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Abstract 
This paper introduces a rigorous methodology for 
utilizing threat modeling in building secure software 
architectures using SAM (Software Architecture 
Modeling framework) and verifying them formally 
using Symbolic Model Checking. Security mitigations 
are expressed as constraints over a high-level SAM 
model and are used to refine it into a secure 
constrained model. We also, propose a translation 
from SAM Secure models into the SMV model 
checker where the threats and the elicited security 
properties from the threat modeling process are used 
as inputs to the verification phase as well.  This 
method is developed with the aim of bridging the gap 
between informal security requirements and their 
formal representation and verification. 

1. Introduction 
There is a lack of a well-defined process for the 

analysis, architecture and design of secure software 
systems [1]. At the same time, the lack of formality in 
defining security requirements makes it harder to 
verify that they are met by the underlying security 
architecture. In this paper, we propose a rigorous 
methodology for building and verifying secure 
system architectures guided by the process of threat 
modeling that is performed with both architecture and 
verification in mind. Security constraints are 
expressed as mitigations and are used as suggested by 
[2] in refining a high-level architecture into a secure 
architecture model. The resulting secure model is 
translated to a model checker for verification and 
output from the threat model is also utilized in 
verifying that the security properties elicited from the 
threat model are satisfied by the architecture.  

2. Related Work 
Our research intercepts with several areas of 

security engineering, all aimed at the early integration 
of security in the software life cycle; they are: 
Adversary Modeling, Architecture Modeling and 
Architecture Verification. In Adversary modeling, 
several methods have been devised in order to model 
the goals of the adversary and the means he will use 

to achieve these goals. Attack trees [3], goal-oriented 
analysis [4], and misuse cases [5] are all forms of 
adversary modeling, targeting the elicitation of 
security requirements. Threat modeling, also a form 
of adversary modeling and utilized by Myagmar et al. 
[6], and Howard and LeBlanc [7] presents a 
systematic way of determining the threats to a 
software system. Threat modeling starts with an 
initial system decomposition that could be achieved 
using data flow or UML activity diagrams. This 
decomposition is useful in identifying assets that 
need to be protected, their access points, and their 
vulnerabilities. After stepping through each asset, and 
identifying possible threats as suggested by Xu and 
Nygard [1], Howard and LeBlanc [7], Myagmar et al. 
[6], using the STRIDE threat categories [7], threats 
could be documented in a variety of ways (like threat 
trees, or threat outlines [3]). Threat modeling has a 
wider-scope than the attack modeling techniques that 
consider only the attacker's perspective because 
system-specific threats require deeper analysis of the 
unique qualities of the system being modeled [6]. 

Most of the above mentioned adversary modeling 
techniques lack two aspects: (1) they leave it open as 
to how this modeling process will affect the choice of 
architecture components, or how they could be 
captured in the architecture and design phases when 
as Haley et al. [8] indicate: the elaboration of 
requirements and architecture should proceed in 
parallel, each influencing the other  (2) they mostly 
lack a formal means by which these security 
properties could be modeled, traced, and verified in 
the resulting secure architecture. 

Xu et al address the first concern by suggesting 
utilizing misuse cases in guiding the choice of 
architecture components. Use/misuse case diagrams 
are used for deciding on candidate components. They 
use a tabular approach of components in the rows and 
the use/misuse cases utilizing them in the columns, to 
decide on the services that the system must provide 
and prevent the ways that the system might be 
misused [9]. Then, using a fish-eye diagram of the 
candidate architecture, the components that need 
change are highlighted in size or in color according to 
the number of interactions that each component has 
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from the table. This can help system designers later 
decide on the best fitting candidate architecture. 
However, the lack of formality in their approach 
would make it harder to trace and verify the security 
requirements in their resulting architecture. 

Lamsweerde et al [10] and Lamsweerde [11], 
address the second concern, as they use temporal 
logic for formally specifying their security goals. 
Anti-models are introduced in [11] as a way of 
defining anti-goals as opposed to system goals. Anti-
goals are derived using obstacle analysis extended to 
handle malicious obstacles building on the KAOS 
framework for generating and resolving obstacles to 
requirements achievement. Anti-goals are derived 
through goal negation of the CIA patterns, which are 
in turn instantiated to objects of the object model. 
Through progressive refinements using techniques 
such as goal negation, terminal anti-goals can be 
derived, which can be used to identify anti-
requirements and vulnerabilities. Later, these anti-
goal trees are used to build the object and agent anti-
models and at the end, alternative countermeasures 
are derived to augment the primal model of security 
goals [11]. Lamsweerde [10, 11] address the 
importance of exception handling at the requirements 
level and therefore maintain their analysis at the goal 
level. In our research, we also utilize linear time 
temporal logic for security property specification; 
however through the use of a new threat modeling 
template, with specific architecture additions and 
utilizing formal definitions, we continue to follow the 
requirements from analysis to initial design and its 
verification to make sure that we have a process for 
continually verifying and refining the architecture 
model using security property specifications. In our 
proposed methodology, the outcome of threat 
modeling is used to both influence the architecture 
and verification phases, and at the same time, the 
outcome of the verification phase can reveal new 
threats from flawed design uncovered by the tests, 
thereby refining both the threat and architecture 
models accordingly.  

For architecture modeling, Xu and Nygard [1], 
propose an approach for modeling threats as Petri 
nets and mitigations as aspect-oriented Petri nets, 
thereby providing a step towards the formal 
specification and verification of security 
requirements and mitigations. SAM, the Software 
Architecture Modeling framework, can also be used 
as suggested by Deng et al. [2] to provide a multi-
level architectural model with dual notation (Petri 
nets and temporal logic) for "describing different 
aspects of architecture level design such as structure, 
behavior and constraints". Fu et al. [12] propose a 
variation of the SAM framework called SO-SAM: a 

service-oriented software architecture model and an 
extension of the SAM model specifically for 
modeling web services applications. Deng et al. [2] 
propose that desired security properties should be 
expressed as constraints or policies over the SAM 
high-level architecture using temporal logic. These 
constraints are then used to further refine the software 
architecture by decomposing [2] the high-level 
architectural model.  

As for verification, and given a petri-net based 
architecture model, both Xu and Nygard [1], and 
Deng et al. [2] suggest reachability analysis for 
security architecture verification. Whereas Fu et al. 
[12] suggest translating the architecture models into 
one of the model checking languages, and presenting 
the checker with logical properties (such as liveness 
and deadlock freedom) to verify that they are 
satisfied by the translated models. Unlike reachability 
analysis, model checking does not require the 
generation of all states before properties can be 
examined. Therefore it does not suffer from the state 
explosion problem [13].  

In order to verify an architecture model using a 
model checker, a mapping between the architecture 
and the model checker language has to be defined.  
Tanuan [14] suggests utilizing model checking in 
verifying the constraints in the UML specifications, 
where a specific mapping between UML and SMV is 
proposed to verify UML specifications. At the same 
time, others suggest the mapping of SAM petri net 
behavior models and property specifications into 
SMV. For example, He et al. [15] propose utilizing 
symbolic model checking for verifying correctness of 
an architecture specification in SAM. They suggest 
translation guidelines for translating petri net 
behavior models into SMV and then test CTL 
properties against the translated transition system for 
verifying the architecture specification. He et al. [16] 
also propose a translation procedure of SAM 
behavior models into SMV. 

Most of the above proposed methods for earlier 
security integration usually target either the phases of 
requirement specification or architecture modeling 
but not both, failing to formally trace security 
requirements from the requirement analysis phase to 
architecture, design, and verification phases.  At the 
same time, there is a lack of a rigorous translation 
methodology specifically targeted for translating the 
SAM models into SMV and a lack of a verification 
method targeted at verifying security properties in the 
presence of threats using symbolic model checking 
where most research is targeted at verifying 
correctness and safety properties. In this paper we 
show that we can express security properties formally 
using temporal logic over an SAM architecture 
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model, as well as propose a translation methodology 
between the SAM architecture model and its security 
properties and the SMV model checker, for verifying 
that the security properties are met by the 
architecture. 

3. Methodology 
The methodology presented in this paper builds on 

the work of Xu and Nygard [1], Deng et al. [2], Fu et 
al. [12], He et al. [16], and Myagmar et al. [6]. The 
goal of this research is to guide the process of secure 
architecture modeling and verification by performing 
threat modeling [6, 7] earlier in the software life 
cycle during the requirements analysis phase. We 
propose a new threat modeling template that allows 
the designer to specify architectural artifacts and 
constraints as mitigations along side the security 
solutions of the classical threat models [7]. The 
template also allows the designer to specify the 
security property specifications that the resulting 
system should meet if the threat is truly mitigated. 
For architecture modeling, the threat model's 
architectural mitigations and constraints could be 
used to refine a high-level architecture model into 
secure behavior models. Whereas for architecture 
verification, the threat model's logical property 
specifications as well as the threat descriptions could 
be used as inputs to the verification phase to verify 
that the threats do not violate the security properties 
under the provided secure architecture model. This 
way, threat modeling could rigorously influence both 
secure architecture modeling and verification.  

Threat models give threat descriptions, and provide 
security mitigations as well as elicit security property 
specifications. In order to bridge the gap between 
informal threat descriptions and formal architecture 
modeling, we propose formally specifying mitigation 
constraints in temporal logic over the high level 
Service-Oriented Software Architecture Model (SO-
SAM) proposed by Fu et al. [12]. These constraints 
could then formally guide secure architecture 
decomposition (as proposed by Deng et al. [2]).  

The resulting architecture model, represented by 
SAM Petri net behavior models is verified as Fu et al 
[12], and He et al. [16] suggest by translating it into a 
high-level model checking language (where it could 
be checked for the absence of threats by verifying the 
stated security properties). We suggest for this 
purpose a translation methodology between the SAM 
Architecture model and the SMV model checker. 
Counter examples provided by the model checker can 
help the designer identify the problem and refine both 
the threat and architecture models accordingly.  

The proposed methodology like that suggested by 
Hall et al. [17], attempts to build correctness into 
every step by suggesting a rigorous requirements 
definition, formal architecture modeling using the 
Software Architecture Modeling framework (SAM), 
and formal verification of the resulting architecture 
against the security property specifications using 
model checking.  Figure 1, shows the steps of the 
proposed methodology: 

Figure 1. Proposed Methodology 
Step 1: High-level Architecture: 
Build a high-level architecture of the system. Figure 
2, shows the e-company server side only of a high 
level architecture of a shopping cart application 
proposed by Fu  et al. [12], composed of the 
Warehouse and Order components and their interface 
input/output ports (petri net nodes responsible for 
communication with other components or system 
parts). Components are numbered and petri net ports 
are concatenated with numbers denoting which 
components produce/consume their tokens. For 
example request_7 is an input interface port to 
Warehouse component (number 7) that receives a 
request token to be consumed by the component; 
whereas response_72 is an output interface port that 
sends a response token from warehouse component to 
another component numbered 2 in the model (not 
shown in figure).  
Step 2: Threat Modeling: 
Perform threat modeling on the given architecture, 
where threats to assets and access points are 
identified and classified based on the STRIDE 
categories. Fill the proposed threat modeling template 
with the security threats and their respective 
mitigations. This template enhances the classical 
model [7] -- where security techniques (such as 
authentication, authorization, encryption, etc.) are 
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specified as mitigations -- with the ability to specify 
architectural mitigations, logical constraints, and 
property specifications. These enhancements utilize a 
combination of formal notation, using first order 
temporal logic, and informal English descriptions.  
Step 3: Building Secure Behavior Models: 
Translate each mitigation to an equivalent Petri net 
model [2], to build a component behavior model 
using the new transitions and the new places 
suggested by the mitigation, and the constraints 
imposed over existing or new transitions.  

 
Figure modified from [12] 

Figure 2. High level SAM Architecture of E-
Company 

Step 4: Building the Constraint Architecture 
Model (CRM): 
- Build a constraint architecture model for the entire 

architecture by plugging in the component behavior 
models at their proper places in the high-level 
architecture.  

- For each new security technique specified as a 
mitigation, insert a black-box new component in 
the detailed architecture at the proper location 

- Use system wide constraints to link the new 
components to existing components according to 
the provided policy constraints. These system wide 

constraints are too realized using new transitions 
and places. 

- For each mitigation realized by a new component: 
if the component is a black box off-the-shelf 
security solution, we insert a place-holder for the 
component with its interface ports without refining 
its internal structure. Otherwise, we refine it by 
applying threat modeling to it (go back to step 2). 

Step 5: Verification: 
- Start translating the SAM model into SMV to 

perform model checking: 
- Use the SAM high-level architecture to provide the 

structure for the SMV model by dividing it into 
system, composition, and component modules, as 
well as connectors between components. 

- Translate each component behavior model into a 
component module using our suggested translation 
methodology 

- Translate the LTL security properties specified by 
the threat model into CTL and insert them into the 
SMV model 

- Transform each threat into a set of parameters that 
change the initial marking of the model. 

- Check to see if the security properties are satisfied 
by the given model, to determine if the architecture 
is secure given the corresponding threats or not. 

Step 6: Refinement: 
Use counter examples provided by the model checker 
to refine the threat and architecture models. 
 
3.1. Threat Modeling the SAM Architecture 
Model 

The proposed threat model integrates the classical 
form of threat models where security techniques are 
specified as mitigations, with a new model where 
architectural constraints, components, or artifacts are 
specified as mitigations as well. These architectural 
mitigations are used to guide the refinement of the 
SAM model into secure constraint behavior models. 
The architectural nature of our threat model 
facilitates integrating application-security threats 
resulting from implementation flaws along side the 
classical security threats resulting from 
compromising the confidentiality, integrity or 
authenticity of the system as a whole. A classical 
threat modeling template would at minimum include 
a threat Title, a threat Category according to STRIDE 
model, and the mitigation technique (access control, 
encryption, etc). The new threat modeling template 
enhances the classical model with the following 
architecture and verification-related additions: 
- Threat Type: threats could be either: 
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o Component Threats: These are threats that are 
specific to a component, examples are business 
logic threats such as price or quantity tampering. 

o Composition Threats: These are threats that 
involve more than one component in the same 
composition. Examples are threats resulting 
from a flawed communication between 
components inside a composition, causing for 
example a validation bypass.  

o System-wide Threats: These are threats that 
apply to an entire system (i.e. the output of the 
system as a whole will be affected by such a 
threat); for example a threat to the whole web 
service with all its respective components, like a 
spoofing identity threat, or an elevation of 
privilege threat. 

- Threat Target: Name of the architectural artifact 
that the threat could apply to, it could be the name 
of an entry/exit point of a component, a 
composition, or the entire system. 

-  Mitigations: Mitigations could be either: 
o A Logical Constraint 

  An intermediate component constraint: 
This could be realized by a logic constraint 
enforced over an existing transition in the 
High level Petri net or by adding a new 
transition/place to the architecture and 
applying this constraint to it. 

 A system wide constraint � enforces a 
policy governing interactions between 
components: expressed as a constraint over 
one or more of the system components, or 
the entire system. 

o An Architectural Mitigation: An architectural 
mitigation enforces a certain control flow. For 
example, what places should be enablers of a 
certain transition.  

o A security technique: A security technique 
could be any of the standard techniques used to 
provide for security, examples are: firewalls, 
content inspection, access control, or encryption 
modules. 

- Location/Realized By: This entry should specify 
where the mitigation should be applied: either 
inside the component (if a constraint), or between 
components (if a system-wide constraint). At the 
same time, it could specify how it will be realized, 
by either imposing the constraint over an existing 
transition, or by adding a new transition to the 
component's internal architecture, in which case we 
should specify what places are in its preset 
(enablers). If the mitigation is a new component, 
the designer should specify its interface input and 
output ports, as well as what components it will 
interface with. 

- Security property specification: If the mitigation 
is a logical constraint, it could be expressed inside 
a security property specification using LTL (Linear 
Time Temporal Logic). This property could be 
later used to verify the absence of the threat. LTL 
describes how the state of the world evolves over 
time thereby focusing on the ordering rather than 
the exact timing of events. Temporal formulas are 
constructed from predicate symbols (equality and 
propositions), function symbols, constants, 
variables, the logical operators ( , ∧, ∨, ⊃, ∈ and 

), the quantifiers (∃ and ∀), and the temporal 
operators ( : Always, : Eventually, and O: Next).  
[2] 

Table 1, shows an example of a component 
application threat, which is the threat that a customer 
purchases products at a lower price. This threat, also 
suggested by Xu and Nygard [1], lies in the 
possibility of a customer changing the price of the 
purchased product to reduce the amount of payment 
he has to make. The type of mitigation is two fold:  
- Add a component constraint that is a constraint on 

the internal behavior of the component. For 
example, to be able to mitigate this sort of attack, 
we need to compare the prices sent in the 
purchased products' list (at port prdLCT) with the 
prices stored in the warehouse's product database.  

- An Architectural mitigation (enforces a certain 
control flow): Price validation should not occur 
unless we have validated that the request is a valid 
checkout request (at port checkout). 

The component property specification is derived, by 
using only interface input/output ports of the 
component and the new component constraint, and it 
indicates that when we have a checkout request and a 
valid price, ordGen_78 should eventually be enabled. 

3.2. Decomposing the SAM Architecture 
Model 

Given the high level architecture and the new 
transitions and places/nodes over which mitigating 
constraints are enforced, we could start decomposing 
the SO-SAM high level architecture to the 
corresponding constraint architecture models. A 
behavior model of each component results from 
refining its high level architecture using the threat 
model mitigations augmented with the functional 
behavior model. This could result in a behavior 
model for each component.  

Starting from the input interface ports of each 
component in the SO-SAM model (Figure 2), we use 
the architectural mitigations and constraints of the 
threat model, to refine the high-level architecture.  
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Table 1. Component Threat Example 
Threat /Description/Type Threat Target Mitigation Location Security Property Specification 

Component Threat: 
Customer purchasing 
products at a lower price  
Description: A customer 
may change the price of the 
purchased items in the 
HTML form at the client 
side, to pay less than he 
should pay. 
Type: Tampering 

Warehouse 
Component,  
Entry points: 
checkout 
request 
(checkout_7 
, prdLCT_7) 

1-Add component constraint: 
Name: valid_price 
prdLCT.price=PRICES(pname) 
(i.e. validate that the price in the 
product list is the same as the 
one stored in the products DB)  
2- Architectural Mitigation: 
Price Validation should only be 
enabled when validCheckout is 
enabled 

In-Component 
transition: 
Validate_price 
New: Yes 
Enabled By: 
validCheckout 
In-Component 
Token: 
ValidPrice 
New: Yes 

Type: Component Property 
When we have a checkout request and 
a valid price, ordGen_78 should 
eventually be enabled 
� ((prdLCT_7 ∧ checkout_7 ∧ 
valid_checkout 
∧(prdLCT.price=PRICES(pname))) 

ordGen_78) 

 

Figure 3. Warehouse-component Behavior Model
Component constraint mitigations are enforced by 
connecting input interface ports with an internal node 
or an output interface port using a new transition and 
imposing the security constraint as an assertion on the 
new transition as indicated by Deng et al. [2]. This 
process is repeated until we reach a transition that 
places a token in one of the interface output ports of 
the component. Figure 3, shows the resulting 
behavior model from decomposing the warehouse 
component of Figure 2. From figure 3, we see that 
possible entry points to the warehouse component are 
the input interface ports (that are not enabled by any 
transition belonging to the component) like 
request_7, checkout_7 and prdLCT_7, paySucc_7, 
and backChWh_7, while exit points are the output 
interface ports that do not fire any transition 
belonging to the component like response_72, 
ordGen_78, enough_78, and shipEmail_72. This 
figure was constructed by starting with the input 
interface ports of the warehouse component in the 
high-level architecture (Figure 2) then given the 

suggested constraints and architectural mitigations of 
the threat model, we start building the inner workings 
of the component. For example, if we want to build 
the control flow starting from entry point checkout_7: 
- We locate the threats in which checkout_7 is 

mentioned in the Target column (see Table 1) 
- Then we add the specified mitigation constraint(s), 

for example: 
 {prdLCT_7.uid} ∩ USERS(uid)  ∧  

 prdLCT_7.category ∈ CATEGORIES(uid) ∧ 
prdLCT_7.prdName∈PRODUCTS(category) 

 (i.e.  Check for correct user id, correct category and 
valid product) by enforcing it on the specified In-
component-transition validate_checkout.  

- Then we connect the new transition to the 
place/node specified by the In-Component token, 
which in our case was valid_checkout.  

Afterwards, we find another threat targeting the 
checkout process (ex Table 1), and we add the 
specified mitigation constraints: 
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(prdLCT.price =  PRICES(pname) and  
prdLCT.quantity <= QUANTITIES (pname) ∧ 
prdLCT.quantity > 0) to the suggested transitions 
validate_price and validate_quantity respectively. 
The architectural mitigation specifies that these 
transitions should not be fired unless checkout was 
valid, and are hence enabled by the availability of a 
token in the place validCheckout (mandating a 
certain control flow). Finally, we connect the new 
transition(s) to the places specified by the In-
Component token, which in our case were ordGen_78 
and enough_78 respectively. backChWH_7 is an 
input port that receives an input token from Order 
Component to cancel warehouse order operations, but 
that does not result in the warehouse component 
producing output to the outside world. Therefore, it is 
not connected to any output port in the figure. 

3.3. Verification 

SAM architecture is hierarchical and is defined as a 
set of compositions; each composition consists of a 
set of components, connectors and constrains. At the 
lowest level, each element whether a component or a 
connector is defined using a behavior model and a set 
of temporal logic property specifications. If we can 
find a mapping between the afore-mentioned SAM 
elements and the SMV constructs, then we can 
arguably translate different SAM architecture models 
into SMV model checking programs to verify that 
they meet their stated security properties.  

Most of the work targeted at architecture 
verification, focuses on verifying liveness and 
correctness properties. At the same time, it mostly 
focuses on translating the detailed behavioral models 
of individual components to SMV [15], [16] without 
regard to the interaction between components and 
how they behave in the entire system. In addition to 
translating the lower level abstraction we pay specific 
regard to modeling compositions, Commercial off the 
shelf products (COTS), how components interact in 
the system, and the security constraints that apply to 
the architecture as a whole. Therefore, and in order to 
preserve structural properties along side behavioral 
ones, we provide a translation of the SAM model (i.e. 
the high-level decomposition into compositions and 
their constituent components, and connectors) into 
SMV. SAM elements are textually described clearly 
in [16]. Our translation has three main steps: 

3.3.1. Translating SAM Petri Net Behavior 
Models. An SMV program is made up of the 
sections: VAR, INIT, ASSIGN, DEFINE and SPEC 
[18]. A general procedure for translating SAM 
behavior models into SMV is suggested by He et al. 

[15]. They suggest the mapping of every place to a 
corresponding boolean variable under the VAR 
section, every enabling condition of a transition to a 
symbol represented by an expression in the DEFINE 
section, the initial marking to initializations in the 
INIT section, and the specifications (in our case the 
security property specifications), into CTL formulas 
in the SPEC section of the SMV program. We will 
base our petri net translation method over this general 
translation with additions specific to the translation of 
SAM high-level security architectures. For example, 
we specify each security constraint as an expression 
defined in the DEFINE section, and use this 
constraint to decide on the next value of output places 
when the corresponding transition fires, hence 
enforcing the execution of the security constraint. We 
prefer to define the next values of the Petri net nodes 
using ASSIGN rather than TRANS because of logical 
absurdities that can occur in TRANS declarations 
[18]. The next state values of places are defined using 
a case expression under the ASSIGN keyword [15], 
where setting the value of the variable is equivalent 
to placing a token in its corresponding place, and 
resetting it, is equivalent to consuming this token, 
otherwise the value is kept unchanged this cycle. 

3.3.2. Translating SAM Components. SMV gives 
the user a chance to define modules, where each 
module can be passed parameters, and hold its own 
set of local variables and definitions. This SMV 
element maps to the definition of a component in the 
high level SAM architecture. A module helps abstract 
the inner workings of the component, and it need 
only be passed the input/output variables which 
represent interface ports (external nodes) in our case. 
This way the encapsulating module would in a way 
map to the high-level SAM composition that includes 
the inner components, where the properties of the 
composition could be verified with the existence of 
these components, but without having to concern 
ourselves with how they actually work. Figure 4, 
shows a sample translation of a SAM component into 
SMV. Constraints such as: user1 has to belong to the 
set of valid user ids, and product1 has to be a valid 
product id are defined as logical expressions in the 
DEFINE section and used in the ASSIGN section to 
decide on the next values of the component's petri net 
nodes. External in/out nodes' values are formally 
passed from/to the encapsulating composition 
responsible for setting/consuming their values.  

3.3.3. Translating SAM Compositions. A 
composition is also defined using a module in SMV; 
a composition module in SMV could also contain 
instance variables of other modules representing each 
of its constituent components. The function of a 
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composition is to provide communication between 
inner components as well as communication with the 
outside world. Interfacing ports/external nodes are 
defined as variables inside the composition and are 
passed by reference to their components. Their values 
are set by the arrival of tokens from other 
components or the outside world by the forwarding 
transitions provided by the composition. Each 
component is represented by a similar declaration to a 
variable inside the composition module. Each 
component is instantiated by the composition in the 
VAR section, and the input and output ports of each 
component are defined and initialized in the 
composition's VAR and INIT sections respectively. 

3.3.4. Translating SAM Connectors. A connector is 
a building block that enables interaction among 
components inside compositions. In our translation, 
we represent connectors using forwarding transitions 
that exist in the composition module and provide 
interaction between its components. Each forwarding 
transition is represented using an assignment 
statement that changes the next value of an input port 
of one of the components using the token generated 
by the output port of another. This way the 
composition handles the communication between its 
different components.  

3.3.5. Translating SAM Properties. To verify the 
correctness of the produced model, we need to test 
several types of properties: Component properties, 
Composition properties, and System-wide properties. 
Security properties are elicited by the threat model 
and are used in verifying the absence of security 
threats. SAM property specifications should be 
transformed from first order LTL (Linear Time 
Logic) to CTL utilized by SMV, which is a 
propositional branching-time temporal logic. 
Whereas LTL considers only one path of 
computation down a certain state, CTL considers all 
possible paths from a given state. According to He et 
al. [16], an LTL formula can be equally expressed in 
CTL if its execution lies within the common time 
fragment of LTL and CTL, hence system properties 
such as liveness and safety can be equally expressed 
in either computational model without its 
satisfiability or validity being affected [16]. This can 
be done by adding a universal path quantifier in front 
of an LTL formula to transform it to CTL [16], that is 
an LTL path formula is converted into CTL by 
quantifying over all the paths using A (universal 
quantifier denoting all paths). 
• Component Properties 
In component-wide properties, we need to verify 
the correctness of the component, i.e. that it meets 

its stated specifications. Dwyer et al. suggest the 
use of property specification patterns for writing 
CTL properties [19]. In our model, most of the 
properties are ones that fall under the "Response" 
pattern with a global scope. Response property 
patterns describe cause-effect relationships 
between two different events, where if the cause 
occurs, it must be followed by the occurrence of 
the effect [19]. Component properties in our SMV 
model would basically look like this: 
AG (input1 & input2 & � & constraint -> AF 
(output 1 & output2 & �))                                      (1) 
Inputs and outputs are strictly input/output interface 
ports (non-internal nodes) of the component. 
Constraint is a certain test (logical expression) 
imposed on a transition that when true, a transition 
that enables the output places should be fired. The 
following is a translation of the LTL security 
property in Table 1 into its equivalent CTL form: 
AG (checkout_7 & prdLCT_7 & WH.valid_checkout 
& WH.valid_price -> AF (ordGen_78))  
• Composition Properties 
 In composition properties, we need to verify the 
interaction between components. So any property 
that involves interface ports starting at one 
component and interface ports ending at a different 
component in the most general of terms is 
considered a composition property. In a 
composition-wide property inputs are strictly input 
interface ports of the first component, while 
outputs are output interface ports of the second 
component: 
AG (COMP1.input1 & COMP1.input2 &..& 
constraint -> AF (COMP2.output1))                       (2)                              
Note: the component.port notation is used to indicate 
that Comp1 and Comp2 are variable instances inside 
the composition and that they are used to access input 
and output ports of these components/modules. 
• System-wide Properties 
A perimeter component, which could be a 
commercial-off-the-shelf (COT) product for example, 
may be a component whose functionality affects the 
rest of the system, like a firewall for example, where 
depending on the result of the firewall validation the 
request is either passed to the respective service or 
denied. Therefore, COT properties are not only 
limited to being component-wide properties but they 
are also system-wide. For example, when a firewall 
(FW) intercepts a web service request (wsRequest) 
and finds that it is valid, it should expect a web 
service response (wsResponse) from the consecutive 
composition and eventually enable fwResponse 
whether this response holds the requested data or an 
error. This could be expressed in CTL as follows: 
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Figure 4. Sample translation of an SAM component to an SMV module

AG (wsRequest  & FW.valid_request & 
FW.valid_data -> AF !(fwResponse = noRes))       (3) 
Whereas if you have an invalid request, you should 
eventually get an invalid fwResponse: 
AG(wsRequest & !(FW.valid_request & 
FW.valid_data) ->AF (fwResponse = invalidRes)) (4) 
Note how the truth value of the above properties 
depends on the behavior of the entire system. 

3.4. Refinement 
Model checking provides us with the ability to test 

our architecture behavior models against the security 
property specifications. SMV automatically executes 
the model, using the provided marking values to 
determine the new state of the model at each clock 
cycle. The goal of refinement is trying to figure out 
what caused a property violation, then making the 
necessary changes to the model such that the property 
is satisfied. In our case, this is achieved by using 
SMV counter examples to determine what firing 
sequence caused a property violation in the model. 
Figure 5, shows the SMV output after executing our 
translated model, which shows how one of the 
security properties was violated under the initial 
design. When tracing back the firing sequence 
through the SMV trace (lower pane) we discovered 
that the property (an order is generated only if order 
info, credit card info, checkout info is valid) would 
be satisfied under normal conditions however under 
other threat conditions it would not (ex. when user 

replays another's valid user information without being 
requested for his user info). This guided us to an 
architecture flaw that assumed if we have a valid user 
information response then the order information must 
be correct i.e. valid price and quantity (since no user 
information is requested unless order info was 
verified). This lead us to add the threat "possible 
replay of valid user information to checkout an 
invalid order (ex. with an invalid price)", and to 
remodel our architecture so as to check on order 
validity just before generating the order. By 
repeatedly performing this task we are able to reach a 
model that satisfies its security properties under both 
normal and threat conditions. 

4. Conclusion 
Most of the work proposed for earlier security 

integration usually targets either the phases of 
requirement specification or architecture modeling 
but not both, failing to formally trace security 
requirements from the requirement analysis phase to 
the architecture, design, and verification phases. At 
the same time, no rigorous process was proposed to 
verify the security properties of architecture models 
beyond testing for Petri-net correctness properties 
such as liveness and being deadlock-free. This 
research proposes a rigorous methodology for the 
analysis, modeling and verification of secure 
software architectures guided by the process of threat 
modeling. By combining threat modeling for 
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systematic requirement elicitation with the formal 
representation of security constraints and 
architectural artifacts (as mitigations using temporal 
logic), we are able to narrow down the gap between 
informal requirement specification and formal 
architecture modeling since this would enable the 
requirements analysis phase to have a direct impact 
on architecture decomposition. Moreover, formal 
architecture modeling using modeling frameworks 
like SAM facilitates subsequent formal architecture 
verification. By suggesting a mapping between SAM 
elements and the SMV model checker, we are able to 
easily translate the resulting secure architecture 
models into SMV to verify their stated properties. 

 
Figure 5. SMV Trace 
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