

A Rigorous Methodology for Security Architecture Modeling and Verification

Yomna Ali
American University in Cairo

yomnas@aucegypt.edu

Sherif El-Kassas
American University in Cairo

sherif@aucegypt.edu

Mohy Mahmoud
American University in Cairo

mohym@aucegypt.edu

Abstract
This paper introduces a rigorous methodology for
utilizing threat modeling in building secure software
architectures using SAM (Software Architecture
Modeling framework) and verifying them formally
using Symbolic Model Checking. Security mitigations
are expressed as constraints over a high-level SAM
model and are used to refine it into a secure
constrained model. We also, propose a translation
from SAM Secure models into the SMV model
checker where the threats and the elicited security
properties from the threat modeling process are used
as inputs to the verification phase as well. This
method is developed with the aim of bridging the gap
between informal security requirements and their
formal representation and verification.

1. Introduction
There is a lack of a well-defined process for the

analysis, architecture and design of secure software
systems [1]. At the same time, the lack of formality in
defining security requirements makes it harder to
verify that they are met by the underlying security
architecture. In this paper, we propose a rigorous
methodology for building and verifying secure
system architectures guided by the process of threat
modeling that is performed with both architecture and
verification in mind. Security constraints are
expressed as mitigations and are used as suggested by
[2] in refining a high-level architecture into a secure
architecture model. The resulting secure model is
translated to a model checker for verification and
output from the threat model is also utilized in
verifying that the security properties elicited from the
threat model are satisfied by the architecture.

2. Related Work
Our research intercepts with several areas of

security engineering, all aimed at the early integration
of security in the software life cycle; they are:
Adversary Modeling, Architecture Modeling and
Architecture Verification. In Adversary modeling,
several methods have been devised in order to model
the goals of the adversary and the means he will use

to achieve these goals. Attack trees [3], goal-oriented
analysis [4], and misuse cases [5] are all forms of
adversary modeling, targeting the elicitation of
security requirements. Threat modeling, also a form
of adversary modeling and utilized by Myagmar et al.
[6], and Howard and LeBlanc [7] presents a
systematic way of determining the threats to a
software system. Threat modeling starts with an
initial system decomposition that could be achieved
using data flow or UML activity diagrams. This
decomposition is useful in identifying assets that
need to be protected, their access points, and their
vulnerabilities. After stepping through each asset, and
identifying possible threats as suggested by Xu and
Nygard [1], Howard and LeBlanc [7], Myagmar et al.
[6], using the STRIDE threat categories [7], threats
could be documented in a variety of ways (like threat
trees, or threat outlines [3]). Threat modeling has a
wider-scope than the attack modeling techniques that
consider only the attacker's perspective because
system-specific threats require deeper analysis of the
unique qualities of the system being modeled [6].

Most of the above mentioned adversary modeling
techniques lack two aspects: (1) they leave it open as
to how this modeling process will affect the choice of
architecture components, or how they could be
captured in the architecture and design phases when
as Haley et al. [8] indicate: the elaboration of
requirements and architecture should proceed in
parallel, each influencing the other (2) they mostly
lack a formal means by which these security
properties could be modeled, traced, and verified in
the resulting secure architecture.

Xu et al address the first concern by suggesting
utilizing misuse cases in guiding the choice of
architecture components. Use/misuse case diagrams
are used for deciding on candidate components. They
use a tabular approach of components in the rows and
the use/misuse cases utilizing them in the columns, to
decide on the services that the system must provide
and prevent the ways that the system might be
misused [9]. Then, using a fish-eye diagram of the
candidate architecture, the components that need
change are highlighted in size or in color according to
the number of interactions that each component has

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

from the table. This can help system designers later
decide on the best fitting candidate architecture.
However, the lack of formality in their approach
would make it harder to trace and verify the security
requirements in their resulting architecture.

Lamsweerde et al [10] and Lamsweerde [11],
address the second concern, as they use temporal
logic for formally specifying their security goals.
Anti-models are introduced in [11] as a way of
defining anti-goals as opposed to system goals. Anti-
goals are derived using obstacle analysis extended to
handle malicious obstacles building on the KAOS
framework for generating and resolving obstacles to
requirements achievement. Anti-goals are derived
through goal negation of the CIA patterns, which are
in turn instantiated to objects of the object model.
Through progressive refinements using techniques
such as goal negation, terminal anti-goals can be
derived, which can be used to identify anti-
requirements and vulnerabilities. Later, these anti-
goal trees are used to build the object and agent anti-
models and at the end, alternative countermeasures
are derived to augment the primal model of security
goals [11]. Lamsweerde [10, 11] address the
importance of exception handling at the requirements
level and therefore maintain their analysis at the goal
level. In our research, we also utilize linear time
temporal logic for security property specification;
however through the use of a new threat modeling
template, with specific architecture additions and
utilizing formal definitions, we continue to follow the
requirements from analysis to initial design and its
verification to make sure that we have a process for
continually verifying and refining the architecture
model using security property specifications. In our
proposed methodology, the outcome of threat
modeling is used to both influence the architecture
and verification phases, and at the same time, the
outcome of the verification phase can reveal new
threats from flawed design uncovered by the tests,
thereby refining both the threat and architecture
models accordingly.

For architecture modeling, Xu and Nygard [1],
propose an approach for modeling threats as Petri
nets and mitigations as aspect-oriented Petri nets,
thereby providing a step towards the formal
specification and verification of security
requirements and mitigations. SAM, the Software
Architecture Modeling framework, can also be used
as suggested by Deng et al. [2] to provide a multi-
level architectural model with dual notation (Petri
nets and temporal logic) for "describing different
aspects of architecture level design such as structure,
behavior and constraints". Fu et al. [12] propose a
variation of the SAM framework called SO-SAM: a

service-oriented software architecture model and an
extension of the SAM model specifically for
modeling web services applications. Deng et al. [2]
propose that desired security properties should be
expressed as constraints or policies over the SAM
high-level architecture using temporal logic. These
constraints are then used to further refine the software
architecture by decomposing [2] the high-level
architectural model.

As for verification, and given a petri-net based
architecture model, both Xu and Nygard [1], and
Deng et al. [2] suggest reachability analysis for
security architecture verification. Whereas Fu et al.
[12] suggest translating the architecture models into
one of the model checking languages, and presenting
the checker with logical properties (such as liveness
and deadlock freedom) to verify that they are
satisfied by the translated models. Unlike reachability
analysis, model checking does not require the
generation of all states before properties can be
examined. Therefore it does not suffer from the state
explosion problem [13].

In order to verify an architecture model using a
model checker, a mapping between the architecture
and the model checker language has to be defined.
Tanuan [14] suggests utilizing model checking in
verifying the constraints in the UML specifications,
where a specific mapping between UML and SMV is
proposed to verify UML specifications. At the same
time, others suggest the mapping of SAM petri net
behavior models and property specifications into
SMV. For example, He et al. [15] propose utilizing
symbolic model checking for verifying correctness of
an architecture specification in SAM. They suggest
translation guidelines for translating petri net
behavior models into SMV and then test CTL
properties against the translated transition system for
verifying the architecture specification. He et al. [16]
also propose a translation procedure of SAM
behavior models into SMV.

Most of the above proposed methods for earlier
security integration usually target either the phases of
requirement specification or architecture modeling
but not both, failing to formally trace security
requirements from the requirement analysis phase to
architecture, design, and verification phases. At the
same time, there is a lack of a rigorous translation
methodology specifically targeted for translating the
SAM models into SMV and a lack of a verification
method targeted at verifying security properties in the
presence of threats using symbolic model checking
where most research is targeted at verifying
correctness and safety properties. In this paper we
show that we can express security properties formally
using temporal logic over an SAM architecture

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

model, as well as propose a translation methodology
between the SAM architecture model and its security
properties and the SMV model checker, for verifying
that the security properties are met by the
architecture.

3. Methodology
The methodology presented in this paper builds on

the work of Xu and Nygard [1], Deng et al. [2], Fu et
al. [12], He et al. [16], and Myagmar et al. [6]. The
goal of this research is to guide the process of secure
architecture modeling and verification by performing
threat modeling [6, 7] earlier in the software life
cycle during the requirements analysis phase. We
propose a new threat modeling template that allows
the designer to specify architectural artifacts and
constraints as mitigations along side the security
solutions of the classical threat models [7]. The
template also allows the designer to specify the
security property specifications that the resulting
system should meet if the threat is truly mitigated.
For architecture modeling, the threat model's
architectural mitigations and constraints could be
used to refine a high-level architecture model into
secure behavior models. Whereas for architecture
verification, the threat model's logical property
specifications as well as the threat descriptions could
be used as inputs to the verification phase to verify
that the threats do not violate the security properties
under the provided secure architecture model. This
way, threat modeling could rigorously influence both
secure architecture modeling and verification.

Threat models give threat descriptions, and provide
security mitigations as well as elicit security property
specifications. In order to bridge the gap between
informal threat descriptions and formal architecture
modeling, we propose formally specifying mitigation
constraints in temporal logic over the high level
Service-Oriented Software Architecture Model (SO-
SAM) proposed by Fu et al. [12]. These constraints
could then formally guide secure architecture
decomposition (as proposed by Deng et al. [2]).

The resulting architecture model, represented by
SAM Petri net behavior models is verified as Fu et al
[12], and He et al. [16] suggest by translating it into a
high-level model checking language (where it could
be checked for the absence of threats by verifying the
stated security properties). We suggest for this
purpose a translation methodology between the SAM
Architecture model and the SMV model checker.
Counter examples provided by the model checker can
help the designer identify the problem and refine both
the threat and architecture models accordingly.

The proposed methodology like that suggested by
Hall et al. [17], attempts to build correctness into
every step by suggesting a rigorous requirements
definition, formal architecture modeling using the
Software Architecture Modeling framework (SAM),
and formal verification of the resulting architecture
against the security property specifications using
model checking. Figure 1, shows the steps of the
proposed methodology:

Figure 1. Proposed Methodology
Step 1: High-level Architecture:
Build a high-level architecture of the system. Figure
2, shows the e-company server side only of a high
level architecture of a shopping cart application
proposed by Fu et al. [12], composed of the
Warehouse and Order components and their interface
input/output ports (petri net nodes responsible for
communication with other components or system
parts). Components are numbered and petri net ports
are concatenated with numbers denoting which
components produce/consume their tokens. For
example request_7 is an input interface port to
Warehouse component (number 7) that receives a
request token to be consumed by the component;
whereas response_72 is an output interface port that
sends a response token from warehouse component to
another component numbered 2 in the model (not
shown in figure).
Step 2: Threat Modeling:
Perform threat modeling on the given architecture,
where threats to assets and access points are
identified and classified based on the STRIDE
categories. Fill the proposed threat modeling template
with the security threats and their respective
mitigations. This template enhances the classical
model [7] -- where security techniques (such as
authentication, authorization, encryption, etc.) are

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

specified as mitigations -- with the ability to specify
architectural mitigations, logical constraints, and
property specifications. These enhancements utilize a
combination of formal notation, using first order
temporal logic, and informal English descriptions.
Step 3: Building Secure Behavior Models:
Translate each mitigation to an equivalent Petri net
model [2], to build a component behavior model
using the new transitions and the new places
suggested by the mitigation, and the constraints
imposed over existing or new transitions.

Figure modified from [12]

Figure 2. High level SAM Architecture of E-
Company

Step 4: Building the Constraint Architecture
Model (CRM):
- Build a constraint architecture model for the entire

architecture by plugging in the component behavior
models at their proper places in the high-level
architecture.

- For each new security technique specified as a
mitigation, insert a black-box new component in
the detailed architecture at the proper location

- Use system wide constraints to link the new
components to existing components according to
the provided policy constraints. These system wide

constraints are too realized using new transitions
and places.

- For each mitigation realized by a new component:
if the component is a black box off-the-shelf
security solution, we insert a place-holder for the
component with its interface ports without refining
its internal structure. Otherwise, we refine it by
applying threat modeling to it (go back to step 2).

Step 5: Verification:
- Start translating the SAM model into SMV to

perform model checking:
- Use the SAM high-level architecture to provide the

structure for the SMV model by dividing it into
system, composition, and component modules, as
well as connectors between components.

- Translate each component behavior model into a
component module using our suggested translation
methodology

- Translate the LTL security properties specified by
the threat model into CTL and insert them into the
SMV model

- Transform each threat into a set of parameters that
change the initial marking of the model.

- Check to see if the security properties are satisfied
by the given model, to determine if the architecture
is secure given the corresponding threats or not.

Step 6: Refinement:
Use counter examples provided by the model checker
to refine the threat and architecture models.

3.1. Threat Modeling the SAM Architecture
Model

The proposed threat model integrates the classical
form of threat models where security techniques are
specified as mitigations, with a new model where
architectural constraints, components, or artifacts are
specified as mitigations as well. These architectural
mitigations are used to guide the refinement of the
SAM model into secure constraint behavior models.
The architectural nature of our threat model
facilitates integrating application-security threats
resulting from implementation flaws along side the
classical security threats resulting from
compromising the confidentiality, integrity or
authenticity of the system as a whole. A classical
threat modeling template would at minimum include
a threat Title, a threat Category according to STRIDE
model, and the mitigation technique (access control,
encryption, etc). The new threat modeling template
enhances the classical model with the following
architecture and verification-related additions:
- Threat Type: threats could be either:

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

o Component Threats: These are threats that are
specific to a component, examples are business
logic threats such as price or quantity tampering.

o Composition Threats: These are threats that
involve more than one component in the same
composition. Examples are threats resulting
from a flawed communication between
components inside a composition, causing for
example a validation bypass.

o System-wide Threats: These are threats that
apply to an entire system (i.e. the output of the
system as a whole will be affected by such a
threat); for example a threat to the whole web
service with all its respective components, like a
spoofing identity threat, or an elevation of
privilege threat.

- Threat Target: Name of the architectural artifact
that the threat could apply to, it could be the name
of an entry/exit point of a component, a
composition, or the entire system.

- Mitigations: Mitigations could be either:
o A Logical Constraint

 An intermediate component constraint:
This could be realized by a logic constraint
enforced over an existing transition in the
High level Petri net or by adding a new
transition/place to the architecture and
applying this constraint to it.

 A system wide constraint � enforces a
policy governing interactions between
components: expressed as a constraint over
one or more of the system components, or
the entire system.

o An Architectural Mitigation: An architectural
mitigation enforces a certain control flow. For
example, what places should be enablers of a
certain transition.

o A security technique: A security technique
could be any of the standard techniques used to
provide for security, examples are: firewalls,
content inspection, access control, or encryption
modules.

- Location/Realized By: This entry should specify
where the mitigation should be applied: either
inside the component (if a constraint), or between
components (if a system-wide constraint). At the
same time, it could specify how it will be realized,
by either imposing the constraint over an existing
transition, or by adding a new transition to the
component's internal architecture, in which case we
should specify what places are in its preset
(enablers). If the mitigation is a new component,
the designer should specify its interface input and
output ports, as well as what components it will
interface with.

- Security property specification: If the mitigation
is a logical constraint, it could be expressed inside
a security property specification using LTL (Linear
Time Temporal Logic). This property could be
later used to verify the absence of the threat. LTL
describes how the state of the world evolves over
time thereby focusing on the ordering rather than
the exact timing of events. Temporal formulas are
constructed from predicate symbols (equality and
propositions), function symbols, constants,
variables, the logical operators (, ∧, ∨, ⊃, ∈ and

), the quantifiers (∃ and ∀), and the temporal
operators (: Always, : Eventually, and O: Next).
[2]

Table 1, shows an example of a component
application threat, which is the threat that a customer
purchases products at a lower price. This threat, also
suggested by Xu and Nygard [1], lies in the
possibility of a customer changing the price of the
purchased product to reduce the amount of payment
he has to make. The type of mitigation is two fold:
- Add a component constraint that is a constraint on

the internal behavior of the component. For
example, to be able to mitigate this sort of attack,
we need to compare the prices sent in the
purchased products' list (at port prdLCT) with the
prices stored in the warehouse's product database.

- An Architectural mitigation (enforces a certain
control flow): Price validation should not occur
unless we have validated that the request is a valid
checkout request (at port checkout).

The component property specification is derived, by
using only interface input/output ports of the
component and the new component constraint, and it
indicates that when we have a checkout request and a
valid price, ordGen_78 should eventually be enabled.

3.2. Decomposing the SAM Architecture
Model

Given the high level architecture and the new
transitions and places/nodes over which mitigating
constraints are enforced, we could start decomposing
the SO-SAM high level architecture to the
corresponding constraint architecture models. A
behavior model of each component results from
refining its high level architecture using the threat
model mitigations augmented with the functional
behavior model. This could result in a behavior
model for each component.

Starting from the input interface ports of each
component in the SO-SAM model (Figure 2), we use
the architectural mitigations and constraints of the
threat model, to refine the high-level architecture.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

Table 1. Component Threat Example
Threat /Description/Type Threat Target Mitigation Location Security Property Specification

Component Threat:
Customer purchasing
products at a lower price
Description: A customer
may change the price of the
purchased items in the
HTML form at the client
side, to pay less than he
should pay.
Type: Tampering

Warehouse
Component,
Entry points:
checkout
request
(checkout_7
, prdLCT_7)

1-Add component constraint:
Name: valid_price
prdLCT.price=PRICES(pname)
(i.e. validate that the price in the
product list is the same as the
one stored in the products DB)
2- Architectural Mitigation:
Price Validation should only be
enabled when validCheckout is
enabled

In-Component
transition:
Validate_price
New: Yes
Enabled By:
validCheckout
In-Component
Token:
ValidPrice
New: Yes

Type: Component Property
When we have a checkout request and
a valid price, ordGen_78 should
eventually be enabled
� ((prdLCT_7 ∧ checkout_7 ∧
valid_checkout
∧(prdLCT.price=PRICES(pname)))

ordGen_78)

Figure 3. Warehouse-component Behavior Model
Component constraint mitigations are enforced by
connecting input interface ports with an internal node
or an output interface port using a new transition and
imposing the security constraint as an assertion on the
new transition as indicated by Deng et al. [2]. This
process is repeated until we reach a transition that
places a token in one of the interface output ports of
the component. Figure 3, shows the resulting
behavior model from decomposing the warehouse
component of Figure 2. From figure 3, we see that
possible entry points to the warehouse component are
the input interface ports (that are not enabled by any
transition belonging to the component) like
request_7, checkout_7 and prdLCT_7, paySucc_7,
and backChWh_7, while exit points are the output
interface ports that do not fire any transition
belonging to the component like response_72,
ordGen_78, enough_78, and shipEmail_72. This
figure was constructed by starting with the input
interface ports of the warehouse component in the
high-level architecture (Figure 2) then given the

suggested constraints and architectural mitigations of
the threat model, we start building the inner workings
of the component. For example, if we want to build
the control flow starting from entry point checkout_7:
- We locate the threats in which checkout_7 is

mentioned in the Target column (see Table 1)
- Then we add the specified mitigation constraint(s),

for example:
 {prdLCT_7.uid} ∩ USERS(uid) ∧

 prdLCT_7.category ∈ CATEGORIES(uid) ∧
prdLCT_7.prdName∈PRODUCTS(category)

 (i.e. Check for correct user id, correct category and
valid product) by enforcing it on the specified In-
component-transition validate_checkout.

- Then we connect the new transition to the
place/node specified by the In-Component token,
which in our case was valid_checkout.

Afterwards, we find another threat targeting the
checkout process (ex Table 1), and we add the
specified mitigation constraints:

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

(prdLCT.price = PRICES(pname) and
prdLCT.quantity <= QUANTITIES (pname) ∧
prdLCT.quantity > 0) to the suggested transitions
validate_price and validate_quantity respectively.
The architectural mitigation specifies that these
transitions should not be fired unless checkout was
valid, and are hence enabled by the availability of a
token in the place validCheckout (mandating a
certain control flow). Finally, we connect the new
transition(s) to the places specified by the In-
Component token, which in our case were ordGen_78
and enough_78 respectively. backChWH_7 is an
input port that receives an input token from Order
Component to cancel warehouse order operations, but
that does not result in the warehouse component
producing output to the outside world. Therefore, it is
not connected to any output port in the figure.

3.3. Verification

SAM architecture is hierarchical and is defined as a
set of compositions; each composition consists of a
set of components, connectors and constrains. At the
lowest level, each element whether a component or a
connector is defined using a behavior model and a set
of temporal logic property specifications. If we can
find a mapping between the afore-mentioned SAM
elements and the SMV constructs, then we can
arguably translate different SAM architecture models
into SMV model checking programs to verify that
they meet their stated security properties.

Most of the work targeted at architecture
verification, focuses on verifying liveness and
correctness properties. At the same time, it mostly
focuses on translating the detailed behavioral models
of individual components to SMV [15], [16] without
regard to the interaction between components and
how they behave in the entire system. In addition to
translating the lower level abstraction we pay specific
regard to modeling compositions, Commercial off the
shelf products (COTS), how components interact in
the system, and the security constraints that apply to
the architecture as a whole. Therefore, and in order to
preserve structural properties along side behavioral
ones, we provide a translation of the SAM model (i.e.
the high-level decomposition into compositions and
their constituent components, and connectors) into
SMV. SAM elements are textually described clearly
in [16]. Our translation has three main steps:

3.3.1. Translating SAM Petri Net Behavior
Models. An SMV program is made up of the
sections: VAR, INIT, ASSIGN, DEFINE and SPEC
[18]. A general procedure for translating SAM
behavior models into SMV is suggested by He et al.

[15]. They suggest the mapping of every place to a
corresponding boolean variable under the VAR
section, every enabling condition of a transition to a
symbol represented by an expression in the DEFINE
section, the initial marking to initializations in the
INIT section, and the specifications (in our case the
security property specifications), into CTL formulas
in the SPEC section of the SMV program. We will
base our petri net translation method over this general
translation with additions specific to the translation of
SAM high-level security architectures. For example,
we specify each security constraint as an expression
defined in the DEFINE section, and use this
constraint to decide on the next value of output places
when the corresponding transition fires, hence
enforcing the execution of the security constraint. We
prefer to define the next values of the Petri net nodes
using ASSIGN rather than TRANS because of logical
absurdities that can occur in TRANS declarations
[18]. The next state values of places are defined using
a case expression under the ASSIGN keyword [15],
where setting the value of the variable is equivalent
to placing a token in its corresponding place, and
resetting it, is equivalent to consuming this token,
otherwise the value is kept unchanged this cycle.

3.3.2. Translating SAM Components. SMV gives
the user a chance to define modules, where each
module can be passed parameters, and hold its own
set of local variables and definitions. This SMV
element maps to the definition of a component in the
high level SAM architecture. A module helps abstract
the inner workings of the component, and it need
only be passed the input/output variables which
represent interface ports (external nodes) in our case.
This way the encapsulating module would in a way
map to the high-level SAM composition that includes
the inner components, where the properties of the
composition could be verified with the existence of
these components, but without having to concern
ourselves with how they actually work. Figure 4,
shows a sample translation of a SAM component into
SMV. Constraints such as: user1 has to belong to the
set of valid user ids, and product1 has to be a valid
product id are defined as logical expressions in the
DEFINE section and used in the ASSIGN section to
decide on the next values of the component's petri net
nodes. External in/out nodes' values are formally
passed from/to the encapsulating composition
responsible for setting/consuming their values.

3.3.3. Translating SAM Compositions. A
composition is also defined using a module in SMV;
a composition module in SMV could also contain
instance variables of other modules representing each
of its constituent components. The function of a

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

composition is to provide communication between
inner components as well as communication with the
outside world. Interfacing ports/external nodes are
defined as variables inside the composition and are
passed by reference to their components. Their values
are set by the arrival of tokens from other
components or the outside world by the forwarding
transitions provided by the composition. Each
component is represented by a similar declaration to a
variable inside the composition module. Each
component is instantiated by the composition in the
VAR section, and the input and output ports of each
component are defined and initialized in the
composition's VAR and INIT sections respectively.

3.3.4. Translating SAM Connectors. A connector is
a building block that enables interaction among
components inside compositions. In our translation,
we represent connectors using forwarding transitions
that exist in the composition module and provide
interaction between its components. Each forwarding
transition is represented using an assignment
statement that changes the next value of an input port
of one of the components using the token generated
by the output port of another. This way the
composition handles the communication between its
different components.

3.3.5. Translating SAM Properties. To verify the
correctness of the produced model, we need to test
several types of properties: Component properties,
Composition properties, and System-wide properties.
Security properties are elicited by the threat model
and are used in verifying the absence of security
threats. SAM property specifications should be
transformed from first order LTL (Linear Time
Logic) to CTL utilized by SMV, which is a
propositional branching-time temporal logic.
Whereas LTL considers only one path of
computation down a certain state, CTL considers all
possible paths from a given state. According to He et
al. [16], an LTL formula can be equally expressed in
CTL if its execution lies within the common time
fragment of LTL and CTL, hence system properties
such as liveness and safety can be equally expressed
in either computational model without its
satisfiability or validity being affected [16]. This can
be done by adding a universal path quantifier in front
of an LTL formula to transform it to CTL [16], that is
an LTL path formula is converted into CTL by
quantifying over all the paths using A (universal
quantifier denoting all paths).
• Component Properties
In component-wide properties, we need to verify
the correctness of the component, i.e. that it meets

its stated specifications. Dwyer et al. suggest the
use of property specification patterns for writing
CTL properties [19]. In our model, most of the
properties are ones that fall under the "Response"
pattern with a global scope. Response property
patterns describe cause-effect relationships
between two different events, where if the cause
occurs, it must be followed by the occurrence of
the effect [19]. Component properties in our SMV
model would basically look like this:
AG (input1 & input2 & � & constraint -> AF
(output 1 & output2 & �)) (1)
Inputs and outputs are strictly input/output interface
ports (non-internal nodes) of the component.
Constraint is a certain test (logical expression)
imposed on a transition that when true, a transition
that enables the output places should be fired. The
following is a translation of the LTL security
property in Table 1 into its equivalent CTL form:
AG (checkout_7 & prdLCT_7 & WH.valid_checkout
& WH.valid_price -> AF (ordGen_78))
• Composition Properties
 In composition properties, we need to verify the
interaction between components. So any property
that involves interface ports starting at one
component and interface ports ending at a different
component in the most general of terms is
considered a composition property. In a
composition-wide property inputs are strictly input
interface ports of the first component, while
outputs are output interface ports of the second
component:
AG (COMP1.input1 & COMP1.input2 &..&
constraint -> AF (COMP2.output1)) (2)
Note: the component.port notation is used to indicate
that Comp1 and Comp2 are variable instances inside
the composition and that they are used to access input
and output ports of these components/modules.
• System-wide Properties
A perimeter component, which could be a
commercial-off-the-shelf (COT) product for example,
may be a component whose functionality affects the
rest of the system, like a firewall for example, where
depending on the result of the firewall validation the
request is either passed to the respective service or
denied. Therefore, COT properties are not only
limited to being component-wide properties but they
are also system-wide. For example, when a firewall
(FW) intercepts a web service request (wsRequest)
and finds that it is valid, it should expect a web
service response (wsResponse) from the consecutive
composition and eventually enable fwResponse
whether this response holds the requested data or an
error. This could be expressed in CTL as follows:

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

Figure 4. Sample translation of an SAM component to an SMV module

AG (wsRequest & FW.valid_request &
FW.valid_data -> AF !(fwResponse = noRes)) (3)
Whereas if you have an invalid request, you should
eventually get an invalid fwResponse:
AG(wsRequest & !(FW.valid_request &
FW.valid_data) ->AF (fwResponse = invalidRes)) (4)
Note how the truth value of the above properties
depends on the behavior of the entire system.

3.4. Refinement
Model checking provides us with the ability to test

our architecture behavior models against the security
property specifications. SMV automatically executes
the model, using the provided marking values to
determine the new state of the model at each clock
cycle. The goal of refinement is trying to figure out
what caused a property violation, then making the
necessary changes to the model such that the property
is satisfied. In our case, this is achieved by using
SMV counter examples to determine what firing
sequence caused a property violation in the model.
Figure 5, shows the SMV output after executing our
translated model, which shows how one of the
security properties was violated under the initial
design. When tracing back the firing sequence
through the SMV trace (lower pane) we discovered
that the property (an order is generated only if order
info, credit card info, checkout info is valid) would
be satisfied under normal conditions however under
other threat conditions it would not (ex. when user

replays another's valid user information without being
requested for his user info). This guided us to an
architecture flaw that assumed if we have a valid user
information response then the order information must
be correct i.e. valid price and quantity (since no user
information is requested unless order info was
verified). This lead us to add the threat "possible
replay of valid user information to checkout an
invalid order (ex. with an invalid price)", and to
remodel our architecture so as to check on order
validity just before generating the order. By
repeatedly performing this task we are able to reach a
model that satisfies its security properties under both
normal and threat conditions.

4. Conclusion
Most of the work proposed for earlier security

integration usually targets either the phases of
requirement specification or architecture modeling
but not both, failing to formally trace security
requirements from the requirement analysis phase to
the architecture, design, and verification phases. At
the same time, no rigorous process was proposed to
verify the security properties of architecture models
beyond testing for Petri-net correctness properties
such as liveness and being deadlock-free. This
research proposes a rigorous methodology for the
analysis, modeling and verification of secure
software architectures guided by the process of threat
modeling. By combining threat modeling for

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

systematic requirement elicitation with the formal
representation of security constraints and
architectural artifacts (as mitigations using temporal
logic), we are able to narrow down the gap between
informal requirement specification and formal
architecture modeling since this would enable the
requirements analysis phase to have a direct impact
on architecture decomposition. Moreover, formal
architecture modeling using modeling frameworks
like SAM facilitates subsequent formal architecture
verification. By suggesting a mapping between SAM
elements and the SMV model checker, we are able to
easily translate the resulting secure architecture
models into SMV to verify their stated properties.

Figure 5. SMV Trace

5. References
[1] Dianxiang Xu, Kendall E. Nygard, "Threat-Driven
Modeling and Verification of Secure Software Using
Aspect-Oriented Petri Nets," IEEE Transactions on
Software Engineering, vol. 32, no. 4, pp. 265-
278, Apr., 2006.
[2] Yi Deng, Jiacun Wang, Jeffrey J.P. Tsai, Konstantin
Beznosov, "An Approach for Modeling and Analysis of
Security System Architectures," IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 5, pp.
1099-1119, Sept/Oct, 2003.
[3] Bruce Schneier, �Attack Trees,� Dr. Dobb's Journal
December 1999. http://www.schneier.com/paper-
attacktrees-fig1.html
[4] Ebenezer Oladimeji, Sam Supakkul, and Lawrence
Chung, "Security Threat Modeling: A Goal-Oriented
Approach,� Proceedings of SEA�06, Dallas, TX, Dec. 2006

[5] Guttorm Sindre, and Andreas L. Opdahl. "Eliciting
security requirements by misuse cases." Proceedings of
TOOLS Pacific 2000, pp. 120-131, 2000.
[6] Suvda Myagmar, Adam J. Lee, and William Yurcik,
"Threat Modeling as a Basis for Security Requirements,"
Symposium on Requirements Engineering for Information
Security (SREIS) in conjunction with 13th IEEE
International Requirements Engineering Conference (RE),
Paris, France, Aug., 2005.
[7] Michael Howard and David LeBlanc, "Writing Secure
Code," Microsoft Press, 2002.
[8] Charles B. Haley, Robin C. Laney, Bashar Nuseibeh,
�Deriving Security Requirements from Crosscutting Threat
Descriptions,� Proceedings of the Third Int'l Conf. Aspect-
Oriented Software Development, pp. 112-121, 2004.
[9] Dianxiang Xu and Josh Pauli, "Threat-Driven Design
and Analysis of Secure Software Architectures," Journal of
Information Assurance (JIAS), vol. 1, no. 2, June 2006.
[10] Axel van Lamsweerde and Emmanuel Letier,
�Handling Obstacles in Goal-Oriented Requirements
Engineering,� IEEE Transactions on Software Enineering.
Special Issue on Exception Handling, 2000.
[11] Axel van Lamsweerde, "Elaborating Security
Requirements by Construction of Intentional Anti-Models,"
Proceedings of ICSE'04, 26th International Conference on
Software Engineering,Edinburgh, pp.148-157, May 2004.
[12] Yujian Fu, Zhijiang Dong, Xudong, "Modeling,
Validating and Automating Composition of Web Services,"
ACM International Conference Proceeding Series,
Proceedings of the 6th international conference on Web
engineering, 2006.
[13] Mihir M. Ayachit and Haiping Xu, "A Petri Net Based
XML Firewall Security Model for Web Services
Invocation," Proceedings of the International Conference
on Communication, Network, and Information Security
(CNIS 2006), pp. 61-67, MIT, Cambridge, Massachusetts,
USA, Oct, 2006.
[14] Meyer C. Tanuan, "Automated analysis of unified
modeling language (UML) specifications." Master's thesis
presented to the University of Waterloo, August 2001.
[15] Xudong He, Junhua Ding, J. Wang and Yi Deng,
"Model checking software architecture specifications in
SAM", Proceedings of International Conference on
Software Engineering and Knowledge Engineering, Ischia,
Italy, July 15-19, 2002.
[16] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, Yi
Deng, "Formally analyzing software architectural
specifications using SAM," Journal of Systems and
Software 71 (1�2), pp.11�29, 2004.
[17] Anthony Hall and Roderick Chapman, "Correctness by
Construction: Developing a. Commercial Secure System,"
IEEE Software, Jan/Feb 2002, pp18 � 25, 2002.
[18] Ken McMillan. "The SMV System". Carnegie-Mellon
University, Pittsburgh, PA, Feb.1992.
[19] Matthew B. Dwyer , George S. Avrunin , James C.
Corbett. "Property Specification Patterns for Finite-State
Verification." 2nd Workshop on Formal Methods in
Software Practice, pp 7 - 15, Clearwater Beach, FL, USA,
1998.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

