Letter to the Editor

A rigorous detection of interstellar $\mathrm{CH}_{3} \mathrm{NCO}$: An important missing species in astrochemical networks ${ }^{\star}, \star \star$

J. Cernicharo ${ }^{1}$, Z. Kisiel 2, B. Tercero ${ }^{1}$, L. Kolesniková ${ }^{3}$, I. R. Medvedev ${ }^{4,5}$, A. López ${ }^{1}$, S. Fortman ${ }^{4}$, M. Winnewisser ${ }^{4}$, F. C. de Lucia ${ }^{4}$, J. L. Alonso ${ }^{3}$, and J.-C. Guillemin ${ }^{6}$
${ }^{1}$ Grupo de Astrofísica Molecular, Instituto de CC. de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
e-mail: jose.cernicharo@csic.es
${ }^{2}$ Laboratory of Mm- and Submm- Spectroscopy, Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warszawa, Poland e-mail: kisiel@ifpan.edu.pl
${ }^{3}$ Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
${ }_{5}^{4}$ Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210, USA
5 Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
${ }^{6}$ Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France

Received 9 October 2015 / Accepted 1 February 2016

Abstract

The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$ is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of $\mathrm{CH}_{3} \mathrm{NCO}$ in Orion is only a factor of ten below those of HNCO and $\mathrm{CH}_{3} \mathrm{CN}$. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015, ApJ, 812, L5). A more accurate abundance of $\mathrm{CH}_{3} \mathrm{NCO}$ is provided for this cloud based on our extensive laboratory work.

Key words. ISM: abundances - ISM: individual objects: Orion KL - ISM: molecules - methods: laboratory: molecular molecular data - ISM: clouds

1. Introduction

Ice mantles on dust grains are formed from the accretion of gas phase molecules during the gravitational collapse of clouds that form new stars and their planetary systems. Surface reactions increase the chemical complexity of the mantles which, when their temperature rises, release their frozen molecular material to the gas phase (Herbst \& van Dishoeck 2009). The gas and dust material of the cloud cores formed during the gravitational collapse participate in the formation of giant gas planets and rocky bodies

[^0]such as comets, asteroids, and the Earth. Comets are considered to be a repository of information on their frozen surface of the gas and dust composition of the primitive solar nebula. As they approach the Sun in their journey their surface ices start to evaporate and to create a coma of gas and dust that has been extensively studied at all wavelengths (Bockelée-Morvan et al. 2000; Crovisier 2006; Mumma \& Charnley 2011). A good correlation has been found between the type of molecules detected in the coma of comets and those of warm molecular clouds (BockeléeMorvan et al. 2000; Biver et al. 2015).

The Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander has measured in situ abundances of the main components of the surface of comet 67P/Churyumov-Gerasimenko (Goesmann et al. 2015). Most of the "gas on the rocks" species assigned by COSAC are well-known interstellar molecules. However, many of the species detected by COSAC have not been observed in the coma of previously observed comets (Goesmann et al. 2015), while some organic molecules observed in the coma of comets are not detected by COSAC. Nevertheless, the coma organics can be formed by UV irradiation of the ices forming alcohols and
carbonyls from CO and $\mathrm{H}_{2} \mathrm{O}$ ices (Muñoz Caro \& Dartois 2013). Among the organic molecules detected on the surface of the comet, only one was not detected in space, methyl isocyanate $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$, which could potentially contribute to the mass peak $m / z=57$ of COSAC. Although it is a molecule of potential relevance, to our knowledge it has not been included in any astrochemical network, and to date its detection has only been reported towards Sgr B2 based on a reduced number of lines (Halfen et al. 2015), whereas on 67P/Churymov-Gerasimenko it was identified as one of the most abundant molecules after water (Goesmann et al. 2015). The most promising interstellar clouds in which to search for $\mathrm{CH}_{3} \mathrm{NCO}$ are hot cores and hot corinos.

In 2006 we started a sensitive line survey in the millimetre domain $(80-280 \mathrm{GHz})$ of Orion using the IRAM 30 m radio telescope (Tercero et al. 2010) with the goal of fully characterizing its chemical composition (see Appendix B). However, owing to the high kinetic temperature of the gas, $T_{\mathrm{K}} \simeq 100-300 \mathrm{~K}$, many rotational and vibrational levels of abundant species are populated, producing a forest of spectral lines. Around 15000 spectral features were initially detected of which 8000 were unassigned. A systematic work programme in spectroscopic laboratories was started, which allowed us to significantly reduce the number of unidentified lines and to detect new molecules such as $\mathrm{NH}_{3} \mathrm{D}^{+}$ (Cernicharo et al. 2013; Domenech et al. 2013), $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ (Tercero et al. 2013), and $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ (Tercero et al. 2015).

In this Letter we report on the complete laboratory spectroscopic characterization of $\mathrm{CH}_{3} \mathrm{NCO}$ and the detection of 399 of its lines in Orion. We also discuss the spectroscopic data used by Halfen et al. (2015) and comment on their column density estimations towards Sgr B2.

2. Spectroscopy

$\mathrm{CH}_{3} \mathrm{NCO}$ was initially searched for in our Orion data by using the available sub- 40 GHz microwave spectroscopic work for this species (Koput 1986). However, irrespective of the usual problems of extrapolation outside the data region, we faced additional problems affecting the rotational spectrum of this molecule (see Fig. 1). Koput complemented his thorough experimental investigation of the $8-40 \mathrm{GHz}$ region by Stark spectroscopy with analysis based on fitting a five-dimensional, quasisymmetric top Hamiltonian. He was unable to fit the measured transition frequencies to experimental accuracy, but he reached unambiguous assignment of rotational transitions in many internal rotation substates of the ground and the two lowest excited states of the CNC bending vibrational mode (Koput 1986). The very low effective barrier to internal rotation, $V_{3}=21 \mathrm{~cm}^{-1}$, was found to result in a series of low-lying internal rotor states, with the distribution close to that of the free rotor pattern, and estimated energies relative to the $m=0$ ground state of $8.4 \mathrm{~cm}^{-1}$ for the $m=1$ substate, $36.8 \mathrm{~cm}^{-1}$ for $m=2,79.7$ and $80.3 \mathrm{~cm}^{-1}$ for the two nearly degenerate $m=3$ substates, and $140.6 \mathrm{~cm}^{-1}$ for $m=4$. The next higher vibrational state was found to be the first excited state of the CNC bending mode, $v_{\mathrm{b}}=1$ at $182.2 \mathrm{~cm}^{-1}$. That state, in turn, carries its own stack of internal rotor states, and so on. The resulting high state density and considerable vibration-rotation coupling are the main reason why the laboratory understanding of the rotational spectrum of this molecule has been considerably delayed.

In order to derive a reliable $\mathrm{CH}_{3} \mathrm{NCO}$ line list for astrophysical applications we decided to cut through these problems by using the procedure described in detail in Appendix A and already discussed in two progress reports (Kisiel et al. 2010, 2015). The complete experimental spectrum in the region $40-363 \mathrm{GHz}$ was

Fig. 1. Room-temperature rotational spectrum of $\mathrm{CH}_{3} \mathrm{NCO}$ in the $J=26-25$ transition region. The spectrum is devoid of features that normally aid assignment, such as identifiable progressions of transitions in rotational or vibrational quantum numbers. The visible complexity is due to the presence of nearly free internal rotation of the methyl group (described by the quantum number m) and the low-frequency CNC bending motion. Vibrational energies of the lowest m states relative to the ground state $(m=0)$ and the K assignment are indicated. The high density of states leads to perturbations in frequencies of many transitions, such as the considerable shift to low frequency of the ground state $K=3$ lines.
measured and was first broken down into over 220 correlated line sequences. The assignment reached by Koput (1986), was then transferred to the sequences extending over the entire covered frequency range. As a result, we derived a line list for the most relevant rotational transition sequences for $\mathrm{CH}_{3} \mathrm{NCO}$ consisting almost entirely of experimental frequencies and free from any extrapolation (see Appendix A).

Our extensive spectroscopic coverage allows line-by-line comparison (see Table A.7) with the newly reported spectroscopic data in Halfen et al. (2015), where the Koput sub- 40 GHz data is extended by 21 laboratory measurements in the region $60-87.5 \mathrm{GHz}$. We find good agreement between our data and the Halfen et al. (2015) data for 13 out of the 21 reported lines, and this includes the $K_{a}=0,1, m=0$ lines crucial to the $\operatorname{Sgr} \operatorname{B} 2(\mathrm{~N})$ detection in their work. At the same time we note that seven lines show intriguing frequency differences of very close to 1 MHz between these two data sets. There is also a discrepancy in assignment concerning the line at 77107.478 MHz , which according to our analysis is $K=-2, m=2$ and not $K=+1 m=1$, and its upper level is 91 K and not 44 K . This limited agreement suggests that extrapolations made in Halfen et al. (2015) may be rather uncertain. The worst case is provided by the predicted line at 102829.29 MHz searched for in Halfen et al. (2015), since it turns out that there is no line in the laboratory spectrum within $\pm 10 \mathrm{MHz}$. Our comprehensive study of the laboratory spectrum of $\mathrm{CH}_{3} \mathrm{NCO}$ showed that, even with self-consistent data, multi m-state fitting of this spectrum to experimental accuracy, and thus reliable predictions, are not yet possible. We emphasize again that the line list of 1269 lines up to 362 GHz that we report in Appendix A covers the frequency region relevant to astrophysical searches by means of actual laboratory measured frequencies.

3. Results

Once the key transitions of $\mathrm{CH}_{3} \mathrm{NCO}$ were assigned in the laboratory, we used the resulting line list to search for this species in Orion KL. Of the 521 lines of $\mathrm{CH}_{3} \mathrm{NCO}$ expected in the frequency coverage of the IRAM 30 m data $(80-280 \mathrm{GHz}), 236$ are found to be unblended with other features, and 163 are partially blended but still identifiable in the combined line profiles with the contaminating lines. The remaining 122 lines are completely
blended with strong features of one or more of the most abundant species, most of them above 200 GHz where the line density in Orion becomes very considerable. None of the unblended or partially blended features is missing. Figure 2 shows a selected number of lines from our line survey and from the ALMA Science Verification (SV) data of Orion (see also Fig. B. 1 which shows all 399 detected lines). The ALMA data between 213.7 and 246.7 GHz mitigates line blending owing to the high spatial resolution that distinguishes between the contributions from the different hot cores of Orion. Hence, many features that are fully contaminated in the IRAM data do appear clearly in the ALMA observations. The dipole moment of $\mathrm{CH}_{3} \mathrm{NCO}$ is high, 2.88 D (Kasten \& Dreizler 1986), but its partition function at 150 K is also very high $\left(\simeq 3.0 \times 10^{4}\right.$, see Appendix A). As a result the lines appear weaker than for species with similar abundances and dipole moments. Nevertheless, the current detection of $\mathrm{CH}_{3} \mathrm{NCO}$ in space is based on the largest data set of convincingly assigned lines for a previously unobserved molecule. Moreover, the assigned lines correspond to the strongest unidentified features we have in our data. In the 30 m and ALMA SV data the lines are strikingly prominent (see Figs. 2 and B.1).

In order to derive the relative abundance of $\mathrm{CH}_{3} \mathrm{NCO}$ with respect to other organic molecules found in the comet, we used the MADEX code (Cernicharo 2012) to model all the lines that we detected with the IRAM 30 m radio telescope and the ALMA interferometer. The spatial distribution of these species, as observed with the ALMA data, together with that of $\mathrm{CH}_{3} \mathrm{NCO}$, is shown in Figs. 3 and B.3. At first glance the spatial distribution of $\mathrm{CH}_{3} \mathrm{NCO}$ looks similar to that of the other species with two emission peaks, A and B symmetrically placed with respect to source n. However, a detailed inspection of these figures shows significant differences in the extent of their spatial distribution and in the position of the maxima. The most similar spatial distributions are those of $\mathrm{CH}_{3} \mathrm{NCO}, \mathrm{HNCO}, \mathrm{NH}_{2} \mathrm{CHO}$, and $\mathrm{CH}_{3} \mathrm{CN}$. The species HDO, which traces water vapour, also shows A and B cores and is used to derive relative abundances with respect to $\mathrm{H}_{2} \mathrm{O}$ (see Appendix B). The remaining molecules have their emission peaks at different positions and with a different spatial extent (see Appendix B). Similar discrepancies in the spatial distribution of other molecular species in Orion have been reported (see Appendix B). Spatial correlation between species with similar chemical routes could help in assessing this new detection. In Appendix B we discuss various aspects regarding the complexity of this source and, in addition, very little is known about the formation routes of $\mathrm{CH}_{3} \mathrm{NCO}$ so the suspicion that this species could be related to HNCO or $\mathrm{NH}_{2} \mathrm{CHO}$ is still very tentative. The main support that the maps provide for the detection is the correlation between the two $\mathrm{CH}_{3} \mathrm{NCO}$ maps that depict the distribution of the molecule for two different internal rotation states ($m=0$ and $m=1$; see Figs. 3 and B.3), which shows that the lines arise cospatially removing the possibility of their origin from different species. In Appendix B we discuss the spatial distribution of the species shown in Figs. 3 and B.3.

Because of the different angular resolution of our data, two sets of models (the methods are described in Appendix B) have been run in order to fit the molecular emission of all these species. We used one model for the single-dish data, which provides a convolved view of the source structure with the angular resolution of the 30 m telescope that ranges from $10^{\prime \prime}$ to $27^{\prime \prime}$, and a different model for the ALMA data, which have an angular resolution of $1,{ }^{\prime \prime} 8 \times 1 .{ }^{\prime \prime} 8$ (see Appendix B). The methyl isocyanate lines are reasonably well fitted with a kinetic temperature of 150 K . The column densities obtained from the ALMA data are given in Table B.1, which also reproduces

Fig. 2. Selected lines of $\mathrm{CH}_{3} \mathrm{NCO}$ as observed with the IRAM 30 m radio telescope (toward the IRc2 source at $\alpha_{2000.0}=5^{\mathrm{h}} 35^{\mathrm{m}} 14.5, \delta_{2000.0}=$ $-5^{\circ} 22^{\prime} 30^{\prime \prime} 0,0.5^{\prime \prime}$ north to source I, see Fig. 3) and the ALMA interferometer (Position A, see Fig. 3). The red lines show the model of $\mathrm{CH}_{3} \mathrm{NCO}$ emission discussed in the text. Red labels show the quantum numbers of the corresponding lines. Blue labels show the species responsible for the other features observed in each panel. The complete set of detected lines of $\mathrm{CH}_{3} \mathrm{NCO}$ is shown in Fig. B.1. The intensity units for the last four panels (ALMA data) are in Jy/beam. They can be transformed into brightness temperature, T_{B}, by multiplying the intensities by a factor of 9 . The intensity scale for the 30 m IRAM telescope is the main-beam antenna temperature in K.
the relative abundances of the species found by COSAC. The CO abundance in the comet was poorly determined by COSAC (Goesmann et al. 2015) and we have referred all abundances to $\mathrm{H}_{2} \mathrm{O}$ as in the COSAC results. Table B. 1 shows that $\mathrm{CH}_{3} \mathrm{NCO}$ in the Orion clouds is $400,15,10$, and 5 times less abundant than $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HNCO}, \mathrm{CH}_{3} \mathrm{CN}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$, respectively. However, $\mathrm{CH}_{3} \mathrm{NCO}$ is more abundant than amines, aldehydes, and acetones.

4. Discussion

We attempted to detect two isomers of $\mathrm{CH}_{3} \mathrm{NCO}: \mathrm{CH}_{3} \mathrm{CNO}$ (acetonitrile oxide) and $\mathrm{CH}_{3} \mathrm{OCN}$ (methyl cyanate). The energy difference of these isomers relative to the most stable one $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$ is $8785 \mathrm{~cm}^{-1}\left(25.1 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ for $\mathrm{CH}_{3} \mathrm{OCN}$ and $20090 \mathrm{~cm}^{-1}\left(57.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ for $\mathrm{CH}_{3} \mathrm{CNO}$

Fig. 3. Spatial distribution of $\mathrm{CH}_{3} \mathrm{NCO}$ (top left panel) together with those of several molecular species as identified at the top of each panel. The data are from ALMA Science Verification observations. The different positions discussed in the text are indicated by symbols (white triangle: source I; white circle: source $n ; \times$: the compact ridge; cyan unfilled square/triangle: Positions A / B, which are the two emission peaks of $\mathrm{CH}_{3} \mathrm{NCO}$). Additional molecular emission maps are shown in Fig. B.3.
(Pasinazki \& Westwood 2001). $\mathrm{CH}_{3} \mathrm{CNO}$ has been characterized in the laboratory at millimetre wavelengths (Winnewisser et al. 1982). We derive an upper limit for its column density in Orion of $\leq 6 \times 10^{13} \mathrm{~cm}^{-2}$, i.e., a factor of $\simeq 100$ below that for $\mathrm{CH}_{3} \mathrm{NCO}$ (see Table B.1). The experimental rotational spectra of methyl cyanate were recorded recently in the millimetre wave domain from 130 to 350 GHz and more than 300 internal rotation A-E doublets were successfully analysed (Kolesniková et al., in prep.). From the predicted spectrum we also derive an upper limit to its column density of $\leq 1 \times 10^{14} \mathrm{~cm}^{-2}$. Hence, only the most stable isomer, $\mathrm{CH}_{3} \mathrm{NCO}$, seems to be present in Orion. Tercero et al. (2013) found a negative detection of three isomers of methyl acetate and ethyl formate in Orion KL. López et al. (2014) also found upper limits to the abundance of the isocyanide isomers of ethyl and vinyl cyanide. A large discussion of the importance of bonding energy differences in the abundances of interstellar isomers was provided by Remijan et al. (2005). López et al. (in prep.) address the detection and abundances of two isomers of methyl formate in Orion KL.

We have searched for $\mathrm{CH}_{3} \mathrm{NCO}$ toward a cold prestellar core, B1-b, in which a large variety of complex organic molecules, some of them typical of hot cores, have been found: $\mathrm{CH}_{3} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{OCOH}, \mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{CHO}$, and $\mathrm{CH}_{3} \mathrm{SH}$. The abundances of these species relative to $\mathrm{H}_{2}, X \simeq 10^{-11}$ (Cernicharo et al. 2012), are much lower in B1-b than in Orion. Using the data from Cernicharo et al. (2012) we have obtained an upper limit for the column density of $\mathrm{CH}_{3} \mathrm{NCO}$ in B1-b of $\leq 2 \times 10^{11} \mathrm{~cm}^{-2}\left(X \leq 2 \times 10^{-12}\right)$.
$\mathrm{CH}_{3} \mathrm{NCO}$ has also been found towards Sgr B2 by Halfen et al. (2015). They derive a rather low rotational temperature, $T_{\text {rot }} \simeq 24 \mathrm{~K}$. However, we have searched for $\mathrm{CH}_{3} \mathrm{NCO}$ in other public line surveys of Sgr B2 (Belloche et al. 2013) and found clear identification of methyl isocyanate in the warm gas of Sgr B2, with $T_{K} \simeq 200 \mathrm{~K}$ and $N\left(\mathrm{CH}_{3} \mathrm{NCO}\right)=5 \times 10^{17} \mathrm{~cm}^{-2}$
for the $63 \mathrm{~km} \mathrm{~s}^{-1}$ component and $3 \times 10^{17} \mathrm{~cm}^{-2}$ for the second component at $73 \mathrm{~km} \mathrm{~s}^{-1}$ (see Appendix B). Using our laboratory frequencies, partition function and energy of the levels we have been able to identify 76 lines (43 unblended and 33 partially blended) in the 3 mm Sgr B2(N) data of Belloche et al. (2013). Several lines claimed missing in Halfen et al. (2015) are in fact well detected, but at $\simeq 10 \mathrm{MHz}$ from the predictions they use (see Fig. B.2). Most of the lines shown in Fig. B. 2 have not been detected by Halfen et al. (2015) since they correspond to $\mathrm{CH}_{3} \mathrm{NCO}$ transitions with $K \geq 2$ and/or $m \geq 2$. Assuming the column densities derived by Belloche et al. (2013) for the hot component at 200 K and $v_{\mathrm{LSR}} \simeq 63 \mathrm{~km} \mathrm{~s}^{-1}$, we derive $N\left(\mathrm{CH}_{3} \mathrm{OH}\right) / N\left(\mathrm{CH}_{3} \mathrm{NCO}\right) \simeq 40, \quad N(\mathrm{HNCO}) / N\left(\mathrm{CH}_{3} \mathrm{NCO}\right) \simeq 40$, and $N\left(\mathrm{CH}_{3} \mathrm{CN}\right) / N\left(\mathrm{CH}_{3} \mathrm{NCO}\right) \simeq 50$, which are different from the values we derived for Orion KL (see Table B.1): 400, 15, 10 , and $225,15,25$, in Positions A and B, respectively. The measured difference in the abundance ratio between the two regions again points to a combination of physical and chemical differences based on the evolutionary states of the clouds found in the Galactic centre and outer disk of the Galaxy.

Nothing is known about the formation of methyl isocyanate in the gas phase or on the surface of the grains in molecular clouds. Some gas phase reactions that could form $\mathrm{CH}_{3} \mathrm{NCO}$ have been discussed by Halfen et al. (2015). However, the high abundance for this species presently found in Orion and Sgr B2, together with the fact that it is detected in hot cores and not in cold dark clouds, also point towards a chemistry conducted in the grain mantles. Dedicated laboratory experiments on ices have to be performed in order to learn about the formation processes of $\mathrm{CH}_{3} \mathrm{NCO}$. In the ices $\mathrm{CH}_{3} \mathrm{NCO}$ could be formed by methylation of HNCO (Goesmann et al. 2015). It is well known that at ambient temperature methyl isocyanate reacts with many substances that contain $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ groups and with water, which are common in the gas phase of Orion. Hence, the observed differences in molecular abundances between the gas phase and in the comet ice, if the comet surface still keeps pristine dust grains, imply a very rich chemistry in the gas phase for the molecules escaping the ices. Molecular abundances in Orion could result from the chemical history of the ejected material from the grains. It will be of great interest to observe the coma of the comet in order to obtain the abundances of the gas phase species and information on how the COSAC identified molecules survive ejection from the comet surface.

Acknowledgements. The Spanish authors thank MINECO for funding support from the CONSOLIDER-Ingenio program "ASTROMOL" CSD 2009-00038, AYA2012-32032, CTQ 2013-40717 P, CTQ 2010-19008, and the ERC synergy grant ERC-2013-Syg-610256-NANOCOSMOS. They also thank Junta de Castilla y León under grants VA070A08 and VA175U13. Z.K. acknowledges a grant from the Polish National Science Centre, decision number DEC/2011/02/A/ST2/00298. J.-C.G. and J.C. thank the ANR-13-BS05-0008-02 IMOLABS. J.-C.G. thanks the Program PCMI (INSU-CNRS) and the Centre National d'Etudes Spatiales (CNES) for funding support. The OSU authors acknowledge funding from NASA, NSF, and the Army Research Office.

References

Alonso, J. L., Lorenzo, F. J., López, J. C., et al. 1997, Chem. Phys., 218, 267 Alonso, E. R., Kolesniková, L., Peña, I., et al. 2015, J. Mol. Spectr., 316, 84 Becklin, E. E., \& Neugebauer, G. 1967, ApJ, 147, 799
Bell, T., Cernicharo, J., Viti, S., et al. 2014, A\&A, 218, 72
Belloche, A., Müller, H. P. S., Menten, K. M., et al. 2013, A\&A, 559, A47
Bermúdez, C., Mata, S., Cabezas, C., \& Alonso, J. L. 2014, Angew. Chem. Int. Ed., 53, 11015
Biver, N., Bockelée-Morvan, D., Moreno, R., et al. 2015, Sci. Adv., 1, 0863
Blake, G. A., Sutton, E. C., Masson, C. R., \& Philips, T. G. 1987, ApJ, 315, 621 Bockelée-Morvan, D., Lis, D. C., Winket, J. E., et al. 2000, A\&A, 353, 1101

J. Cernicharo et al.: Methyl isocyanate in Orion

Brändström, A., Lamm, B., \& Palmert, I. 1974, Acta Chem. Scand. B., 28, 699
Brouillet, N., Despois, D., Lu, X.-H., et al. 2015, A\&A, 576, A129
Brown, G. G., Dian, B. C., Douglass, K. O., et al. 2008, Rev. Sci. Instr., 79, 053103
Carvajal, M., Margulès, L., Tercero, B., et al. 2009, A\&A, 500, 1109
Cernicharo, J. 1985, Internal IRAM report (Granada: IRAM)
Cernicharo, J. 2012, in ECLA-2011: Proc. European Conference on Laboratory Astrophysics, eds. C. Stehl, C. Joblin, \& L. d'Hendecourt (Cambridge: Cambridge Univ. Press), EAS Pub. Ser., 58, 251
Cernicharo, J., Marcelino, N., Roueff, E., et al. 2012, ApJ, 759, L43
Cernicharo, J., Tercero, B., Fuente, A., et al. 2013, ApJ, 771, L10
Coudert, L. H., Drouin, B. J., Tercero, B., et al. 2013, ApJ, 779, 119
Crovisier, J. 2006, in Asteroids, Comets, Meteors, Proc. 229th IAU Symp., eds. D. Lazzaro, S. Ferraz Mello, \& J. L. Fernández (Cambridge Univ. Press), 133

Curl, R. F., Rao, V. M., Sastry, K. V. L. N., \& Hodgeson, J. A. 1963, J. Chem. Phys., 39, 3335
Daly, A. M., Bermúdez, C., López, A., et al. 2013, ApJ, 768, 81
Daly, A. M., Kolesniková, L., Mata, S., \& Alonso, J. L. 2014, J. Mol. Spectr., 306, 11
Daly, A. M., Bermúdez, C., Kolesniková, L., \& Alonso, J. L. 2015, ApJS, 218, 30
Demyk, K., Mäder, H., Tercero, B., et al. 2007, A\&A, 466, 255
Domenech, J. L., Cueto, M., Herrero, V. J., et al. 2013, ApJ, 771, L11
Esplugues, G. B., Tercero, B., Cernicharo, J., et al. 2013a, A\&A, 556, A143
Esplugues, G. B., Cernicharo, J., Viti, S., et al. 2013b, A\&A, 559, A51
Favre, C., Wootten, H. A., Remijan, A. J., et al. 2011, ApJ, 739, L12
Feng, S. Y., Beuther, H., Henning, T., et al. 2015, A\&A, 581, A71
Fortman, S. M., McMillan, J. P., Neese, C. F., et al. 2012, J. Mol. Spectr., 280, 11
Friedel, D. N., \& Widicus Weaver, S. L. 2012, ApJS, 201, 17
Genzel, R., \& Stutzki, J. 1989, ARA\&A, 27, 41
Gezari, D. Y., Backman, D. E., \& Werner, M. W. 1998, ApJ, 509, 283
Goesmann, F., Rosenbauer, H., Hendrik Bredehöftet, J., et al. 2015, Science, 6247, 349
Goicoechea, J. R., Chavarría, L., Cernicharo, J., et al. 2015, ApJ, 799, 102
Gómez, L., Rodríguez, L. F., Loinard, L., et al. 2005, ApJ, 635, 1166
Grabow, J. U., Stahl, W., \& Dreizler, H. 1996, Rev. Sci. Inst., 67, 4072
Guélin, M., Brouillet, N., Cernicharo, J., Combes, F., \& Wooten, A. 2008, Ap\&SS, 313, 45
Halfen, D. T., Ilyushin, V. V., \& Ziurys, L. 2015, ApJ, 812, L5
Haykal, I., Margulès, L., Huet, T. R., et al. 2013, ApJ, 777, 120
Haykal, I., Carvajal, M., Tercero, B., et al. 2014, A\&A, 568, A58
Herbst, E., \& van Dishoeck, E. 2009, ARA\&A, 47, 427
Kisiel, Z. 2001a, in Spectroscopy from Space, eds. J. Demaison et al. (Dordrecht: Kluwer Academic Publishers), 91
Kisiel, Z. 2001b, PROSPE Programs for ROtational SPEctroscopy, www.ifpan. edu.pl/~kisiel/prospe.htm
Kisiel, Z., Pszczółkowski, L., Medvedev, I. R., et al. 2005, J. Mol. Spectr., 233, 231
Kisiel, Z., Fortman, S., Medvedev, I. R., et al. 2010, in 65th Int. Symp. Molecular Spectroscopy, Columbus, Ohio, June 21-25, RC18, https://molspect. chemistry.ohio-state.edu/symposium_65/symposium/Abstracts/ p272.pdf
Kisiel, Z., Pszczółkowski, L., Drouin, B. J., et al. 2012, J. Mol. Spectr., 280, 134
Kisiel, Z., Kolesnikova, L., Alonso, J. L., et al. 2015, 70th Int. Symp. on Molecular Spectroscopy, Champaign-Urbana, Illinois, June 2226, TG08, http://isms.illinois.edu/2015/schedule/abstract_ files/1046.pdf
Kleinmann, D. E., \& Low, F. J. 1967, ApJ, 149, L1

Kolesniková, L., Daly, A. M., Alonso, J. L., Tercero, B., \& Cernicharo, J. 2013, J. Mol. Spectr., 289, 13

Kolesniková, L., Tercero, B., Cernicharo, J., et al. 2014, ApJ, 784, L7
Kolesniková, L., Peña, I., Alonso, J. L., et al. 2015, 577, A91
Koput, J. 1984, J. Mol. Spectr., 106, 12
Koput, J. 1986, J. Mol. Spectr., 115, 131
Koput, J. 1988, J. Mol. Spectr., 127, 51
Kasten, W., \& Dreizler, H. 1986, Z. Naturforsch., 41a, 637
Lett, R. G., \& Flygare, W. H. 1967, J. Chem. Phys., 47, 4730
López, A., Tercero, B., Kisiel, Z., et al. 2014, A\&A, 572, A44
Marcelino, N., Cernicharo, J., Tercero, B., \& Roueff, E. 2009, ApJ, 690, L27
Margulès, L., Motiyenko, R. A., Demyk, K., et al. 2009, A\&A, 493, 565
Margulès, L., Huet, T. R., Demaison, J., et al. 2010, ApJ, 714, 1120
Mata, S., Peña, I., Cabezas, C., et. al. 2012, J. Mol. Spectr., 280, 91
Medvedev, I., Winnewisser, M., De Lucia, F. C., et al. 2004, J. Mol. Spectr., 228, 314
Menten, K. M., \& Reid, M. J. 1995, ApJ, 445, L157
Menten, K. M., Reid, M. J., Forbrich, J., \& Brunthaler, A. 2007, A\&A, 474, 515
Motiyenko, R. A., Tercero B., Cernicharo, J., \& Margulès, L. 2012, A\&A, 548, A71
Mumma, M. J., \& Charnley, S. B. 2011, ARA\&A, 49, 471
Muñoz Caro, G. M., \& Dartois, E. 2013, Chem. Soc. Rev., 42, 2173
Neill, J. L., Muckle, M. T., Zaleski, D. P., et al. 2012, ApJ, 755, 153
Neill, J., Crockett, N. R., Bergin, E. A., et al. 2013, ApJ, 777, 85
O'Dell, C. R. 2001, ARA\&A, 39, 99
Pardo, J. R., Cernicharo, J., Serabyn, E. 2001, IEEE Trans. Antennas and Propagation, 49, 12
Pasinszki, T., \& Westwood, N. P. C. 2001, J. Phys. Chem. A, 105, 1244
Peng, T.-C., Despois, D., Brouillet, N., Parise, B., \& Baudry, A. 2012, A\&A, 543, A152
Peng, T.-C., Despois, D., Brouillet, N., et al. 2013, A\&A, 554, A78
Petkie, D. T., Goyette, T. M., Bettens, R. P. A., et al. 1997, Rev. Sci. Inst., 68, 1675
Pickett, H. M. 1991, J. Mol. Spectr., 148, 371, SPFIT/SPCAT, http://spec. jpl.nasa.gov
Pickett, H. M., Poynter, R. L., Cohenet, E. A., et al. 1998, J. Quant. Spectr. Rad. Transf., 60, 883
Pulliam, R. L., McGuire, B. A., \& Remijan, A. J. 2012, ApJ, 751, 1
Remijan, A. J., Hollis, J. M., Lovas, F. J., Plusquellic, D. F., \& Jewell, P. R. 2005, ApJ, 632, 333
Rodríguez, L. F., Zapata, L. A., \& Ho, P. T. P. 2009, ApJ, 692, 162
Schilke, P., Benford, D. J., Hunter, T. R., et al. 2001, ApJSS, 132, 281
Shuping, R. Y., Morris, M., \& Bally, A. 2004, ApJ, 128, 363
Tercero, B., Cernicharo, J., Pardo, J. R., \& Goicoechea, J. R. 2010, A\&A. 517, A96
Tercero, B., Vincent, L., Cernicharo, J., Viti, S., \& Marcelino, N. 2011, A\&A, 528, A26
Tercero, B., Margulès, L., Carvajal, M., et al. 2012, A\&A, 538, A119
Tercero, B., Kleiner, I., Cernicharo, J., et al. 2013, ApJ, 770, L13
Tercero, B., Cernicharo, J., López, A., et al. 2015, A\&A, 582, L1
Watson, J. K. G. 1997, in Vibrational Spectra and Structure, ed. J. R. Durig, (New York/Amsterdam: Elsevier), 6, 1
Widicus Weaver, S. L., \& Friedel, C. N. 2012, ApJS, 201, 16
Winnewiser, M., Pearson, E. F., Galica, J., \& Winnewisser, B. P. 1982, J. Mol. Spectr., 91, 255
Winnewisser, B. P., Reinstädtler, J., Yamada, K. M. T., \& Behrend, J. 1989, J. Mol. Spectr., 136, 12

Wynn-Williams, C. G., Genzel, R., Becklin, E. E., \& Downes, D. 1984, ApJ, 281, 172
Wu, Y., Liu, T., \& Qin, S.-L. 2014, ApJ, 791, 123
Zapata, L. A., Schmid-Burgk, J., \& Menten, K. M. 2011, A\&A, 529, A24

Appendix A: Spectroscopy of $\mathrm{CH}_{3} \mathrm{NCO}$

Thorough analysis of the rotational spectrum of a target molecule is a crucial step that enables astrophysical detection. In the case of $\mathrm{CH}_{3} \mathrm{NCO}$ the understanding of the rotational spectrum, and thus delivery of suitable line lists for astrophysical use has been considerably delayed by the complications arising from the presence of two large amplitude internal motions in this molecule. The first laboratory studies were carried out around half a century ago (Curl et al. 1963; Lett et al. 1967) when it was found that the molecule has a very low barrier to internal rotation of the methyl group and also a low-frequency bending mode. In the 1980s those studies were greatly extended by Koput (1984, 1986, 1988). His use of Stark spectroscopy allowed the unambiguous assignment of transitions for different values of K. The use of a semi-rigid rotor Hamiltonian and relative intensity considerations allowed the assignment of the vibrational quantum numbers m and v_{b}. In this way a very self-consistent picture of the complex vibrational energy structure was reached, as already described in connection with Fig. 1. In an investigation contemporary with that of Koput, the electric dipole moment of $\mathrm{CH}_{3} \mathrm{NCO}$ was also precisely determined: $\mu_{a}=2.882$ (8) D (Kasten \& Dreizler 1986).

Further progress in the investigation of the rotational spectrum of methyl isocyanate was achieved as part of this work. In a first stage a practically continuous $117-364 \mathrm{GHz}$ of the molecule was recorded by means of the Fast Scanning Submillimeter Spectroscopic Technique (FASSST) developed at The Ohio State University (Petkie et al. 1997; Medvedev et al. 2004). The spectrum was recorded at room-temperature using a commercially available sample. Although the Koput (1986) analysis was very successful in accounting for the consequences of the large amplitude motions on the rotational spectrum of this molecule, the deviation of the fit to 210 transitions up to $J=4 \leftarrow 3$ was 3 MHz , which was well in excess of the 0.05 MHz frequency measurement precision of his spectrometer. Furthermore, even a cursory inspection of the FASSST spectrum (see Fig. 1) revealed that it was devoid of easily discernible spectral patterns and that progress in its traditional interpretation would be difficult. We have, therefore, decided to pursue a pragmatic approach to the characterization of this spectrum based on the generic property of rotational spectra, in that evolution of the frequencies of rotational transitions of a given set of quantum numbers can be described by a smooth function in the J quantum number. It was eventually possible to identify over 220 such line sequences and to fit each sequence to within experimental accuracy with a linear rotor-type model using a power series expansion in $J(J+1)$, as discussed in a preliminary report in 2010 (Kisiel et al. 2010). The separate line sequences were still without a confident K, m, and v_{b} quantum number assignment. An initial attempt to transfer such assignments from the Koput work by linking sequences in the FASSST region with those below 40 GHz revealed many ambiguities, due to a still considerable region of missing experimental coverage of the rotational spectrum of $\mathrm{CH}_{3} \mathrm{NCO}$.

For this reason, in a second stage of the laboratory part of the present work, the missing $40-117 \mathrm{GHz}$ region of the spectrum was covered in Valladolid by using two complementary spectrometers. The $50-117 \mathrm{GHz}$ segment of the spectrum was recorded with a harmonic generation spectrometer based on the multiplication of the synthesizer frequency of up to 20 GHz and employing source modulation detection (Daly et al. 2014). The $J=5 \leftarrow 4$ transition at $41-45 \mathrm{GHz}$ was measured with a Stark modulation spectrometer (Daly et al. 2015) at a mod-
ulation voltage of 430 V . The sample was synthesized using the method described by Brändström et al. (1974) and in both spectrometers was kept at room temperature and a pressure of $20 \mu \mathrm{bar}$. As a result of the combined effort from the participating laboratories we were able to achieve complete room temperature experimental coverage of the rotational spectrum of methyl isocyanate from the lowest $J=1 \leftarrow 0$ transition up to the $J=41 \leftarrow 40$ transition centred near 358 GHz . The analysis procedure first involved creating a single spectrum by combining all available experimental spectra. The intensities for the lines measured by Koput are not available so that the $<40 \mathrm{GHz}$ spectral segment was simulated by assuming equal intensity transitions at the reported frequencies. Measurements on this spectrum were then performed with the AABS package for Assignment and Analysis of Broadband Spectra (Kisiel et al. 2005, 2012), which is freely available from the PROSPE website (Kisiel 2001a,b). The fits and predictions were made with Pickett's SPCAT/SPFIT program suite (Pickett 1991) and each line sequence required its own dedicated set of analysis files. In the case of explicit asymmetric rotor fits Watson's A-reduced asymmetric rotor Hamiltonian (Watson 1977) was used. The Loomis-Wood type mode for displaying the rotational spectrum (as pioneered for rotational spectroscopy by Winnewisser et al. 1989 and built into the AABS package) was used for graphical assignment of transitions in specific line sequences. Some preliminary results were reported in the middle of last year (Kisiel et al. 2015) and Loomis-Wood plots for several sample transition sequences are reproduced in Fig. A.1. These plots allow the transfer of the Koput assignment to the higher frequency spectrum. We also consider the Koput assignment to be reliable since it was reached using variable voltage Stark modulation spectroscopy, which provides good discrimination between transitions with different values of K according to their different line profiles. Each of these identified line sequences is reproduced by a suitable $J(J+1)$ power series expansion for the rotational energies

$$
\begin{align*}
E_{\mathrm{rot}}= & B J(J+1)-D_{J} J^{2}(J+1)^{2}+H_{J} J^{3}(J+1)^{3} \\
& +L_{J} J^{4}(J+1)^{4}+P_{J} J^{5}(J+1)^{5}+P_{12} J^{6}(J+1)^{6} \tag{A.1}\\
& +P_{14} J^{7}(J+1)^{7}+P_{16} J^{8}(J+1)^{8}+P_{18} J^{9}(J+1)^{9}
\end{align*}
$$

where the length of the expansion and the magnitudes of the expansion parameters B, D_{J}, H_{J}, etc., are determined by the interactions and also by the asymmetry contributions affecting the energy levels in question. The required length of the expansion ranges from only three terms to being insufficient even if all nine terms in Eq. (A.1) are used. In several rare cases two power expansions were needed to model a line sequence with a particularly complex J dependence, by splitting the sequence into two parts. The results of such fits for the key assigned transition sequences used in the present astrophysical identifications are listed in Table A.1. In labelling the sequences we conform, as closely as possible, to the notation of Koput (1986) in order to ensure traceability. There are only two differences where the original notation was ambiguous and was modified. In the case of the ground state, $v_{\mathrm{b}}=0, m=0$, for which asymmetric rotor notation would normally be more appropriate, we modified Koput's notation to $K=1 \mathrm{~L}, 1 \mathrm{U}$, etc., to distinguish between lower and upper frequency sequences for the same value of K_{a}. Similarly, we used the notation $m=3 \mathrm{~L}$ and 3U in order to distinguish between those of the two nearly degenerate $m=3$ substates which give rise to lower and upper frequency rotational transition sequences.

J. Cernicharo et al.: Methyl isocyanate in Orion

Table A.1. Parameters of the linear rotor-type, $J(J+1)$ power series fitted to the assigned line sequences.

K^{a} Name $^{b} I_{\text {rel }}{ }^{\text {c }}$			$s^{f}(\mathrm{MHz})$	$B^{g}(\mathrm{MHz})$	$D_{J}(\mathrm{kHz})$	$H_{J}(\mathrm{~Hz})$	$L_{J}(\mathrm{mHz})$	$P_{J}(\mu \mathrm{~Hz})$	$P_{12}(\mathrm{nHz})$	$P_{14}(\mathrm{pHz})$	$P_{16}(\mathrm{fHz})$	$P_{18}(\mathrm{aHz})$
$v_{\mathrm{b}}=0, m=0$ (gs): $E_{\text {vib }}=0 \mathrm{~cm}^{-1}$												
0 V093: 0.885	41	1	0.046	4335.6996 (13)	8.4815 (43)	0.1971 (58)	0.0728 (33)	-0.00909 (69)				
1L V126: 0.842	38	2	0.048	4297.6203 (10)	3.3744 (21)	0.1133 (16)	-0.00393 (41)					
1U V131: 0.819	38	2	0.062	4376.1857 (14)	4.2752 (30)	-0.0053 (24)	0.00245 (67)					
2L V089: 0.833	38	1	0.055	4339.69609 (82)	3.28715 (94)	0.03891 (31)						
2U V006: 0.901	38	1	0.052	4339.6811 (16)	-2.8764 (56)	-0.1690 (77)	-0.0676 (47)	0.0079 (10)				
3L V096: 0.727	35	4	0.063	4324.6816 (20)	5.1755 (65)	-0.2787 (86)	0.1698 (50)	-0.0156 (10)				
3U V097: 0.726	35	4	0.054	4324.6762 (18)	5.1686 (55)	-0.1769 (74)	0.1479 (43)	-0.01455 (89)				
$v_{\mathrm{b}}=0, m=1 E: E_{\text {vib }}=8.4 \mathrm{~cm}^{-1}$												
0a V107: 0.808	22	0	0.051	4357.5774 (71)	132.34 (14)	86.4 (14)	226.1 (67)	-665. (17)	719. (21)	-298. (11)		
0b X107: 0.808	20	0	0.056	4348.7 (10)	116.2 (37)	146.2 (74)	-125.4 (87)	71.4 (65)	-25.9 (29)	5.39 (74)	-0.493 (81)	
-1 V101: 0.836	39	1	0.050	4282.7615 (32)	-3.118 (26)	9.39 (10)	-10.67 (19)	6.64 (21)	-2.59 (13)	0.590 (44)	-0.0593 (59)	
1 V098: 0.846	36	5	0.048	4284.5720 (42)	-35.940 (44)	-45.38 (21)	49.98 (57)	-45.27 (87)	29.62 (81)	-12.71 (44)	3.16 (12)	-0.342 (15)
-2 not assigned												
2 V010: 0.660	31	2	0.042	4350.3415 (23)	-2.325 (15)	-0.065 (46)	-0.290 (64)	0.284 (43)	-0.109 (11)			
-3 V005: 0.800	36	2	0.058	4343.3487 (25)	0.096 (11)	0.288 (25)	-0.381 (25)	0.202 (12)	-0.0848 (22)			
3 V012: 0.642	34	3	0.049	4356.1489 (11)	1.6845 (24)	-0.0204 (19)	0.00189 (52)					
$v_{\mathrm{b}}=0, m=-2 E: E_{\text {vib }}=36.8 \mathrm{~cm}^{-1}$												
0 V119: 0.774	36	1	0.050	4356.2099 (29)	2.431 (15)	0.837 (33)	-2.676 (29)					
-1 V008: 0.708	38	2	0.062	4353.2529 (11)	1.0831 (14)	0.0	0.00928 (84)	-0.00378 (31)				
1 V180: 0.807	40	0	0.188	4350.771 (14)	-40.79 (16)	-39.36 (81)	-24.5 (22)	74.5 (34)	-69.5 (32)	34.7 (17)	-9.27 (54)	1.045 (69)
-2 not assigned												
2 V100: 0.805	39	0	0.084	4276.5950 (66)	-51.195 (68)	-64.24 (33)	63.79 (84)	-50.5 (12)	29.3 (11)	-11.35 (59)	2.60 (17)	-0.262 (20)
-3 V024: 0.473	35	3	0.055	4366.9265 (12)	1.9129 (27)	-0.0098 (22)	0.00672 (61)					
3a V106: 0.523	21	0	0.043	4373.6038 (50)	110.306 (69)	93.71 (41)	-32.2 (12)	-11.7 (16)	10.81 (88)			
3b X106: 0.884	18	0	0.052	4370.20 (59)	103.8 (16)	95.6 (24)	-55.9 (22)	20.9 (11)	-4.49 (32)	0.438 (38)		
$v_{\mathrm{b}}=0, m=3 \mathrm{~L}\left(K=0, J=0,1=A_{1}, A_{2}\right): E_{\text {vib }}=80.3 \mathrm{~cm}^{-1}$												
0 V017: 0.556	38	2	0.061	4361.0342 (19)	0.6664 (66)	0.0255 (94)	0.0843 (57)	-0.0269 (12)				
-1 V137: 0.654	37	2	0.093	4376.0833 (78)	-11.011 (83)	3.34 (41)	-25.5 (11)	21.8 (17)	-17.3 (16)	11.56 (91)	-4.15 (27)	0.576 (34)
1 V082: 0.485	39	0	0.070	4362.15134 (58)	1.68176 (26)							
-2 not assigned												
2 V030: 0.399	35	3	0.067	4369.5669 (10)	1.9458 (12)	-0.00228 (41)						
3 V040: 0.634	33	2	0.064	4378.65685 (60)	2.06406 (30)							
$v_{\mathrm{b}}=0, m=3 \mathrm{U}\left(K=0, J=1,0=A_{2}, A_{1}\right): E_{\text {vib }}=79.7 \mathrm{~cm}^{-1}$												
0 V018: 0.540	39	2	0.046	4361.4499 (14)	0.5247 (49)	0.0221 (69)	0.0949 (42)	-0.02898 (93)				
1 V020: 0.491	36	3	0.044	4363.55034 (68)	1.72074 (80)	-0.00110 (27)						
-1 not assigned												
2 V029: 0.424	34	4	0.057	4369.57115 (94)	1.9779 (10)	0.00072 (36)						
-2 not assigned												
3 very strongly perturbed												
$v_{\mathrm{b}}=0, m=4 E: E_{\text {vib }}=140.6 \mathrm{~cm}^{-1}$												
0 V025: 0.416	37	3	0.052	4368.7341 (11)	1.5662 (25)	0.0039 (21)	0.00218 (57)					
$v_{\mathrm{b}}=0, m=-5 E: E_{\text {vib }}=217.5 \mathrm{~cm}^{-1}$												
0 V 142 P : 0.297	38	1	0.049	4377.7029 (11)	1.8930 (23)	-0.0136 (19)	0.00256 (51)					
$v_{\mathrm{b}}=1, m=0: E_{\text {vib }}=182.2 \mathrm{~cm}^{-1}$												
0 V094: 0.391	41	0	0.050	4335.3010 (15)	7.8017 (47)	0.2011 (63)	0.0443 (37)	-0.00561 (76)				
1L V127: 0.373	38	2	0.052	4297.1113 (11)	3.2544 (22)	0.0971 (17)	-0.00294 (44)					
1U V132: 0.365	36	3	0.048	4377.6225 (11)	4.2356 (24)	0.0116 (19)	0.00223 (53)					

Notes. ${ }^{(a)}$ The value of the K_{a} or K quantum number following, where possible, the notation of Koput (1986) and described further in the text following Eq. (A.1). ${ }^{(b)}$ The identifier of the line sequence, identifiers Vnnn and Xnnn for the same "nnn" denote a two part sequence (Vnnn lower, Xnnn higher frequency part). ${ }^{(c)}$ Intensity of the sequence relative to the strongest sequence in the spectrum. ${ }^{(d)}$ The number of lines in the linear fit. ${ }^{(e)}$ The number of confidently assigned lines that were perturbed and were rejected from the fit. ${ }^{(f)}$ The standard deviation od the linear fit. ${ }^{(g)}$ The values of the parameters required in the linear fit.

$\begin{aligned} & m=0 \\ & K_{a}=0 \end{aligned}$	$\begin{aligned} & m=0 \\ & K_{a}=1 \mathrm{U} \end{aligned}$	$\begin{aligned} & m=3 \mathrm{~L} \\ & K=2 \end{aligned}$	$\begin{aligned} & m=0 \\ & K_{a}=3 \mathrm{~L} \end{aligned}$	$J^{\prime \prime}$
353409.914	357668.745	357766.483	353216.748	40
344877.469	349000.352	349065.833	／344659．964	39
336339.829	340327.898	340363.2 ¢\％	336100.068	38
327796.964	331651.477	331658927	327536.948	37
319248.852	322971.187	322952．765	318970.507	36
310695.483	314287.125	314244.861	310400.666	35
302136.857	305599.389	305535.264	301827.362	34
293572．986	296908．878	296824.021	293250.552	33
285003.892	288213.291	288114．179	284670.207	32
276429.611	279515.127	279396.786	276086.316	31
267850.188	270813.686	270680.889	267498.884	30
259265.682	262109.070	261969.538	258907.931	29
250676.159	253401.378	293244.777	250313.490	28
242081.701	244690.713	244524.656	241715.609	27
233482.396	235977.175	235803.221	233114.347	26
224878.343	227260.866	227080.520	224509.775	25
216269.654	218541.889	218356.600	215901.973	24
207656.445	209820,344	209631.508	207291.033	23
199038.842	201096.335	200905.292	198677.053	22
190416.983	192369.963	192177.998	190060.137	21
181791.006	183641.332	183449.674	181440.400	20
173161.064	174910.544	174720.367	172817.957	19
164527.310	166177.701	165990.123	164192.930	18
155889.905	157442.906	157258.991	155565.445	17
147249.018	706．262	148527.016	146935.630	16
138604.818	139967.872	139794.246	138303.616	15
129957.483	131227.838	131060.728	129669.534	14
121307.193	122486.264	122326.508	121033.518	13
112654.130	113743.252	113591.634	112395.700	12
103998．482	104998.905	104856.152	103756.214	11
95340.438	96253.325	96月 20.110	95115.194	10
86680.190	87506．616	87383.553	86472.773	9
78017.933	78758.880	78646.529	77829.081	8
69353.894	$70010.220 \sim 1$	99909.084	69184.250	7
60688．178	61260，739	／61171．266	60538.410	6
52021.077	52510.539	52433.121	51891.691	5
3352.759	43759.723	43694.696	43244.219	4
34683.427	35008.394	34956．0月才	34596.123	3
26013.282	26256.655	26217．191	25947.528	2
17342.527 工	17504.608	17478.205	17298.559	1
18671.365 M	8752.365	几8739．j060	8649.342	0
｜1111｜1T11	1111｜1T1｜1	T1｜111011	｜1111｜111｜	
$-10 \quad-5 \quad 0$	$\begin{array}{lll}0 & -5 & 0\end{array}$	－10－5	$\begin{array}{llll}-10 & -5 & 0\end{array}$	
$\delta f / \mathrm{MHz}$	$\delta f / \mathrm{MHz}$	$\delta f / \mathrm{MH}$	$\delta f / \mathrm{MHz}$	

$J^{\prime \prime}$

$$
\begin{align*}
& 39 \tag{40}\\
& 38
\end{align*}
$$

$$
37
$$

$$
36
$$

$$
35
$$

$$
\begin{aligned}
& 34 \\
& 33
\end{aligned}
$$

$$
32
$$

$$
\begin{aligned}
& 31 \\
& 30
\end{aligned}
$$

$$
29
$$

$$
\begin{aligned}
& 28 \\
& 27
\end{aligned}
$$

$$
26
$$

$$
\begin{aligned}
& 25 \\
& 24
\end{aligned}
$$

$$
\begin{aligned}
& 23 \\
& 22
\end{aligned}
$$

$$
21
$$

$$
\begin{aligned}
& 20 \\
& 10
\end{aligned}
$$

$$
\begin{aligned}
& 19 \\
& 18
\end{aligned}
$$

$$
17
$$

$$
\begin{aligned}
& 16 \\
& 15
\end{aligned}
$$

$$
\begin{aligned}
& 14 \\
& 13
\end{aligned}
$$

$$
\begin{aligned}
& 13 \\
& 12
\end{aligned}
$$

$$
\begin{aligned}
& 11 \\
& 10
\end{aligned}
$$

Fig．A．1．Sample Loomis－Wood type plots of the rotational spectrum of $\mathrm{CH}_{3} \mathrm{NCO}$ for several assigned line sequences for $v_{\mathrm{b}}=0$ where sections of the experimental spectrum are plotted around the indicated centre frequencies from the linear－type fits．The plots illustrate how the assignments reached with Stark spectroscopy at $J^{\prime \prime} \leq 3$ could be unambiguously transferred to the millimetre wave region．The blue lines mark the estimated frequency uncertainty．

The series fits and the Loomis－Wood displays were an in－ valuable aid to the analysis that allowed the identification of sequences of lines，extending up from the lowest J rotational transitions．It should be stated，however，that the transition
frequencies for $\mathrm{CH}_{3} \mathrm{NCO}$ reported in the line lists below are ac－ tual experimental frequencies．The power expansion fits were used to interpolate between the measured lines only in sev－ eral cases of transitions missing in the spectrum for technical
reasons. It is anticipated that these expansions may have useful predictive properties outside the present data region, but only for those series for which the expansion containing a moderate number of expansion terms is sufficient.

A.1. Spectroscopic constants and the partition function

The line lists for astrophysical detection require not only reliable line frequencies, but also line intensities that ultimately have a bearing on the derived column densities. Calculation of line intensities is crucially dependent on the rotational partition function, $Q_{\text {rot }}$, and $\mathrm{CH}_{3} \mathrm{NCO}$ also poses a considerable inconvenience in this respect. For asymmetric rotor molecules with vibrational modes at relatively high frequencies the ground vibrational state rotational partition function can be usefully approximated with
$Q_{\text {rot }}=5.3311 \times 10^{6}\left(T^{3} /(A B C)\right)^{1 / 2}$,
where A, B, and C are the rotational constants for the molecule (in MHz) and T is the temperature (in K). Assumption of the rotational partition function for just the ground state of the molecule as the total partition function and neglect of population in excited vibrational states is normally associated with a relatively small underestimate, especially for low-temperature environments. For $\mathrm{CH}_{3} \mathrm{NCO}$ this is not the case owing to the plethora of low-lying internal rotation substates, and it is necessary to consider the vibration-rotation partition function, Q_{vr}, explicitly. Furthermore, the difficulties in fitting more than a relatively small subset of measured transitions affect even the determination of the rotational constants. We summarize the situation in Table A.2, which demonstrates that even with a considerable reduction in the range of K_{a} values for the fitted transitions, the fit is less satisfactory than is usually the case with rotational spectra. Inclusion of measured transitions for all measured values of J requires the use of a rather large number of centrifugal distortion constants and values of some of these constants are also of considerable magnitude. This points to the very effective nature of such constants and to the considerable vibration-rotation interactions in the $\mathrm{CH}_{3} \mathrm{NCO}$ molecule. The deviation of fit is also somewhat greater than the experimental accuracy. With these reservations in mind, we find rather good agreement between rotational constants resulting from the two fits based on very different subsets of the current data (the two central columns of Table A.2). We therefore use the combined fit of the indicated limited data (the rightmost column of Table A.2) as the source of rotational constants for evaluation of the partition function. The complete results of that fit are reported in Table A.3.

The second issue affecting the evaluation of the partition function is the summation over the energy levels. We used the SPCAT program to carry out this summation numerically, and the results are summarized in Table A.4. The nearly free internal rotor levels $m=1,2,4,5$ are closer in character to the symmetric top case so that we used rotational constants A and $(B+C) / 2$ in the partition function calculation, while for the remaining sublevels ($m=0$ and m being a multiple of 3) we used separate values of A, B, and C (all from the final column of Table A.2). It can be seen in Table A.4a that at room-temperature and at a specimen astrophysical temperature of 120 K the partition function Q_{vr} increases significantly on addition of successive vibrational substates. It is only upon reaching vibrational energy of $400 \mathrm{~cm}^{-1}$ above the ground state that a moderate saturation of the value of Q_{vr} becomes apparent. This corresponds to the consideration of energy levels in the ground state and the 17 vibrational substates immediately above it.

Table A.4b further illustrates some technical aspects associated with the evaluation of Q_{vr} such as the necessity of using sufficiently broad limits on the values of the J and K quantum numbers. It turns out that the large values of centrifugal distortion constants from the effective fit for $K \leq 2$ lead to unphysical compression of energy levels at the highest values of J and K, as highlighted by specific diagnostics from the SPCAT program. At the same time, the details of the summation have little effect on the estimate of the low temperature partition function. For this reason we settle on the "recommended" conditions, which pass the test that the value from the numerical summation for just the ground state is close to that from the analytical formula in Eq. (A.2).

The final result of these considerations is that at roomtemperature it is necessary to use a partition function value that is almost 8 times greater than that for just the ground state, while at 120 K this ratio is closer to 4 . It is clear that a reliable estimate of the partition function to use for the calculation of transition intensities will have a direct bearing on the derived astrophysical abundances of $\mathrm{CH}_{3} \mathrm{NCO}$.

A.2. Line lists

The final results of the analysis of the laboratory rotational spectrum of $\mathrm{CH}_{3} \mathrm{NCO}$ for use in astrophysical applications are presented in Tables A. 5 and A.6. The experimental frequencies for 27 rotational transition sequences with the lowest vibrational energy are listed in Table A.5. Five more specimen transition sequences corresponding to higher vibrational energies and presenting a challenge to confident astrophysical detection are also included. This line list is also given in Table A. 6 in the standard format of the JPL catalog (Pickett et al. 1998). Table A. 6 contains line intensities and lower state energies so that it can be easily converted to a different temperature. Table A. 6 constitutes the main tool for astrophysical detection and characterization of $\mathrm{CH}_{3} \mathrm{CNO}$, and we summarize the key parameters used in its evaluation: $\mu=\mu_{a}=2.882 \mathrm{D}, T=300 \mathrm{~K}$, and $Q_{\mathrm{vr}}=138369$ calculated by summing over rotational levels limited by $K<11$ and $J<100$ for all vibrational states up to $402.5 \mathrm{~cm}^{-1}$ above the ground state.

We have already commented above on the key discrepancies between the experimental frequencies reported in Halfen et al. (2015) and those in this work as summarized in Table A.7. We further note that if we replace our frequencies in the fit for the ground state reported in Table A. 3 by the three problematic $m=0$ lines at $60160.932,68753.890$, and 70009.179 MHz (see Table A.7), then those lines are incompatible with this fit at obs.-calc. frequencies of near -1.1 MHz . Our frequencies for these transitions have obs.-calc. values of less than 0.03 MHz , in a fit encompassing 201 pure rotational transition frequencies. In fact, the discrepancy of 1 MHz from a line sequence comprising around 40 lines and consisting of both Koput (1986) and our mm-wave lines would be immediately visible. This is clearly apparent in Fig. A. 1 (second column from the left), where the 70010.208 MHz line is in good agreement with the sequence defined by a low order $J(J+1)$-type fit, whereas a frequency of 70009.179 MHz is clearly incompatible.

Finally, we note that the quantization used in Halfen et al. (2015) for the $m=0, K_{a}=1$ transitions deviates from standard practice. While the quantization for the $m>0$ lines is somewhat arbitrary and largely dependent on the fitting program, the quantization for the ground state is well established. In the case when the splitting between the two a-dipole $\Delta J=1, K_{a}=1$ transitions for a given value of $J^{\prime \prime}$ is dominated by the asymmetry

Fig. A.2. Splitting patterns in the lowest- J rotational transitions in the ground state $\left(v_{\mathrm{b}}=0, m=0\right)$ of $\mathrm{CH}_{3} \mathrm{NCO}$. The splitting is due to the interaction of the nuclear quadrupole of the ${ }^{14} \mathrm{~N}$ nucleus with molecular rotation and is characterized by the total angular momentum quantum number F. Each component is doubled by the Doppler doubling, which is an instrumental effect specific to the FP-FTMW spectrometer. The splitting is completely resolved at the supersonic expansion conditions $\left(T_{\text {rot }}=2 \mathrm{~K}\right)$ of the FP-FTMW spectrometer. Nevertheless, the magnitude, and thus the relevance of the splitting, decreases rapidly with increasing J.
term in the rotational Hamiltonian (as is the case for $\mathrm{CH}_{3} \mathrm{NCO}$) it is the $K_{a}=1$ transition with the higher value of K_{c} that is at lower frequency, and the one with lower value of K_{c} that is at higher frequency. This quantization leads to the moderately successful effective fit for the ground $(m=0)$ state reported by us in Table A.3. On the other hand, in Halfen et al. (2015) the K_{c} quantization for $m=0, K_{a}=1$ transitions is systematically reversed.

A.3. Nuclear quadrupole hyperfine splitting

It should be noted that the lowest- J rotational transitions of $\mathrm{CH}_{3} \mathrm{NCO}$ are subject to nuclear quadrupole hyperfine splitting, and that the line lists discussed above provide in such cases only the average, hyperfine-free frequencies. The hyperfine splitting arising from the presence of the ${ }^{14} \mathrm{~N}$ nucleus in the $\mathrm{CH}_{3} \mathrm{NCO}$ molecule was studied in previous works (Kasten \& Dreizler 1986; Curl et al. 1963; Lett et al. 1967). We have now, for the first time, observed such lines at the very low temperature of supersonic expansion using two spectroscopic techniques. $\mathrm{CH}_{3} \mathrm{NCO}$ was first investigated by broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy (Brown et al. 2008)
in two different frequency ranges: 6-18 and $25-26 \mathrm{GHz}$ (Mata et al. 2012). A gas mixture containing 0.3% of $\mathrm{CH}_{3} \mathrm{NCO}$ in neon at the backing pressure of 3 bar was used for the pulsed jet expansion. These scans allowed explicit confirmation of the assignment of the ground state $\left(v_{\mathrm{b}}=0, m=0\right)$ lines since these lines (and some of the lowest $v_{\mathrm{b}}=0, m=1$ substate lines) are the only lines expected to be visible at these conditions. In order to resolve the nuclear quadrupole hyperfine structure, further measurements were performed by supersonic expansion, Fabry-Perot cavity, and Fourier transform microwave (FP-FTMW) spectroscopy (Grabow et al. 1996) using two different configurations covering the frequency range from 4 to 18 GHz (Alonso et al. 1997; Bermúdez et al. 2014). Figure A. 2 shows the experimentally recorded hyperfine patterns for the first two lowest- J transitions of $\mathrm{CH}_{3} \mathrm{NCO}$ and it is clear that at sub-MHz resolution consideration of such splitting is important. Table A. 8 lists hyperfine component frequencies for all $K \leq 2$ rotational transitions up to 80 GHz . This prediction has an estimated accuracy of around 5 kHz and was made by using the rightmost set of spectroscopic constants from Table A.2. It is apparent that the central $\Delta F=+1$ components quickly coalesce, while the outer $\Delta F=0$ components rapidly lose intensity.

Table A.2. Spectroscopic constants determined for the ground state of $\mathrm{CH}_{3} \mathrm{NCO}\left(v_{\mathrm{b}}=0, m=0\right)$.

Constant	Koput (1986)	Hyperfine resolved $J \leq 2, K_{a} \leq 1$	Hyperfine unresolved $J \leq 42, K_{a} \leq 2$	All data
$A^{a}(\mathrm{MHz})$	73849.2	$128356 .(7623)^{b}$	$128435 .(19)$	128 402.(13)
B (MHz)	4392.22	4414.2478(12)	4414.6182(93)	4414.6287(75)
$C(\mathrm{MHz})$	4256.66	4257.1309(12)	4256.7490 (85)	4256.7452(71)
$\Delta_{J}(\mathrm{kHz})$		2.45(40)	2.3209(11)	$2.32319(98)$
$\Delta_{J K}(\mathrm{kHz})$		-1202.3(23)	-1274.0(13)	-1271.46(73)
$\delta_{J}(\mathrm{kHz})$			0.4042(14)	0.4038(14)
$\delta_{K}(\mathrm{kHz})$			183.1(43)	187.4(35)
$\Phi_{J}(\mathrm{~Hz})$			-0.00191(47)	-0.00142(45)
$\Phi_{J K}(\mathrm{~Hz})$			-5.39(24)	-5.64(18)
$\Phi_{K J}(\mathrm{~Hz})$			-68478.(285)	-67991.(167)
$\phi_{J K}(\mathrm{~Hz})$			-47.6(14)	-47.7(14)
$\chi_{a a}(\mathrm{MHz})$	$2.8358(75)$	2.8461(18)		2.8441(49)
$\chi_{b b}(\mathrm{MHz})$	-1.288(21)	-1.2981(30)		-1.2962(67)
$\chi_{c c}(\mathrm{MHz})$	-1.548(21)	-1.5481(30)		-1.5478(67)
$N_{\text {lines }}^{c}$	13	32	201	233
$\sigma_{\mathrm{fit}}^{d}(\mathrm{kHz})$	6	3	94.6	91.2
$\sigma_{\text {rms }}^{e}$	0.842	0.674	1.89	1.87

Notes. ${ }^{(a)} A, B$, and C are rotational constants; $\Delta_{J}, \ldots, \phi_{J K}$ are centrifugal distortion constants in Watson's A-reduced asymmetric rotor Hamiltonian; and $\chi_{a a}, \chi_{b b}, \chi_{c c}$ are nuclear quadrupole hyperfine splitting constants for the ${ }^{14} \mathrm{~N}$ nucleus. ${ }^{(b)}$ Errors in parentheses are standard errors in units of the last digit. ${ }^{(c)}$ The number of fitted lines. ${ }^{(d)}$ Standard deviation of the fit. ${ }^{(e)}$ Unitless (weighted) deviation of the fit.

Table A.3. Results of fitting the spectroscopic constants of Table A. 2 for $\mathrm{CH}_{3} \mathrm{NCO}$ ground state ($m=0$).

Table A.3. continued.

J'	Ka,	Kc	J"		Kc" F	obs. (MHz)	$\begin{aligned} & \text { o.-c. } \\ & (\mathrm{MHz}) \end{aligned}$	error (MHz)	J			了"			obs. (MHz)	$\begin{aligned} & \text { o.-c. } \\ & (\mathrm{MHz}) \end{aligned}$	error (MHz)
40		40	39		39	343010.1490	-0.0662	0.050	27	22	26	26	22	25	234088.1250	0.0727	0.050
41			40		40	351547.2590	0.0855	0.050	28	22	27	27	2	26	242738.3090	0.0422	0.050
42		42	41	14	41	360081.6650	0.0791	0.050	29	22	28	28	2	27	251386.4480	0.0707	0.050
									30	2	29	29	2	28	260032.3910	0.0742	0.050
2	1	1	1	1	0	17504.6800	0.0736	0.050	31	23	30	30	2	29	268676.1360	0.1167	0.050
3	1	2	2		1	26256.7100	0.0570	0.050	32	23	31	31	2	30	277317.4920	0.0724	0.050
4	1	3	3	1	2	35008.4300	0.0383	0.050	33	23	32	32	2	31	285956.5910	0.1375	0.050
5	1	4	4		3	43759.6000	-0.1197	0.050	34	2	33	33	2	32	294593.2450	0.1876	0.050
6	1	5	5	1	4	52510.5630	0.0283	0.050	35	23	34	34	2	33	303227.2980	0.1288	0.050
7	1	6	6	1	5	61260.7340	0.0003	0.050	36	2	35	35	2	34	311858.7810	0.0538	0.050
8	1	7	7	1	6	70010.2080	-0.0061	0.050	37	23	36	36	2	35	320487.6960	0.0250	0.050
9	1	8	8	1	7	78758.8490	-0.0242	0.050	38	23	37	37	2	36	329113.8250	-0.1161	0.050
10	1	9	9	1	8	87506.6070	-0.0014	0.050	39	23	38	38	2	37	337737.4330	-0.0463	0.050
11		10	10		9	96253.3180	0.0010	0.050	40	2	39	39	2	38	346358.1370	-0.0911	0.050
12			11		10	104998.8860	-0.0099	0.050	41	2	40	40	2	39	354975.8680	-0.2633	0.050
13			12			113743.2410	-0.0017	0.050									
14			13			122486.1730	-0.0815	0.050	3	2	1	2		0	26038.2000	-0.2472	0.050
15	1	14	14		13	131227.9270	0.0983	0.050	4	2	2	3	2	1	34718.1100	-0.1397	0.050
16	11		15	11	14	139967.9030	0.0408	0.050	5	2	3		2	2	43398.2650	-0.0609	0.050
17		16	16		15	148706.1240	-0.1284	0.050	6	2	4	5	2	3	52078.6310	-0.1122	0.050
18			17		16	157442.8620	-0.0346	0.050	7	2	5		2	4	60759.4890	-0.0795	0.050
19			18		17	166177.7250	0.0329	0.050	8	2	6	7	2	5	69440.7720	-0.0958	0.050
20	1		19	11	18	174910.5960	0.0600	0.050	9	2	7	8	2	6	78122.5870	-0.1191	0.050
21	1	20	20	11	19	183641.4610	0.1354	0.050	10	2	8	9	2	7	86805.0270	-0.1203	0.050
22	1	21	21	1	20	192370.0130	0.0546	0.050	11	2	9	10	2	8	95488.1310	-0.1230	0.050
23		22	22		21	201096.3660	0.0342	0.050	12	21	10	11	2	9	104171.9620	-0.1249	0.050
24	1	23	23	1	22	209820.3630	0.0198	0.050	13	21	11	12	2	10	112856.5850	-0.1202	0.050
25		24	24	1	23	218541.8030	-0.0873	0.050	14	21	12	13	2	11	121542.1130	-0.0526	0.050
26	1	25	25	12	24	227260.7990	-0.0719	0.050	15	21	13	14	2	12	130228.4190	-0.1035	0.050
27		26	26	12	25	235977.1810	-0.0017	0.050	16	2	14	15	2	13	138915.6030	-0.2246	0.050
28	1	27	27	12	26	244690.7010	-0.0229	0.050	17	21	15	16	2	14	147603.9630	-0.1665	0.050
29		28	28	12	27	253401.3880	-0.0047	0.050	18	2	16	17	2	15	156293.3170	-0.1560	0.050
30	1	29	29	12	28	262109.0720	-0.0154	0.050	19	21	17	18	2	16	164983.8810	-0.0181	0.050
31			30			270813.7400	0.0330	0.050	20	2	18	19	2	17	173675.3920	-0.0527	0.050
32	1	31	31	1		279515.0450	-0.1052	0.050	21	2	19	20	2	18	182368.2180	0.0764	0.050
33			32			288213.2250	-0.0916	0.050	22			21			191062.0290	0.0127	0.050
34	1	33	33	1	32	296908.3040	0.1980	0.050	23	2	21	22	2	20	199757.0680	-0.0215	0.050
35	1		34	1	33	305599.5880	0.1696	0.050	24	2	22	23	22	21	208453.3650	-0.0110	0.050
36	1	35	35	1	34	314287.2370	0.0824	0.050	25	2	23	24	2	22	217150.9320	0.0484	0.050
37	1	36	36	1	35	322971.2260	0.0103	0.050	26	2	24	25	2	23	225849.6710	0.0584	0.050
38	1	37	37	13	36	331651.4570	-0.0465	0.050	27	2	25	26	2	24	234549.6360	0.0803	0.050
39	13	38	38	13	37	340327.9230	0.0023	0.050	28	2	26	27	22	25	243250.7340	0.0367	0.050
40	1	39	39	13	38	349000.2270	-0.1433	0.050	29	2	27	28	22	26	251953.1080	0.0948	0.050
41	1	40	40	1	39	357668.8020	0.0454	0.050	30	2		29	2	27	260656.5870	0.1172	0.050
									31	2	29	30	22	28	269361.1960	0.1722	0.050
3	2	2	2		1	26038.2000	0.3438	0.050	32	2	30	31	2	29	278066.7380	0.1158	0.050
4	2	3	3	2	2	34716.9100	0.1374	0.050	33	2	31	32	2	30	286773.1780	-0.0233	0.050
5	2	4	4		3	43395.5400	0.1671	0.050	34	2	32	33	2	31	295480.8970	0.2095	0.050
6	2	5	5	2	4	52073.4700	-0.1083	0.050	35	2	33	34	2	32	304189.1200	0.1243	0.050
7	2	6	6		5	60751.2420	-0.0683	0.050	36	2	34	35	2	33	312898.1990	0.1688	0.050
8	2	7	7	2	6	69428.4030	-0.0873	0.050	37	2	35	36	2	34	321607.6950	0.0104	0.050
9	2	8	8		7	78104.9430	-0.0972	0.050	38	2	36	37	2	35	330317.8260	-0.0153	0.050
10		9	9	2	8	86780.7780	-0.1038	0.050	39	2	37	38	2	36	339028.2350	-0.1373	0.050
11			10		9	95455.8140	-0.1235	0.050	40	2		39	2	37	347738.9940	-0.1447	0.050
12			11		10	104130.0100	-0.1199	0.050	41	2	39	40	2	38	356449.7320	-0.2598	0.050
13			12	21	11	112803.2580	-0.1239	0.050									
14			13	21		121475.4960	-0.1208	0.050									
15			14	21	13	130146.7990	0.0408	0.050									
16			15			138816.7390	0.0087	0.050									
17			16	21	15	147485.3600	-0.0974	0.050									
18			17	21		156152.7430	-0.1219	0.050									
19			18	21	17	164818.8450	-0.0332	0.050									
20			19	21	18	173483.4660	0.0426	0.050									
21			20	21		182146.4730	0.0458	0.050									
22	2		21	2	20	190807.8310	0.0143	0.050									
23		22	22	22	21	199467.5590	0.0390	0.050									
24	2	23	23	2	22	208125.4910	0.0254	0.050									
25			24		23	216781.6210	0.0382	0.050									
26	22	25	25	22	24	225435.8490	0.0476	0.050									

Table A.4. Determination of the partition function for transition intensity calculations.

(a) Evolution of the value of Q_{vr} on addition of successive vibrational states to the summation					(b) Sensitivity of the value of Q_{vr} to quantum number limits used in the numerical summation				
$J_{\lim }=50, K_{\lim }=15$		$E_{\text {vib }}\left(\mathrm{cm}^{-1}\right)$	$Q_{\mathrm{vr}}(300 \mathrm{~K})$	$Q_{\mathrm{vr}}(120 \mathrm{~K})$		$J_{\text {lim }}$	$K_{\text {lim }}$	$Q_{\mathrm{vr}}(300 \mathrm{~K})$	$Q_{\mathrm{vr}}(120 \mathrm{~K})$
$v_{\mathrm{b}}=0$	$m=0$	0.0	15055	4474	all ${ }^{a}$	50	10	113660	18021
+	$m=1$	8.4	29292	8509	all	70	10	132301	18223
+	$m=2$	36.8	41716	11379	all	100	10	136409	18225
+	$m=3 \mathrm{~L}$	80.3	51802	13083	all	50	15	117404	18035
+	$m=3 \mathrm{U}$	79.7	61916	14799	all	70	15	136815	18237
$+$	$m=4$	140.6	69468	15626	all	100	15^{b}	141159	18240
+	$m=5$	217.5	74691	15955					
$+$	$m=6 \mathrm{a}$	311.1	78025	16062					
+	$m=6 \mathrm{~b}$	311.1	81359	16169					
$+v_{\mathrm{b}}=$	$m=0$	182.2	87546	16671	Recommended:				
	$m=1$	191.4	93465	17121					
	$m=2$	222.3	98569	17431		100	11		
	$m=3 \mathrm{a}$	268.3	102663	17610	all			138369	18235
	$m=3 \mathrm{~b}$	268.9	106745	17788	only $v_{\mathrm{b}}, m=0,0$			17744	4524
	$m=4$	333.4	109741	17870	only $v_{\mathrm{b}}, m=0,0$	analy	tical	17831	4511
$+v_{\mathrm{b}}=2$	$m=0$	357.9	112405	17931					
	$m=1$	368.6	114935	17984					
	$m=2$	402.5	117404	18035					

Notes. ${ }^{(a)}$ Summation over all vibrational states up to $402.5 \mathrm{~cm}^{-1}\left(v_{\mathrm{b}}=2, m=2\right) .{ }^{(b)}$ Energy level compression problems at highest K and J due to large values of some centrifugal distortion constants in the effective fit.

J. Cernicharo et al.: Methyl isocyanate in Orion

Table A.5. Line list of rotational transitions for $\mathrm{CH}_{3} \mathrm{NCO}$ compiled form experimental frequencies (MHz) for line sequences assigned on the basis of continuity from the assignment reached for $J^{\prime \prime} \leq 3$.
(a) $v_{b}=0, m=0$ (ground state), $E_{\text {vib }}=0 \mathrm{~cm}^{-1}$.

$\mathrm{K}^{a}=$		0	1L	1 U	2L	2 U	3 L	3 U
J^{\prime}								
1	0	8671.410^{b}						
2	1	17342.500	17190.670	17504.680				
3	2	26013.340	25785.410	26256.710	26038.200	26038.200		
4	3	34683.460	34380.140	35008.430	34716.910	34718.110	34596.030	34596.030
5	4	43352.763	42974.430	43759.600	43395.540	43398.265	43244.392	43244.392
6	5	52021.106	51568.529	52510.563	52073.470	52078.631	51891.662	51891.662
7	6	60688.210	60162.076	61260.734	60751.242	60759.489	60538.443	60538.443
8	7	69353.880	68755.025	70010.208	69428.403	69440.772	69184.277	69184.277
9	8	78017.953	77347.425	78758.849	$78104 . .943$	78122.587	77829.107	77829.107
10	9	86680.190	85938.962	87506.607	86780.778	86805.027	86472.805	86472.805
11	10	95340.443	94529.761	96253.318	95455.814	95488.131	95115.214	95115.214
12	11	103998.481	103119.703	104998.886	104130.010	104171.962	103756.254	103756.254
13	12	112654.059	111708.707	113743.241	112803.258	112856.585	112395.756	112395.756
14	13	121307.237	120296.630	122486.173	121475.496	121542.113	121033.586	121033.586
15	14	129957.471	128883.644	131227.927	130146.799	130228.419	129669.703	129669.703
16	15	138604.670	137469.287	139967.903	138816.739	138915.603	138303.496	138304.065
17	16	147248.826	146053.574	148706.124	147485.360	147603.963	146935.424	146936.284
18	17	155889.867	154636.867	157442.862	156152.743	156293.317	155565.312	155566.394
19	18	164527.308	163218.602	166177.725	164818.845	164983.881	164192.884	164194.278
20	19	173161.061	171798.990	174910.596	173483.466	173675.392	172817.892	172819.679
21	20	181791.104	$180377.768^{\text {c }}$	183641.461	182146.473	182368.218	181440.422	181442.696
22	21	190417.024	188955.100	192370.013	190807.831	191062.029	190060.149	190062.937
23	22	199038.846	197530.555	201096.366	199467.559	199757.068	198677.070	198680.500
24	23	207656.434	206104.447	209820.363	208125.491	208453.365	207291.046	207295.249
25	24	216269.674	214676.530	218541.803	216781.621	217150.932	215902.003	215907.102
26	25	224878.354	223246.826	227260.799	225435.849	225849.671	224509.835	224515.940
27	26	233482.392	231815.250	235977.181	234088.125	234549.636	233114.404	233121.696
28	27	242081.680	240381.664	244690.701	242738.309	243250.734	241715.637	241724.217
29	28	250676.140	248946.150	253401.388	251386.448	251953.108	250313.498	250323.521
30	29	259265.708	257508.601	262109.072	260032.391	260656.587	258907.935	258919.578
31	30	267850.163	266068.926	270813.740	268676.136	269361.196	267498.881	267512.332
32	31	276429.652	274627.141	279515.045	277317.492	278066.738	276086.286	276101.741
33	32	285003.841	283183.216	288213.225	285956.591	286773.178	284670.169	284687.756
34	33	293572.990	291736.891	296908.304	294593.245	295480.897	293250.547	293270.510
35	34	302136.898	300288.319	305599.588	303227.298	304189.120	301827.305	301849.816
36	35	310695.427	308837.526	314287.237	311858.781	312898.199	310400.543	310425.797
37	36	319248.753	317384.449	322971.226	320487.696	321607.695	318970.615	318998.776
38	37	327797.050	325928.802	331651.457	329113.825	330317.826	327536.993	327568.310
39	38	336339.886	334470.616	340327.923	337737.433	339028.235	336099.791	336134.374
40	39	344877.468	343010.149	349000.227	346358.137	347738.994	344659.995	344698.049
41	40	353409.883	351547.259	357668.802	354975.868	356449.732	353216.538	353258.418
42	41	361937.203	360081.665				361770.522	361816.048
sequence		V093	V126	V131	V089	V006	V096	V097

Notes. ${ }^{(a)}$ The K quantum number notation is defined in the text below Eq. (A.1). ${ }^{(b)}$ All frequencies for $J^{\prime \prime}>3$ (unless otherwise marked) are experimental measurements with estimated. uncertainty of 0.05 MHz . The frequencies for $J^{\prime \prime}=0$ to 3 are hyperfine removed frequencies evaluated by Koput. ${ }^{(c)}$ Calculated from a $J(J+1)$ power series fit to the sequence.

Table A.5. continued.
(b) $v_{\mathrm{b}}=0, m=1, E_{\mathrm{vib}}=8.4 \mathrm{~cm}^{-1}$.

$K=$		0	-1	1	2	-3	3
J^{\prime}							
1	0	8714.599					
2	1	17426.089	17131.350	17139.540			
3	2	26131.320	$25696 . .960$	25711.200	26102.200		
4	3	34827.319	34262.960	34285.420	34803.370	34746.730	34848.720
5	4	43511.298	42829.348	42862.701	43504.452	43433.533	43560.652
6	5	52181.118	51396.202	51443.858	52206.120	52119.989	52272.360
7	6	60834.588	59963.808	60029.019	60907.932	60806.734	69694.881
8	7	69470.354	68532.241	68618.612	69610.243	69493.349	78405.765
9	8	78087.660	77101.788	77212.768	78312.951	78180.079	87116.220
10	9	86686.556	85672.565	85811.546	87016.078	86866.748	95826.264
11	10	95267.825	94244.905	94414.872	95719.797	95553.457	104535.872
12	11	103832.990	102819.142	103022.546	104424.130	104240.089	113245.010
13	12	112384.189	111395.453	111634.362	113129.051	112926.739	121953.658
14	13	120923.957	119974.084	120250.061	121834.685	121613.360	130661.691
15	14	129455.041	128555.310	128869.183	130541.066	130300.215	139369.066
16	15	137980.105	137139.779	137491.243	139248.143	138986.740	148075.687
17	16	146501.448	145726.977	146115.877	147956.022	147673.312	156781.803
18	17	155021.205	154317.714	154742.833	156664.792	156360.035	165487.174
19	18	163541.133	162911.754	163371.518	165374.452	165046.706	174191.731
20	19	172061.977	171509.498	172001.511	174085.007	173733.277	182895.436
21	20	180584.517^{a}	180110.821^{a}	180632.418	182796.656	182419.917	191598.170
22	21	189109.455	188715.886	189263.550	191508.907	191106.420	200300.118
23	22	197636.492	197324.512	197894.577	200222.279	199792.672	209001.126
24	23	206165.981	205936.596	206525.339	208936.733	208478.868	217701.086
25	24	214697.618	214552.442	215155.261	217652.088	217164.881	226400.016
26	25	223231.128	223171.503	223783.952	226368.543	225850.618	235097.875
27	26	231766.341	231793.783	232411.044	235085.938	234535.866	243794.484
28	27	240302.835	240418.979	241036.217	243804.350	243220.575	252490.045
29	28	248840.351	249047.052	249659.091	252523.689	251904.576	261184.367
30	29	257378.635	257677.673	258279.428	261243.934	260587.611	269877.354
31	30	265917.341	266310.654	266896.862	269964.935	269269.306	278569.028
32	31	274456.286	274945.807	275511.130	278686.471	277949.280	287259.016
33	32	282995.138	283582.597	284122.057	287408.067	286626.968	295948.943
34	33	291533.591	292221.402	292729.120	296130.228	295302.132	304636.157
35	34	300071.437	300861.390	301332.036	304850.123	303973.342	313322.215
36	35	308608.768	309502.679	309930.935	b	312639.870	322006.608
37	36	317145.274	318145.064	318525.546	b	321299.883	330689.686
38	37	325680.738	326788.371	327115.335	b	329952.435	339370.491
39	38	334214.702	335432.305	335700.385	b	338594.440	348050.671
40	39	342747.571	344077.189	344280.710	b	347223.487	356728.558
41	40	351278.907	352722.522	352855.727	b	355835.853	
42	41	359808.783	361368.607	361425.535	b		
sequence		V107+X107	V101	V098	V010	V005	V012

Notes. ${ }^{(a)}$ Calculated from a $J(J+1)$ power series fit to the sequence. ${ }^{(b)}$ Sequence too perturbed for confident assignment.

Table A.5. continued.
(c) $v_{\mathrm{b}}=0, m=-2, E_{\mathrm{vib}}=36.8 \mathrm{~cm}^{-1}$.

Notes. ${ }^{(a)}$ Calculated from a $J(J+1)$ power series fit to the sequence. ${ }^{(b)}$ Not measured since blended with another sequence.

Table A.5. continued.

$$
\text { (d) } v_{\mathrm{b}}=0, m=3 \mathrm{~L}, E_{\mathrm{vib}}=80.3 \mathrm{~cm}^{-1}
$$

$K=$		0	-1	1	2	3
$J^{\prime} \quad J^{\prime \prime}$						
1	0	8722.070				
2	1	17444.100	17504.680	17448.710		
3	2	26166.190	26257.660	26172.870	26217.200	
4	3	34888.140	35011.480	34896.830	34956.060	35028.630
5	4	43609.928	43766.214	43620.571	43694.834	43785.654
6	5	52331.868	52522.551	52344.346	52433.136	52542.085
7	6	61053.565	61280.451^{a}	61067.774	61171.238	61298.342
8	7	69775.192	70040.195	69790.946	69909.074	70054.280
9	8	78496.665	78801.997	78513.797	78646.527	78809.809
10	9	87218.054	87565.977	87236.266	87383.509	87564.879
11	10	95939.244	96332.237	95958.329	96120.050	96319.430
12	11	104660.269	105100.806	104679.971	104856.074	105073.483
13	12	113381.115	113871.438	113401.139	113591.533	113826.888
14	13	122101.880	122644.153	122121.912	122326.370	122579.897
15	14	130822.366	131418.379	130841.787	131060.695	131331.907
16	15	139542.464	140193.007	139561.260	139794.246^{a}	140083.196
17	16	148262.442	148967.780	148280.088	148526.918	148833.657
18	17	156982.205	157741.459	156998.138	157259.087	157583.442
19	18	165701.855	166512.305	165715.596	165990.220	166332.231
20	19	174421.255	175278.820	174432.265	174720.445	175080.257
21	20	183140.586	184038.905	183148.090	183449.784	183827.235
22	21	191859.411	192789.989	191863.107	192178.078	192573.044
23	22	200577.940^{a}	201529.781	200577.113^{a}	200905.313	201317.746
24	23	209296.343	210255.519	209290.275	209631.511	210061.385
25	24	218014.630	218964.185	218002.461	218356.609	218803.854
26	25	226732.746	227652.903	226713.682	227080.543	227544.975
27	26	235450.617	236318.690	235423.772	235803.211	236284.963
28	27	244168.331	244958.968	244132.818	244524.636	245023.577
29	28	252885.887	253571.479	252840.703	253244.748	253760.717
30	29	261603.311	262154.856	261547.430	261963.534	262496.451
31	30	270320.529	270708.260	270253.052	270680.897	271231.791
32	31	279037.620	279232.105	278957.203	279396.720	279962.773
33	32	287754.622	287727.766	287660.097	288110.813	288694.607
34	33	296471.734	296199.254	296361.967	296824.183	297424.153
35	34	305188.310	304649.763	305062.223	305535.487	306152.116
36	35	313904.998	313084.650	313760.953	314244.899	314878.144
37	36	322621.009	321509.320	322458.384	322952.760	323602.325
38	37	331337.282	329929.323	331154.531	331658.794	332324.862
39	38	340052.790	338348.803	339848.777	340363.324	b
40	39	348767.954	346771.793	348541.475	349065.775	b
41	40	357482.199	355200.745	357232.817	357766.597	b
42	41					
sequence		V017	V137	V082	V030	V040

Notes. ${ }^{(a)}$ Calculated from a $J(J+1)$ power series fit to the sequence. ${ }^{(b)}$ Not measured owing to the appearance of additional small doubling and blending with another sequence.

J. Cernicharo et al.: Methyl isocyanate in Orion

Table A.5. continued.

$$
\begin{array}{ccc}
\text { (e) } v_{\mathrm{b}}=0, m=3 \mathrm{U}, E_{\mathrm{vib}}=79.7 \mathrm{~cm}^{-1} & v_{b}=0, m=4, & v_{\mathrm{b}}=0, m=-5 \\
140.6 \mathrm{~cm}^{-1} & 217.5 \mathrm{~cm}^{-1}
\end{array}
$$

$K=$		0	-1	2	0	0
J^{\prime}						
1	0	8722.930			8737.510	8755.450
2	1	17445.790	17454.140		17474.880	17510.750
3	2	26168.670	26181.160	26217.200	26212.280	26265.930
4	3	34891.510	34907.990	34956.060	34949.500	35021.170
5	4	43614.169	43634.803	43694.834	43686.558	43776.052
6	5	52337.008	52361.126	52433.136	52423.467	52530.822
7	6	61059.598	61087.316	61171.238	61160.109	61285.235
8	7	69782.154	69813.257	69909.074	69896.532	70039.333
9	8	78504.575	78538.859	78646.527	78632.611	78793.106
10	9	87226.921	87264.103	87383.509	87368.415	87546.486
11	10	95949.108	95988.904	96120.050	96103.815	96299.372
12	11	104671.232	104713.296	104856.074	104838.731	105051.763
13	12	113393.159	113437.179	113591.533	113573.462	113803.590
14	13	122115.041	122160.503	122326.370	122307.385	122554.987
15	14	130836.609	130883.320	131060.695	131040.907	131305.539
16	15	139558.099	139605.335	139793.874^{a}	139773.828	140055.353
17	16	148279.376	148326.896	148526.393	148506.076	148804.383
18	17	157000.493	157047.593	157258.419	157237.942	157552.953
19	18	165721.632	165767.724	165989.446	165969.028	166300.585
20	19	174442.476	174486.974	174719.575	174699.344	175047.384
21	20	183163.236	183205.461	183448.801	183429.044	183793.009
22	21	191883.717	191922.912	192176.926	192157.781	192537.886
23	22	200604.112	200639.521	200903.965	200885.786	$201281.751^{a, b}$
24	23	209324.337	209355.240	209630.000	209612.881	$210024.510^{a, b}$
25	24	218044.534	218069.900	218354.946	218339.144	218766.186
26	25	226764.650	226783.590	227078.696	227064.506	227506.674
27	26	235484.635	235496.154	235801.163	235788.832	236245.972
28	27	244204.559	244207.596	244522.386	244512.199	244984.016
29	28	252924.508	252917.912	253242.286	253234.561	253720.771
30	29	261644.369	261626.983	261960.792	261955.843	262456.197
31	30	270364.327	270334.789	270677.907	270676.015	271190.307
32	31	279084.315	279041.258	279393.357	279395.008	279922.741
33	32	287804.144	287746.709^{a}	288107.240	288112.677	288653.970
34	33	296524.473	296450.663	296820.277	296829.834	297383.564
35	34	305244.523	305153.091	305531.426	305545.340	306111.655
36	35	313964.548	313854.002	314240.338	314259.408	314838.069
37	36	322684.235	322553.329	322947.835	322972.358	323562.679
38	37	331404.493	331251.686	331653.583	331683.823	332285.799
39	38	340124.133	339947.987	340357.652	340394.140	341007.079
40	39	348843.625	348642.878	349059.672	349102.921	349726.678
41	40	357562.542	357335.976	357760.089	357810.572	358444.316
42	41					
sequence		V018	V020	V029	V025	V142

Notes. ${ }^{(a)}$ Calculated from a $J(J+1)$ power series fit to the sequence. ${ }^{(b)}$ Not measured owing to blending with another sequence.

Table A.5. continued.

$$
\text { (f) } v_{\mathrm{b}}=0, m=0, E_{\mathrm{vib}}=182.2 \mathrm{~cm}^{-1}
$$

$K=$		0	1L	1 U
J^{\prime}	$J^{\prime \prime}$			
1	0	8670.610		
2	1	17340.960	17188.670	17510.450
3	2	26011.020	25782.370	26265.980
4	3	34680.440	34376.120	35019.950
5	4	43349.173	42969.421	43774.035
6	5	52016.906	51562.541	52527.823
7	6	60683.541	60155.123	61280.888
8	7	69348.900	68747.151	70033.282
9	8	78012.766	77338.547	78784.866
10	9	86674.929	85929.270	87535.510
11	10	95335.299	94519.235	96285.169
12	11	103993.608	103108.301	105033.678
13	12	112649.673	111696.508	113781.001
14	13	121303.479	120283.613	122526.957
15	14	129954.672	128870.034	131271.662
16	15	138603.026	137454.881	140014.495
17	16	147248.768^{a}	146038.531	148755.988
18	17	155891.279	154621.245	157495.713
19	18	164530.700	163202.325	166233.670
20	19	173166.705	171782.207	174969.640
21	20	181799.215	180360.456^{a}	183703.515
22	21	190428.000	188937.343	192435.609
23	22	199053.039	197512.392	201165.038
24	23	207674.136	206085.904	209892.319
25	24	216291.199	214657.696	218617.180
26	25	224904.062	223227.702	227339.566
27	26	233512.629	231795.913	236059.320
28	27	242116.760	240362.160	244776.394
29	28	250716.407	248926.484	253490.700
30	29	259311.510	257488.850	262201.998
31	30	267901.799	266049.115	270910.320
32	31	276487.436	274607.275	279615.511
33	32	285068.035	283163.366	288317.636
34	33	293644.004	291717.164	297016.541
35	34	302214.882	300268.707	305712.236
36	35	310780.705	308817.997	314404.000
37	36	319341.519	317365.129	323092.435
38	37	327897.500	325909.693	331777.190^{a}
39	38	336448.316	334451.713	340458.290
40	39	344993.807	342991.511	349135.442
41	40	353534.354	351528.890	357808.901
42	41	362069.899	360063.601	
		V094	V127	V132

Notes. ${ }^{(a)}$ Calculated from a $J(J+1)$ power series fit to the sequence.

Table A.6. Line list for $\mathrm{CH}_{3} \mathrm{NCO}$.

Frequency (MHz)	$\begin{gathered} \text { Error } \\ (\mathrm{MHz}) \end{gathered}$	$\log (\mathrm{Int})$	$\underset{b}{\mathrm{DR}}$	$\begin{gathered} E_{\text {low }} \\ \mathrm{cm}^{-1} \end{gathered}$	$g_{\text {upp }}$	$\underset{d}{\mathrm{TAG}}$	QNFMT		QN^{\prime}			$\begin{gathered} \mathrm{QN}^{\prime \prime} \end{gathered}$			
60688.210	0.0500	-5.0017	3	6.0737	15	01	404	7	0	7	0	6	0	6	0
69353.880	0.0500	-4.8323	3	8.0980	17	01	404	8	0	8	0	7	0	7	0
78017.953	0.0500	-4.6840	3	10.4114	19	01	404	9	0	9	0	8	0	8	0
86680.190	0.0500	-4.5525	3	13.0138	21	01	404	10	0	10	0	9	0	9	0
95340.443	0.0500	-4.4348	3	15.9051	23	01	404	11	0	11	0	10	0	10	0
103998.481	0.0500	-4.3284	3	19.0854	25	01	404	12	0	12	0	11	0	11	0
112654.059	0.0500	-4.2317	3	22.5544	27	01	404	13	0	13	0	12	0	12	0
121307.237	0.0500	-4.1434	3	26.3121	29	01	404	14	0	14	0	13	0	13	0

Notes. Table following the format of the JPL catalog (see Sect. A.2). ${ }^{(a)}$ Base 10 logarithm of the integrated intensity in units of $\mathrm{nm}^{2} \mathrm{MHz}$ at 300 K. ${ }^{(b)}$ Degrees of freedom in the rotational partition function. ${ }^{(c)}$ Upper state degeneracy. ${ }^{(d)}$ Species tag or molecular identifier. ${ }^{(e)}$ Format of the quantum numbers. ${ }^{(f)}$ Quantum numbers for the upper state. ${ }^{(g)}$ Quantum numbers for the lower state. This table is available in its entirety at the CDS. A portion is shown here for guidance regarding its form and content.

Table A.7. Comparison of rotational transition frequencies for $\mathrm{CH}_{3} \mathrm{NCO}$ between those reported in Halfen et al. (2015) and in this work.

J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	Symm.	m	Halfen et al. (2015)	This work	Difference
								measured		
7	-1	7	6	-1	6	E	1	60029.044	60029.019	0.025
7	1	6	6	1	5	A	0	60160.932	60162.076	-1.144^{a}
7	0	7	6	0	6	A	0	60688.191	60688.210	-0.019
7	0	7	6	0	6	E	1	60833.422	60834.588	-1.166^{a}
7	1	7	6	1	6	A	0	61260.729	61260.734	-0.001
8	-1	8	7	-1	7	E	1	68617.550	68618.612	-1.062^{a}
8	1	7	7	1	6	A	0	68753.890	68755.025	-1.135^{a}
8	0	8	7	0	7	A	0	69353.888	69353.880	0.008
8	0	8	7	0	7	E	1	69469.196	69470.354	-1.154^{a}
8	1	8	7	1	7	A	0	70009.179	70010.208	-1.029^{a}
9	1	8	8	1	7	E	1	$77107.478{ }^{\text {b }}$	77101.788	5.690
9	-1	9	8	-1	8	E	1	77211.707	77212.768	$-1.061{ }^{a}$
9	1	8	8	1	7	A	0	77347.355	77347.425	-0.070
9	0	9	8	0	8	A	0	78017.932	78017.953	-0.021
9	0	9	8	0	8	E	1	78087.673	78087.660	0.013
9	1	9	8	1	8	A	0	78758.868	78758.849	0.019
10	-1	10	9	-1	9	E	1	85811.557	85811.546	0.011
10	1	9	9	1	8	A	0	85938.967	85938.962	0.005
10	0	10	9	0	9	A	0	86680.195	86680.190	0.005
10	0	10	9	0	9	E	1	86686.575	86686.556	0.019
10	1	10	9	1	9	A	0	87506.605	87506.607	-0.002
								calculated		
8	1	7	7	1	6	E	1	68536.76^{c}	68532.241	4.519
10	1	9	9	1	8	E	1	$85679.63^{\text {c }}$	85672.565	7.065
11	1	10	10	1	9	E	1	$94253.49^{\text {c }}$	94244.905	8.585
12	1	11	11	1	10	E	1	$102829.92^{\text {c }}$	102819.142	10.778

Notes. ${ }^{(a)}$ One of seven lines from Halfen et al. (2015) showing $a \geq 1 \mathrm{MHz}$ frequency shift relative to the present work. Other lines in the same transition sequences measured in Halfen et al. (2015) do not seem to be affected. ${ }^{(b)}$ This is a bona fide line in our experimental spectrum but our assignment is $m=-2, K=2$ with measured frequency of 77107.514 MHz . ${ }^{(c)}$ Prediction in Halfen et al. (2015) based on the misassigned 77107.478 MHz line. There are no lines in our experimental spectrum at these frequencies, and the actual $K=+1, m=1$ lines are at significantly lower frequencies.

Table A.8. Calculated frequencies and relative intensities of nuclear quadrupole splitting components for the $K_{a}=0,1,2$ ground state $\left(v_{\mathrm{b}}=0\right.$, $m=0$) rotational transitions of $\mathrm{CH}_{3} \mathrm{NCO}$.

$F^{\prime}-F^{\prime \prime}$	$\begin{gathered} K=0 \\ v^{a} / \mathrm{MHz} \\ \hline \end{gathered}$	$I_{\text {rel }}{ }^{b}$	$F^{\prime}-F^{\prime \prime}$	$\begin{aligned} & K=1 \mathrm{~L} \\ & v / \mathrm{MHz} \end{aligned}$	$I_{\text {rel }}$	$F^{\prime}-F^{\prime \prime}$	$\begin{aligned} & K=1 \mathrm{U} \\ & v / \mathrm{MHz} \end{aligned}$	$I_{\text {rel }}$	$F^{\prime}-F^{\prime \prime}$	$\begin{aligned} & K=2 \mathrm{~L} \\ & v / \mathrm{MHz} \end{aligned}$	$I_{\text {rel }}$	$F^{\prime}-F^{\prime \prime}$	$\begin{aligned} & K=2 \mathrm{U} \\ & v / \mathrm{MHz} \end{aligned}$	$I_{\text {rel }}$
$J=1-0$														
0-1	8669.943	0.1111												
2-1	8671.222	0.5555												
1-1	8672.076	0.3334												
$J=2-1$														
1-1	17341.104	0.0833	1-0	17189.333	0.1111	1-0	17503.509	0.1111						
1-2	17341.957	0.0056	1-2	17189.916	0.0056	1-2	17504.205	0.0056						
3-2	17342.465	0.4667	3-2	17190.192	0.4667	3-2	17504.436	0.4667						
2-1	17342.526	0.2500	1-1	17190.305	0.0833	1-1	17504.669	0.0833						
1-0	17343.237	0.1111	2-2	17190.690	0.0833	2-2	17504.853	0.0833						
2-2	17343.379	0.0833	2-1	17191.079	0.2500	2-1	17505.317	0.2500						
$J=3-2$														
2-2	26012.000	0.0370	2-2	25784.511	0.0370	2-2	26255.928	0.0370	2-1	26037.145	0.2000	2-1	26037.736	0.2000
2-3	26012.914	0.0011	2-3	25785.008	0.0011	2-3	26256.344	0.0011	3-3	26037.653	0.0370	3-3	26038.244	0.0370
4-3	26013.246	0.4286	4-3	25785.272	0.4286	2-1	26256.576	0.2000	4-3	26037.653	0.4286	4-3	26038.244	0.4286
3-2	26013.280	0.2963	2-1	25785.285	0.2000	4-3	26256.578	0.4286	2-3	26037.653	0.0011	2-3	26038.244	0.0011
2-1	26013.422	0.2000	3-2	25785.527	0.2963	3-2	26256.831	0.2963	2-2	26038.567	0.0370	3-2	26039.158	0.2963
3-3	26014.194	0.0370	3-3	25786.025	0.0370	3-3	26257.247	0.0370	3-2	26038.567	0.2963	2-2	26039.158	0.0370
$J=4-3$														
3-3	34682.204	0.0208	3-3											
3-4	34683.153	0.0003	3-4	34379.823	0.0003	3-4	35008.150	0.0003	3-3	34716.569	0.0208	3-3	34718.047	0.0003
5-4	34683.402	0.4074	5-4	34380.045	0.4074	5-4	35008.351	0.4074	3-4	34716.569	0.0003	3-4	34718.047	0.0208
4-3	34683.424	0.3125	3-2	34380.086	0.2381	3-2	35008.384	0.2381	5-4	34716.669	0.4074	5-4	34718.146	0.4074
3-2	34683.484	0.2381	4-3	34380.160	0.3125	4-3	35008.463	0.3125	4-3	34717.057	0.3125	4-3	34718.534	0.0208
4-4	34684.372	0.0208	4-4	34380.912	0.0208	4-4	35009.132	0.0208	4-4	34717.057	0.0208	4-4	34718.534	0.3125
$J=5-4$														
4-4	43351.569	0.0133	4-4	42973.421	0.0133	4-4	43758.741	0.0133	4-4	43394.804	0.0133	4-4	43397.758	0.0133
4-5	43352.539	0.0001	4-5	42974.288	0.0001	4-5	43759.523	0.0001	4-5	43395.192	0.0001	4-5	43398.145	0.0001
6-5	43352.740	0.3939	6-5	42974.477	0.3939	6-5	43759.694	0.3939	4-3	43395.292	0.2593	4-3	43398.245	0.2593
5-4	43352.755	0.3200	4-3	42974.511	0.2593	4-3	43759.723	0.2593	6-5	43395.312	0.3939	6-5	43398.265	0.3939
4-3	43352.788	0.2593	5-4	42974.540	0.3200	5-4	43759.755	0.3200	5-4	43395.515	0.3200	5-4	43398.468	0.3200
5-5	43353.725	0.0133	5-5	42975.407	0.0133	5-5	43760.537	0.0133	5-5	43395.903	0.0133	5-5	43398.856	0.0133
$J=6-5$														
5-5	52019.907	0.0093	5-5	51567.406	0.0093	5-5	52509.526	0.0093	5-5	52072.829	0.0093	5-5	52077.994	0.0093
5-6	52020.892	0.0001	5-6	51568.335	0.0001	5-6	52510.369	0.0001	5-6	52073.419	0.0001	5-6	52078.584	0.0001
7-6	52021.060	0.3846	7-6	51568.499	0.3846	7-6	52510.517	0.3846	7-6	52073.539	0.3846	7-6	52078.704	0.3846
6-5	52021.071	0.3241	5-4	51568.525	0.2727	5-4	52510.540	0.2727	5-4	52073.540	0.2727	5-4	52078.705	0.2727
5-4	52021.092	0.2727	6-5	51568.538	0.3241	6-5	52510.555	0.3241	6-5	52073.660	0.3241	6-5	52078.824	0.3241
6-6	52022.056	0.0093	6-6	51569.467	0.0093	6-6	52511.398	0.0093	6-6	52074.250	0.0093	6-6	52079.415	0.0093
$J=7-6$														
6-6	60687.022	0.0068	6-6	60160.922	0.0068	6-6	61259.710	0.0068	6-6	60750.459	0.0068	6-6	60758.718	0.0068
6-7	60688.018	0.0000	6-7	60161.890	0.0000	6-7	61260.590	0.0000	6-7	60751.170	0.0000	6-7	60759.428	0.0000
8-7	60688.163	0.3778	8-7	60162.034	0.3778	8-7	61260.721	0.3778	8-7	60751.284	0.3778	8-7	60759.542	0.3778
7-6	60688.171	0.3265	6-5	60162.054	0.2820	6-5	61260.739	0.2821	6-5	60751.290	0.2821	6-5	60759.548	0.2821
6-5	60688.186	0.2821	7-6	60162.060	0.3265	7-6	61260.746	0.3265	7-6	60751.361	0.3265	7-6	60759.619	0.3265
7-7	60689.167	0.0068	7-7	60163.028	0.0068	7-7	61261.627	0.0068	7-7	60752.072	0.0068	7-7	60760.330	0.0068
$J=8-7$														
7-7	69352.717	0.0052	7-7	68753.883	0.0052	7-7	70009.183	0.0052	7-7	69427.576	0.0052	7-7	69439.955	0.0052
7-8	69353.721	0.0000	7-8	68754.877	0.0000	7-8	70010.088	0.0000	7-8	69428.365	0.0000	7-8	69440.743	0.0000
9-8	69353.849	0.3725	9-8	68755.005	0.3725	9-8	70010.205	0.3726	9-8	69428.471	0.3726	9-8	69440.848	0.3725
8-7	69353.855	0.3281	7-6	68755.021	0.2889	7-6	70010.219	0.2889	7-6	69428.479	0.2889	7-6	69440.856	0.2889
7-6	69353.866	0.2889	8-7	68755.024	0.3281	$8-7$	70010.223	0.3281	8-7	69428.524	0.3281	8-7	69440.902	0.3281
8-8	69354.860	0.0052	8-8	68756.018	0.0052	8-8	70011.128	0.0052	8-8	69429.313	0.0052	8-8	69441.690	0.0052
$J=9-8$														
8-8	78016.793	0.0041	8-8	77346.206	0.0041	8-8	78757.837	0.0041	8-8	78104.085	0.0041	8-8	78121.752	0.0041
8-9	78017.805	0.0000	8-9	77347.220	0.0000	8-9	78758.761	0.0000	8-9	78104.927	0.0000	8-9	78122.593	0.0000
10-9	78017.918	0.3684	10-9	77347.334	0.3684	10-9	78758.866	0.3684	10-9	78105.026	0.3684	10-9	78122.692	0.3685
8-7	78017.924	0.3292	8-7	77347.347	0.2941	8-7	78758.877	0.2941	8-7	78105.033	0.2941	8-7	78122.699	0.2941
9-8	78017.932	0.2941	$9-8$	77347.348	0.3292	9-8	78758.879	0.3292	$9-8$	78105.064	0.3292	$9-8$	78122.730	0.3292
9-9	78018.935	0.0041	9-9	77348.361	0.0041	9-9	78759.803	0.0041	9-9	78105.906	0.0041	9-9	78123.571	0.0041

Notes. ${ }^{(a)}$ Calculated frequency with uncertainty estimated at 5 kHz . ${ }^{(b)}$ Relative intensity of a given hyperfine component such that the sum over all components for this rotational transition is unity.

Appendix B: Astrophysical methods

B.1. The Orion BN/KL region

Orion BN/KL (Becklin-Neugebauer/Kleinmann-Low; Becklin \& Neugebauer 1967; Kleinmann \& Low 1967) is the closest (about 414 pc ; Menten et al. 2007) region exhibiting several processes related to young stellar objects (YSOs) and high-mass star formation (Genzel \& Stutzki 1989). This region is located at the core of the Orion molecular cloud 1 (OMC1) which lies behind the Orion Nebula cluster (O'Dell 2001). Infrared facilities and radio telescopes can observe inside dusty regions where the formation of stars or their associated violent phenomena take place, providing very useful information about these processes. Near- and mid-IR subarcsecond resolution imaging and (sub)millimetre interferometric observations have identified the main sources of luminosity, heating, and dynamics in the region. At first, IRc2 was proposed as the main source of luminosity, heating, and dynamics within the region (Wynn-Williams et al. 1984). However, the detection of two radio continuum sources, B (coincident with the $B N$ object which was resolved with high spatial resolution at 7 mm ; Rodríguez et al. 2009) and I (centroid of the SiO masers and located $0.5^{\prime \prime}$ south of IRc2; Menten \& Reid 1995) revealed that the intrinsic IR luminosity of IRc2 ($L \sim 1000 L_{\odot}$) is only a fraction of the luminosity of the entire system $\left(1 \times 10^{5} L_{\odot}\right.$; Gezari et al. 1998). The radio continuum emission of the IR source n was also identified by Menten \& Reid (1995) ($3^{\prime \prime}$ south-west from source I), suggesting this source as another precursor of the large-scale phenomena. In addition, several IR and millimetre continuum sources have been identified (Shuping et al. 2004; Wu et al. 2014). Thus, the core of Orion KL contains at least three self-luminous objects (protostars), the compact HII regions I, n (see Figs. 3 and B.3), and $B N$; these sources are within a region of $\sim 10^{\prime \prime}(\sim 0.02 \mathrm{pc})$. Their proper motions reveal that they run away from a common region (Gómez et al. 2005). Different scenarios, as well as the formation of high-mass stars, have been proposed to explain the complexity of this source. An explosion of a multistar system (sources I, n, and $B N$) that took place ~ 500 years ago has been proposed as the main factor responsible for most of the Orion KL gas components (Zapata et al. 2011).

The different gas components show distinct physical and chemical properties, which can be identified even with singledish telescopes by a characteristic systemic velocity (Blake et al. 1987; Schilke et al. 2001; Tercero et al. 2010). Classically, these components have been called Hot Core, a hot, $\sim 200-300 \mathrm{~K}$, and dense clump rich in complex organic saturated N-bearing species such as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$, characterized by $\Delta v_{F W H M} \sim 5-15 \mathrm{~km} \mathrm{~s}^{-1}$ and $v_{\mathrm{LSR}} \sim 5-7 \mathrm{~km} \mathrm{~s}^{-1}$; Extended Ridge, the host, quiescent, and relatively cold, $\sim 60 \mathrm{~K}$ ambient cloud rich in simple species such as CS or HCN, emitting lines with $\Delta v_{F W H M} \sim 3-4 \mathrm{~km} \mathrm{~s}^{-1}$ and $v_{\mathrm{LSR}} \sim 8-9 \mathrm{~km} \mathrm{~s}^{-1}$; Compact Ridge, a warm, $\sim 150 \mathrm{~K}$, and compact clump rich in organic saturated O-rich species such as $\mathrm{CH}_{3} \mathrm{OCOH}$ or $\mathrm{CH}_{3} \mathrm{OCH}_{3}$, whose spectral features are characterized by $\Delta v_{F W H M} \sim 2-3 \mathrm{~km} \mathrm{~s}^{-1}$ and $v_{\text {LSR }} \sim 7-8 \mathrm{~km} \mathrm{~s}^{-1}$; and Plateau, molecular outflows presenting typical shock chemistry with molecules such as SO or SiO (Goicoechea et al. 2015); the low velocity flow (oriented along the SW-NE direction and probably driven by source I) is characterized by lines with $\Delta v_{F W H M} \sim 20 \mathrm{~km} \mathrm{~s}^{-1}$ and $v_{\text {LSR }} \sim 5-6 \mathrm{~km} \mathrm{~s}^{-1}$, whereas the high-velocity flow (oriented along the SE-NW direction and whose origin could be the explosive event caused by the dynamical decay of a multi-star system briefly described above) presents lines with $\triangle v_{F W H M}$ as wide as $150 \mathrm{~km} \mathrm{~s}^{-1}$ and $v_{\mathrm{LSR}} \sim 10 \mathrm{~km} \mathrm{~s}^{-1}$. Interferometric observations
have shown other cloud components inside Orion BN/KL such as the millimetre continuum sources MM2, MM4 (which corresponds approximately to Position B, see Figs. 3 and B.3), MM5, and MM6 (Wu et al. 2014). In addition, these latter observations reveal the hot core to be a collection of very dense and hot clumps presenting different chemistry and radial velocities (Favre et al. 2011; Tercero et al. 2015). Position A of Figs. 3 and B. 3 is located in the middle of the hot core clumpy structure.

B.2. Observations

B.2.1. IRAM 30 m

We performed a sensitive, fully single side band reduced, line survey towards Orion IRc2 with the IRAM 30 m telescope over broad frequency ranges (total frequency coverage of $\sim 168 \mathrm{GHz}$; Tercero et al. 2010). Our main goal was to obtain a deep insight into the molecular content and chemistry of Orion BN/KL and to improve our knowledge of its prevailing physical conditions. It also allows us to search for new molecular species and new isotopologues, as well as the rotational emission of vibrationally excited states of molecules already known to exist in this source (see Sect. B. 3 and main text).

The line survey was performed over three millimetrewave windows (3,2 , and 1.3 mm , covering frequency ranges $80-115.5 \mathrm{GHz}, 130-178 \mathrm{GHz}$, and $197-281 \mathrm{GHz}$, respectively) with the IRAM 30 m telescope. The observations were carried out between September 2004 and January 2007 pointing toward the IRc2 source at $\alpha_{2000.0}=5^{\mathrm{h}} 35^{\mathrm{m}} 14.5, \delta_{2000.0}=-5^{\circ} 22^{\prime} 30^{\prime \prime} 0$. Four SiS receivers were used simultaneously, with image sideband rejections within $\sim 13 \mathrm{~dB}$ (1.3 mm receivers), $12-16 \mathrm{~dB}$ (2 mm receivers), and $20-27 \mathrm{~dB}$ (3 mm receivers). The observations were performed using the wobbler switching mode with a beam throw in azimuth of $\pm 120^{\prime \prime}$. No contamination from the off position affected our observations, except for a marginal amount at the lowest elevations (25°) for molecules showing low- J emission along the ambient molecular cloud. System temperatures were in the range of $100-800 \mathrm{~K}$ from the lowest to the highest frequencies. For the spectra between $172-178 \mathrm{GHz}$, the system temperature was significantly higher, $1000-4000 \mathrm{~K}$, owing to proximity of the atmospheric water line at 183.31 GHz . The intensity scale was calibrated using the atmospheric transmission model (ATM; Pardo et al. 2001; Cernicharo 1985). Focus and pointing were checked every $1-2$ hours on planets or nearby quasars. Backends provided a spectral resolution of $1-1.25 \mathrm{MHz}$. The half power beam width (HPBW) of the 30 m telescope ranged from $31^{\prime \prime}$ to $9^{\prime \prime}$ from 80 to 280 GHz (HPBW[arcsec] $=2460 /$ Freq.[GHz]). The data were reduced using the GILDAS package ${ }^{1}$ checking for image sideband contamination and fitting and removing $0-1$ order baselines. Figures using these data are shown in main beam temperature (T_{MB}).

B.2.2. ALMA SV

The ALMA Science Verification (SV) data were taken in January 2012 towards the IRc2 region in Orion. The observations were carried out with 16 antennas of 12 m in the frequency range from 213.715 to 246.627 GHz (Band 6). The primary beam was $\sim 27^{\prime \prime}$. Spectral resolution was 0.488 MHz
${ }^{1}$ http://www.iram.fr/IRAMFR/GILDAS
($\sim 0.64 \mathrm{~km} \mathrm{~s}^{-1}$ in the observed frequency range). The observations were centred on coordinates: $\alpha_{\mathrm{J} 2000}=05^{\mathrm{h}} 35^{\mathrm{m}} 14.35$, $\delta_{\mathrm{J} 2000}=-05^{\circ} 22^{\prime} 35^{\prime \prime} 00$. The CASA software ${ }^{2}$ was used for initial processing, and then the visibilities were exported to the GILDAS package for further analysis. The synthesized beam ranged from $2 .{ }^{\prime \prime} 00 \times 1 .^{\prime \prime} 48$ with a PA of 176° at 214.0 GHz to $1 .{ }^{\prime \prime} 75 \times 1$!. 29 with a PA of 164° at 246.4 GHz . The brightness temperature to flux density conversion factor is 9 K for 1 Jy per beam. The continuum emission was subtracted in the maps by carefully selecting line-free channels.

B.3. Astronomical model

B.3.1. Orion KL

Frequency predictions and intensities reported in this work were implemented in MADEX (Cernicharo 2012) to model the emission of $\mathrm{CH}_{3} \mathrm{NCO}$ and to search for it toward Orion KL. MADEX is an excitation and radiative transfer code which includes more than 5200 molecular species with accurate spectroscopy. To derive the physical parameters shown in Table B.1, we performed a model that reproduces more line profiles more accurately from transitions covering a wide energy range within a $\sim 30 \%$ of the uncertainty in line intensity (red lines in Figs. 2 and B.1).

Owing to the lack of collisional rates for this molecule, we used LTE approximation. Nevertheless, taking into account the physical conditions of the considered components of the cloud (see Table B.2), we expect that this approximation works reasonably well (see e.g. Fortman et al. 2012). For each spectral component, we assume uniform physical conditions of the cloud (line width, radial velocity, and source size with uniform brightness temperature and optical depth over this size), which we choose by taking into account the parameters obtained from Gaussian fits of the line profiles and the emission shown by the ALMA maps. To fit the IRAM 30 m lines, we also considered the beam coupling effects adding the offset position with respect to IRc2 (the pointing position). Corrections for beam dilution are also applied for each line depending on the different beam sizes at different frequencies. Therefore, we fixed all of the above parameters leaving only the rotational temperature and the column density as free parameters for each component. In order to determine the uncertainty of the values of column density and of temperature, we ran several models varying only the values for these parameters and fixing the rest. To fit the ALMA data we extracted the averaged spectrum over 5×5 pixels $\left(\sim 1^{\prime \prime} \times 1^{\prime \prime}\right)$ around Position A and Position B (see Figs. 3 and B.3). To derive the column densities and relative abundances of the species shown in Table B.1, we adopted the same model of $\mathrm{CH}_{3} \mathrm{NCO}$ for each position varying the column density for each one of the species of Table B.1. In Fig. B.1, a model containing all species already studied in the IRAM 30 m survey is included (cyan line). The molecules considered in the models and references to their modelling and analysis are given in Table B.3. This table also summarizes the works performed to date based on the 30 m data and devoted to mitigating the number of unidentified lines in the IRAM 30 m survey of Orion (especially those in collaboration with spectroscopy laboratories), to searching for new molecular species in interestelar clouds, and to improving the knowledge of the physical-chemical properties of Orion KL.

[^1]
B.3.2. Sgr B2(N)

We have searched in published line surveys of Sgr B2 and W51 for $\mathrm{CH}_{3} \mathrm{NCO}$. We find that 21 unidentified features above 13σ found in Sgr B2 by Belloche et al. (2013) can be unambiguously assigned to $\mathrm{CH}_{3} \mathrm{NCO}$. However, in the PRIMOS data (Neill et al. 2012) of the same source the assignment is not obvious. $\mathrm{CH}_{3} \mathrm{NCO}$ was also reported in Sgr B2 during the submission process of this work (Halfen et al. 2015). We used MADEX and the public data of Sgr B2(N) provided by Belloche et al. (2013) to derive the rotational temperature and column density of methyl isocyanate in this source (see Fig. B.2, red line). We find that the two hot ($T_{\text {rot }}=200 \mathrm{~K}$) and compact ($d_{\text {sou }} \simeq 2^{\prime \prime}$) components derived by Belloche et al. (2013) for HNCO are enough to reproduce all lines that appear at 3 mm . We derive column densities of $N=5 \times 10^{17} \mathrm{~cm}^{-2}$ for the $63 \mathrm{~km} \mathrm{~s}^{-1}$ component and $3 \times 10^{17} \mathrm{~cm}^{-2}$ for the second component at $73 \mathrm{~km} \mathrm{~s}^{-1}$ (assuming $\Delta v_{F W H M}=7 \mathrm{~km} \mathrm{~s}^{-1}$, see Belloche et al. 2013).

In W51 (Pulliam et al. 2012), another well-known hot core with similar molecular content than Orion, we do not find an obvious detection in the data, because the lines are weaker owing to the higher distance of W51 compared to Orion.

Methyl isocyanate turns out to be one of the prominent molecules in hot cores and it is surprising to realize that it is present in many line surveys. It was only the lack of suitable laboratory data delayed its discovery. In the present work it is the close collaboration between astronomers and molecular physicists that has made such detailed characterization of this new molecular species possible.

B.4. Spatial distribution in Orion

The spatial distribution of several molecules detected in Orion KL is shown in Figs. 3 and B.3. Despite the lack of short spacing data required for completion of the possible extended emission of some of these species (see e.g. $\mathrm{CH}_{3} \mathrm{OH}$ or DCN), we can obtain an overview of the main cores that host these species. Moreover, the discussion has to address the large differences in energies of the upper level for the transitions involved in those maps (it is not possible to find transitions with similar energies of, for instance, DCN and $\mathrm{HC}_{3} \mathrm{~N} v_{7}=1$ between $213.7-247.5 \mathrm{GHz}$, the coverage of the ALMA SV data). In addition, owing to the extreme complexity of Orion KL, it is not straightforward to find lines free of blending with other species in the whole region: many lines of a large variety of molecules that appear unblended in some cores, overlap with lines of other species in the average spectrum of the region. This makes it more difficult to derive maps of lines involving transitions with uniform upper level energies. Nevertheless, by taking these restrictions into account, the discussion can be focused on the main differences/similarities found for the different "families" of molecules.

As we have pointed out in the main text, we note a similar spatial distribution for $\mathrm{CH}_{3} \mathrm{NCO}, \mathrm{NH}_{2} \mathrm{CHO}$, and HNCO . The main differences of these maps are a larger extension of HNCO due to its higher abundance and the lack of the clump in the NW of Position B for $\mathrm{NH}_{2} \mathrm{CHO}$; in addition, $\mathrm{CH}_{3} \mathrm{NCO}$ does not emit in this region, whereas HNCO and $\mathrm{NH}_{2} \mathrm{CHO}$ show some emission at the position of the compact ridge. It is worth noting that these species are the only three detected in Orion KL containing nitrogen, oxygen, carbon, and hydrogen together.

Following with the compact ridge, this component is the main host of $\mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{OCOH}$, and $\mathrm{CH}_{2} \mathrm{OCH}_{2}$, all of them

Table B.1. Molecular abundances in Orion and in Comet 67P/Churyumov-Gerasimenko.

Species	Comet	Orion Position A		Orion Position B	
	Abundance rel. to $\mathrm{H}_{2} \mathrm{O}$	Column density $\left(\mathrm{cm}^{-2}\right)$	$\begin{array}{r} \hline \text { Abundance } \\ \text { rel. to } \mathrm{H}_{2} \mathrm{O} \\ (\times 100) \\ \hline \end{array}$	$\begin{array}{r} \text { Column } \\ \text { density }\left(\mathrm{cm}^{-2}\right) \end{array}$	$\begin{array}{r} \text { Abundance } \\ \text { rel. to } \mathrm{H}_{2} \mathrm{O} \\ (\times 100) \\ \hline \end{array}$
$\mathrm{H}_{2} \mathrm{O}^{a}$	100	$(3 \pm 1) \times 10^{19}$	100	$(2.0 \pm 0.6) \times 10^{19}$	100
HCN^{a}	0.9	$(4 \pm 1) \times 10^{17}$	1.3	$(2.0 \pm 0.6) \times 10^{17}$	1.0
$\mathrm{CO}^{\text {b }}$	1.2	$(4 \pm 1) \times 10^{19}$	130	$(1.0 \pm 0.3) \times 10^{19}$	50
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	0.6	$\leq(4 \pm 1) \times 10^{15}$	≤ 0.01	$(4 \pm 1) \times 10^{15}$	0.02
$\mathrm{CH}_{3} \mathrm{CN}^{c}$	0.3	$(7 \pm 3) \times 10^{16}$	0.2	$(1.0 \pm 0.3) \times 10^{17}$	0.5
HNCO	0.3	$(1.0 \pm 0.3) \times 10^{17}$	0.3	$(7 \pm 3) \times 10^{16}$	0.35
$\mathrm{CH}_{3} \mathrm{CHO}$	0.5	$(1.6 \pm 0.5) \times 10^{15}$	0.005	$(1.4 \pm 0.3) \times 10^{15}$	0.0075
HCONH_{2}	1.8	$(4 \pm 1) \times 10^{15}$	0.01	$(7 \pm 3) \times 10^{14}$	0.0035
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{\text {d }}$	0.3	$\leq(4 \pm 1) \times 10^{14}$	≤ 0.001	$\leq(2 \pm 1) \times 10^{14}$	≤ 0.001
$\mathrm{CH}_{3} \mathrm{NCO}$	1.3	$(7 \pm 3) \times 10^{15}$	0.02	$(4 \pm 1) \times 10^{15}$	0.02
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	0.3	$(1.4 \pm 0.4) \times 10^{16}$	0.04	$(1.1 \pm 0.3) \times 10^{16}$	0.055
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}^{\text {d }}$	0.1	$\leq(1.0 \pm 0.3) \times 10^{15}$	≤ 0.003	$\leq(1.0 \pm 0.3) \times 10^{15}$	≤ 0.005
$\mathrm{CH}_{3} \mathrm{CONH}_{2}$	0.7	$(1.2 \pm 0.4) \times 10^{15}$	0.004	$\leq(3 \pm 1) \times 10^{14}$	≤ 0.0015
$\mathrm{CH}_{2} \mathrm{OHCHO}$	0.4	$(7 \pm 3) \times 10^{14}$	0.002	$\leq(4 \pm 1) \times 10^{14}$	≤ 0.002
$\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	0.2	$(9 \pm 3) \times 10^{15}$	0.03	$\leq(1.0 \pm 0.3) \times 10^{15}$	≤ 0.005
$\mathrm{CH}_{3} \mathrm{OH}$		$(3 \pm 1) \times 10^{18}$	10	$(9 \pm 3) \times 10^{17}$	4.5
$\mathrm{CH}_{3} \mathrm{OCOH}$		$(9 \pm 3) \times 10^{16}$	0.3	$(6 \pm 2) \times 10^{16}$	0.3
$\mathrm{CH}_{3} \mathrm{COOH}$		$(1.0 \pm 0.3) \times 10^{16}$	0.03	$\leq(3 \pm 1) \times 10^{15}$	≤ 0.015
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$		$(3 \pm 1) \times 10^{16}$	0.1	$(3 \pm 1) \times 10^{16}$	0.15

Notes. ${ }^{(a)}[\mathrm{D}] /[\mathrm{H}]=0.003$; from $[\mathrm{HDO}] /\left[\mathrm{H}_{2} \mathrm{O}\right]$ (Neill et al. 2013); ${ }^{(b)}\left[{ }^{16} \mathrm{O}\right] /\left[{ }^{18} \mathrm{O}\right]=250$; from $\left[{ }^{16} \mathrm{OCS}\right] /\left[{ }^{18} \mathrm{OCS}\right]$ (Tercero et al. 2010); ${ }^{(c)}\left[{ }^{12} \mathrm{C}\right] /\left[{ }^{13} \mathrm{C}\right]=45$ (Tercero et al. 2010); ${ }^{(d)}$ Only the lowest energy conformer, trans for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and cis for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$.

Table B.2. Physical parameters of the considered Orion KL cores.

	IRAM 30 m	ALMA SV			
		Position A		Position B	
		Comp. 1	Comp. 2	Comp. 1	Comp. 2
$v_{\text {LSR }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	7	8	6	8	5
$\Delta u_{\text {FWHM }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	5	3	8	3	3
$d_{\text {sou }}\left({ }^{\prime \prime}\right)$	8	3	3	3	
offset $\left({ }^{\prime \prime}\right)$	5	\ldots	\ldots	\ldots	\ldots
$T_{\text {rot }}(\mathrm{K})$	150 ± 50				
$N\left(\mathrm{CH}_{3} \mathrm{NCO}\right)\left(\mathrm{cm}^{-2}\right)$	$(5 \pm 2) \times 10^{15}$	$(5 \pm 2) \times 10^{15}$	$(2.5 \pm 0.7) \times 10^{15}$	$(2.5 \pm 0.7) \times 10^{15}$	$(1.7 \pm 0.5) \times 10^{15}$

organic compounds containing oxygen. Molecules that we could naively think that are related with them, such as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{2} \mathrm{OHCHO}$, present a completely different spatial distribution (Guélin et al. 2008; Peng et al. 2012, 2013; Widicus Weaver \& Friedel 2012; Friedel \& Widicus Weaver 2012; Brouillet et al. 2015; Feng et al. 2015; Tercero et al. 2015). Although there are some remarkable differences in the emission of the latter species, we observe the main core located at the SE of source n (at the middlesouth of the hot core). Abundant species in the region such as DCN, HDO, and $\mathrm{CH}_{3} \mathrm{CN}$ do not show significant emission at the compact ridge.

On the other hand, complex species with nitrogen such as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{CHCN}$, and $\mathrm{HC}_{3} \mathrm{~N}$, present their emission at the north of the hot core. In addition, emission at the NE of source I is more prominent for these species (Guélin et al. 2008; Widicus Weaver \& Friedel 2012; Friedel \& Widicus Weaver 2012).

Finally, although we do not discuss the emission peaks of $\mathrm{CH}_{3} \mathrm{OH}$ (methanol, one of the most abundant species), because they could be affected by opacity effects, we note that methanol is ubiquitous in the region.

 Fig. B.1. Lines of $\mathrm{CH}_{3} \mathrm{NCO}$ (here and the n 87390

 $v_{\text {LSR }}$ of $+9.0 \mathrm{~km} \mathrm{~s}^{-1}$ is assumed.

102930
102900

Fig. B.1. continued.

\because

 139740

Fig. B.1. continued.

 $201090 \quad 201120$

Fig. B.1. continued.

Fig. B.1. continued.

Fig. B.1. continued.

 243960
$\mathrm{~J}=28 \quad \mathrm{~K}=0 \mathrm{~m}=4$

244500
$\mathrm{~J}=29 \mathrm{~K}=1 \mathrm{~m}=0$
244530

Fig. B.1. continued.

Fig. B.1. continued.

Fig. B.1. continued.

Fig. B.2. Selected lines of $\mathrm{CH}_{3} \mathrm{NCO}$ in $\mathrm{Sgr} \mathrm{B} 2(\mathrm{~N})$ at 3 mm . Observed data (black histogram spectrum) and total model of the source (green curve) are from Belloche et al. (2013). Our best model for $\mathrm{CH}_{3} \mathrm{NCO}$ is given by the red line. Frequencies given by Halfen et al. (2015) with their uncertainty are indicated by the blue arrows and lines. A $v_{\text {LSR }}$ of $+64.0 \mathrm{~km} \mathrm{~s}^{-1}$ is assumed.

J. Cernicharo et al.: Methyl isocyanate in Orion

Fig. B.3. Spatial distribution of selected molecules from the ALMA data of Orion between $213-247 \mathrm{GHz}$ (see text).

Table B.3. Model for the IRAM 30 m data based on previously analysed molecular species.

Reference	Studied species	Notes
Tercero et al. (2010) ${ }^{\dagger}$	OCS, CS, $\mathrm{H}_{2} \mathrm{CS}, \mathrm{HCS}^{+}$, CCS, CCCS	$b c$
Tercero et al. (2011) ${ }^{\dagger}$	SiO, SiS	$b c$
Daly et al. (2013) ${ }^{\dagger}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	$a b c$
Esplugues et al. (2013a) ${ }^{\dagger}$	$\mathrm{SO}, \mathrm{SO}_{2}$	$b c$
Esplugues et al. (2013b) ${ }^{\dagger}$	$\mathrm{HC}_{3} \mathrm{~N}, \mathrm{HC}_{5} \mathrm{~N}$	$b c d$
López et al. (2014) ${ }^{\dagger}$	$\mathrm{CH}_{2} \mathrm{CHCN}$	$a b c$
Marcelino et al. (in prep.) ${ }^{\dagger}$	HCN, HNC, HCO^{+}	bcde
Demyk et al. (2007)	${ }^{13} \mathrm{C}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	${ }_{\text {ac }}$
Margulès et al. (2009)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}^{15} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CHDCN}, \mathrm{CH}_{2} \mathrm{DCH}_{2} \mathrm{CN}$	${ }^{\text {ac }}$
Carvajal et al. (2009)	${ }^{13} \mathrm{C}-\mathrm{HCOOCH} 3$	${ }^{\text {ac }}$
Marcelino et al. (2009)	HNCO	c
Margulès et al. (2010)	DCOOCH_{3}	$a c$
Tercero et al. (2012)	${ }^{18} \mathrm{O}-\mathrm{HCOOCH}$	${ }_{\text {ac }}$
Motiyenko et al. (2012)	$\mathrm{NH}_{2} \mathrm{CHO}, \mathrm{NH}_{2} \mathrm{CHO} v_{12}=1$	${ }_{\text {ac }}$
Coudert et al. (2013)	$\mathrm{HCOOCH}_{2} \mathrm{D}$	${ }^{\text {ac }}$
Tercero et al. (2013)	$\mathrm{CH}_{3} \mathrm{COOCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOH}$	${ }^{\text {ac }}$
Cernicharo et al. (2013)	$\mathrm{NH}_{3} \mathrm{D}^{+}$	${ }^{\text {ac }}$
Kolesniková et al. (2013)	c- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (not detected)	${ }^{\text {ac }}$
Haykal et al. (2013)	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{NC}$ (not detected)	${ }^{\text {ac }}$
Bell et al. (2014)	$\mathrm{CH}_{3} \mathrm{CN}$	$b c$
Kolesniková et al. (2014)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}, \mathrm{CH}_{3} \mathrm{SH}, \mathrm{CH}_{3} \mathrm{OH},{ }^{13} \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	${ }^{\text {ac }}$
Haykal et al. (2014)	${ }^{13} \mathrm{C}-\mathrm{HCOOCH}_{3} v_{t}=1$	${ }^{\text {ac }}$
Tercero et al. (2015)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	ce
Kolesniková et al. (2015)	$\mathrm{CH}_{3} \mathrm{COOCHCH}_{2}$ (not detected)	ace
Alonso et al. (2015)	$\mathrm{CH}_{2} \mathrm{CHCOOH}$ (not detected)	ace
López et al. (in prep.)	$\mathrm{HCOOCH}_{3} v_{t}=0,1,2, \mathrm{CH}_{3} \mathrm{COOH} v_{t}=0,1,2, \mathrm{CH}_{2} \mathrm{OHCHO}$	ce
In progress	$\mathrm{CH}_{2} \mathrm{OCH}_{2}$, AG-OHCH2 $\mathrm{CH}_{2} \mathrm{OH}$	${ }^{\text {c }}$
In progress	${ }^{13} \mathrm{C}-\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CN} v_{8}=1$	c
In progress	$\mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{H}_{2}^{13} \mathrm{CO}$	c

Notes. ${ }^{(\dagger)}$ In this analysis we have include all isotopologues and vibrational excited states of the molecule. ${ }^{(a)}$ Papers in collaboration with spectroscopists. ${ }^{(b)}$ Papers dividing the analysis of the Orion surveys in different families of molecules. ${ }^{(c)}$ Papers based on the IRAM 30 m 1D-survey (Tercero et al. 2010) and/or 2D-survey (Marcelino et al., in prep.). ${ }^{(d)}$ Papers based on Herschel/HIFI data. ${ }^{(e)}$ Papers based on ALMA SV data.

[^0]: * This paper makes use of the following ALMA data: ADS/JAO.ALMA\#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-meter telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
 ** Full Table A. 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
 http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/L4

[^1]: ${ }^{2}$ http://casa.nrao.edu

