

V. CT Σ∆ MODULATOR DESIGN EXAMPLES

In this section we will determine the optimal parameters for

3rd-order CT Σ∆ modulator design examples. For all designs

we fix the OSR at 16, the number of quantizer bits at 3 and

we introduce parasitic poles at 2 fs in the integrator transfer

functions according to equation (8).
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Fig. 8. NTFs with parameter variation influence for the 3rd-order optimal
design robust to large RC variations and parasitic ELD.

A. Example 1: Robust to RC Variations and ELD

In the first three examples the modulator architecture of

fig. 2 is used. Again, we choose all feedforward coefficients

(ai’s) equal to 1. In fact we do an optimization of the loop

filter. This is justified as the performance requirements will

only be dependent on the loop filter and not on the particular

scaling used. The integrator coefficient scaling can therefore

be safely done afterwards, without affecting the feasibility

of achieving the performance specifications. This scaling can

be employed to limit the output swings, while still providing

enough suppression of the circuit noise of the following stages.

In the first example we introduce an RC variation of 20 % and

a nominal ELD of Ts/10 with 50 % variation according to

equation (7):

−0.2 ≤ δIC ≤ 0.2 , −0.5 ≤ δτ ≤ 0.5 (23)

The performance requirements are taken identical to the ones

from equations (17)-(19).

TABLE I
OPTIMAL COEFFICIENTS FOR EXAMPLE 1

c1 c2 c3 g d
SNRpeak

nominal guaranteed

1.5492 0.6139 0.0236 1.9092 1.03602 67 dB 64.5 dB

The optimal parameters which give rise to an S-figure equal

to 1 are shown in table I. As one can see the third integrator

coefficient is already quite low. This indicates the fact that

the optimizer actually considers a 2nd-order system as a more

robust solution. Increasing the order would normally enhance

the system performance, however it also introduces extra

sensitivity to parameter variations, which are large here. In this

example, clearly the extra variation in the system outweighs

the possible performance enhancement by increasing the order.
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Fig. 9. NTFs with parameter variation influence for the 3rd-order optimal
design with modest coefficient trimming.

The nominal peak SNR amounts 67 dB and a guaranteed

performance of 64.5 dB is achieved. In fig. 8 the influence

of the perturbations on the NTF’s is illustrated. The influence

of ELD in combination with large RC variations is clearly

significant, as the guaranteed peak SNR has dropped by more

than 10 dB compared to the one dimensional example of

section III.

In reality there is also RC variation on the parasitic

poles in the integrator transfer functions. However, to not

overcomplicate the problem we have neglected this in the

optimization. Afterwards the S-figure for the optimal design

was recalculated with 20 % variation on these poles included.

In this case S dropped from 1 to 0.97 proving the relatively

less important role of this variation.

Extensive time-domain simulations were carried out to

obtain the SNRpeak for a significant number of perturbated

systems. Also all corner points of the variation space were

added. In fig. 10 the peak SNR is plotted versus the input

amplitude for the corner point [∆IC = 1;∆τ = 1]. A single

tone of frequency fs
4OSR is applied. An MSA of -2.5 dB was

predicted. The time-domain simulations match very well with

the analytical approach. The slight deviations in MSA or peak

SNR are mainly due to the inaccuracy of the estimation of the

maximum stable amplitude of equation (14) and some slight

tonal behaviour of the quantisation noise.

B. Example 2: Robust after Coefficient Trimming

A general way to tackle the large parameter deviations is to

introduce trimmable devices on chip. E.g. a switchable capac-

itor bank can be used to trim the integrator coefficients [1],

[2]. We will now elaborate the situation with a very modest

trimming accuracy resulting in RC variations of 5 %:

−0.05 ≤ δIC ≤ 0.05 , −0.5 ≤ δτ ≤ 0.5 (24)
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Fig. 10. SNR in function of the input amplitude for the system of table I
with perturbation [∆IC = 1;∆τ = 1].

The same optimizations and time-domain simulations as for

the previous case were performed and the resulting optimal

modulator parameters are shown in table II. Due to the smaller

variations, a real 3rd-order design was now found (with signif-

icant c3). It is clear that the impact of trimming (even with this

modest accuracy) is very large, as the guaranteed peak SNR

has increased to 82 dB. Fig. 9 shows the perturbated NTFs.

The higher SNR performance can immediately be identified

by comparing the NTF in-band behaviour to the one of the

non-trimmed example.

TABLE II
OPTIMAL COEFFICIENTS FOR EXAMPLE 2

c1 c2 c3 g d
SNRpeak

nominal guaranteed

2.3017 0.4330 0.6555 0.0982 1.0398 83 dB 82 dB

Again time-domain simulations were performed which

showed good agreement with the analytical approach. Also

in this case, 20 % RC variation of the integrator poles had a

negligible impact on the robustness as the resulting system was

still robust against this extra variation (S still larger than 1).

C. Example 3: Adding Robustness to Clock Jitter

The approach can easily be extended to also take the

effect of clock jitter into account. For this, we can keep the

performance requirements (17)-(19), but for the calculation of

the peak SNR we also take the in-band jitter noise into account

according to equation (9). Suppose now that we want to design

a modulator that is tolerant to a very high level of wideband

clock jitter with an effective value σ∆Ts
up to 1% of the clock

period Ts. We keep the trimming condition of the previous

example and hence use the same variations of equation (24).

The optimal modulator parameters are summarized in table III.

It is clear that a lot of performance is lost compared to the

case without wideband jitter. The guaranteed peak SNR merely

reaches a value of 61.4 dB.
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TABLE III
OPTIMAL COEFFICIENTS FOR EXAMPLE 3

c1 c2 c3 g d
SNRpeak

nominal guaranteed

0.8916 0.1831 0.5219 0.2720 0.0716 61.7 dB 61.4 dB
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Fig. 11. NTF’s with parameter variation influence for the 3rd-order optimal
design with extra robustness to wideband clock jitter.

The resulting NTF’s over all variations are plotted in fig. 11.

Unlike the optimization result for the case without jitter, a low

out-of-band gain is maintained over all variations (particularly

near fs/2). This is consistent with [11] where it was shown

that this is indeed required for good clock jitter sensitivity.

D. Example 4: Controlling the STF

The previous examples all used the FF topology, which

is more sensitive to out-of-band peaking of the STF. The

control of the peaking behaviour to an acceptable level is

important, as it allows relaxation of the ADC pre-filter. In this

example we propose the modulator topology of fig. 12, which

is also used in [1]. This hybrid feedforward/feedback topology

compromises a trade-off between second-order anti-aliasing

behaviour and reduced out-of-band peaking by introducing an

extra feedback path. Again, we choose the FF/FB coefficients

equal to 1 and thus perform a loop filter optimization. The

parameter variations are taken from the example with modest

coefficient trimming. The performance requirements (17)-(19)

are now extended with an extra equation which limits the out-

of-band STF peak to 2 dB:

max
ω

|STF (jω)| < 2 dB (25)

For comparison, the previous 3 examples gave a worst-case

STF out-of-band peak of 11, 18 and 17 dB respectively. The

resulting optimal modulator parameters are given in table IV.

Clearly, controlling the STF has to be paid for with a per-

formance penalty. The guaranteed peak SNR was found to be

65 dB.

Σ
c1
sTs−

Vin(s) Σ
c2
sTs

c3
sTs Σ

fs

Vout(z)

a2

a1
d

HDAC(s)

z−1

z−
1

2

−
g

e−sτHDAC(s)

Σ

Fig. 12. Third-order CT Σ∆ modulator architecture with the loop filter in
a hybrid feedforward/feedback (FF/FB) topology.

TABLE IV
OPTIMAL COEFFICIENTS FOR EXAMPLE 4

c1 c2 c3 g d
SNRpeak

nominal guaranteed

0.4369 0.0114 2.0253 0.6706 1.1417 66.5 dB 65 dB

Fig. 13 shows the resulting STFs under influence of param-

eter variations. The STF has unity gain in the signal band. For

higher frequencies the anti-aliasing performance has a second

order profile dropping at 40 dB per decade. The out-of-band

peaking is indeed limited to 2 dB as required.

VI. CONCLUSION

In this paper a new design strategy for robust design

of continuous-time Σ∆ modulators has been presented. In

the framework parasitic effects are included as variations

on the system parameters. The goal of our approach is to

find a modulator which maintains its performance (stability,

guaranteed peak SNR, . . . ) over all the foreseen parasitic

effects. For this purpose, we have introduced the S-figure

as a criterion for robustness. This way optimal robustness is

achieved by optimizing the S-figure. The approach has been

used to find modulators that are robust to RC variations and

parasitic excess loop delay. We also quantified the effect of

coefficient trimming to enhance the modulator’s performance.

Even with a modest trim resolution of 5 %, the impact was

found to be very significant. The approach has also been

used to find robust modulators that are tolerant to extreme

clock jitter. Also requirements on the signal-transfer-function

can be included which allowed us to find modulators with

controlled out-of-band peaking of the signal transfer function.

The framework is very versatile and can easily be adopted to

take various other parasitic effects into account.
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