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Abstract. This paper studies ring-type digital spiking neural networks that can exhibit multi-phase syn-
chronization phenomena of various periodic spike-trains. First, in order to realize approximation of a class
of spike-trains, a winner-take-all switching is applied to the network. Second, in order to design efficient
networks, relationship between approximation error and the network size is investigated. Executing Verilog
simulation, approximation function is confirmed experimentally.
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1 introduction

This paper presents a network of digital spiking neurons (DSN [1][2]) and considers its application to time-
series approximation. The DSN can be regarded as a digital version of analog spiking neurons that have been
studied from both fundamental and application viewpoints [3][4]. Repeating integrate-and-fire behavior between
a periodic base signal and constant threshold, the DSN can output a variety of periodic spike-trains (PSTs).
Applying delayed ring connection to multiple DSNs, a ring-type digital spiking neuron (RDSNN) is constructed.
The RDSNN can realize multi-phase synchronization of various PSTs [5][6]. Adjusting the base signal, stability
of the synchronization can be reinforced. The PSTs and synchronization of them are applicable to various
engineering systems including spike-based encoding communication [7], central pattern generators [8], and time
series approximation [9][10].

In order to realize time-series approximation, winner-take-all (WTA) switching [4] is applied in the RDSNN
where an objective time series is represented by a PST. This paper gives two main results. First, the WTA
switching enables RDSNN to approximate a target PST automatically if the number of spikes in the PST satisfies
some condition. Second, relationship between approximation error and the number of DSNs is investigated for
typical examples of target PSTs. Executing Verilog simulation, typical synchronization phenomena and basic
approximation performance are confirmed experimentally.

The results of the paper will be developed into systematic analysis of nonlinear dynamics in RDSNNs,
optimal design of RDSNN for approximation of target PSTs, and its application to various systems including
reservoir computing systems for time series approximation. As novelty of this paper, it should be noted that
existing papers discuss neither the WTA-based switching nor the relationship between approximation error and
the number of DSNs.

Fig. 1. DSN and digital spike map. (a) PST with period 6Np. (b) Periodic orbit with period 6 for δ =
(5, 5, 5, 8, 8, 8, 17, 17, 17, 2, 2, 2, 11, 11, 11, 14, 14, 14).
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2 Digital Spiking Neurons

We introduce the DSN that is a building block of the RDSNN. Let x(τ ) denote a discrete state variable at
discrete time τ . Repeating integrate-and-fire behavior between a base signal b(τ ) with period Np and a constant
threshold Nx, the DSN outputs a spike-train y(τ ).

Integrating: x(τ + 1) = x(τ ) + 1, y(τ ) = 0 if x(τ ) < Nx

Self-firing: x(τ + 1) = b(τ ), y(τ ) = 1 if x(τ ) = Nx
(1)

where x(τ ) ∈ {0, 1, · · · , Nx} and b(τ +Np) = b(τ ). Fig. 1 (a) illustrates the dynamics. For simplicity, we assume
the following condition.

τ − 2Np + 1 ≤ b(τ ) − Nx ≤ τ − Np for τ ∈ {0, · · · , Np − 1}, Nx ≤ 2Np − 1. (2)

In this case, the DSN outputs one spike per one period of b(τ ) and outputs a spike-train

yo(τ ) =

{

1 for τ = τn

0 for τ �= τn
τn ∈ In = [(n − 1)Np, nNp) (3)

where τn denote the n-th spike-position. Let θn = τn mod Np (θn ∈ {1, · · · , Np}) be the n-th spike-phase. A
spike-position is given by τn = θn + Np(n − 1) and a spike-train y(τ ) is governed by the digital spike map F .

θn+1 = F (θn) = f(θn) mod Np, f(θn) = θn − b(θn) + Nx + 1 (4)

The digital spike map is represented by a characteristic vector δ of integers:

δ ≡ (δ1, · · · , δNp
), F (i) = δi, δi ∈ {1, · · · , Np}, i ∈ {1, · · · , Np} (5)

Fig. 1 (b) shows an example of digital spike map with periodic orbit with period 6. This periodic orbit is stable
and corresponds to PST with period 6Np (yo(τ + 6Np) = yo(τ )) in Fig. 1 (a). Adjusting the base signal, the
DSN can generate various stable PSTs. More detailed discussion of periodic orbits and their stability can be
found in [2] [6].

3 Ring-coupled Digital Spiking Neural Networks

Connecting M pieces of DSNs with a common base signal b(τ ) in ring topology, the RDSNN is constructed (see
Fig. 2). The dynamics is described by

Integrating: xi(τ + 1) = xi(τ ) + 1, yi(τ ) = 0 if xi(τ ) < Nx

Self-firing: xi(τ + 1) = b(τ ), yi(τ ) = 1 if xi(τ ) = Nx

Cross-firing: xj+1(τ + 1) = Nx − Np + 1, zj(τ ) = 1 if xj(τ ) = Nx and
xj+1(τ ) ≤ Nx − Np

(6)

Connection signal: zi(τ ) =

{

1 if xi(τ ) = Nx and xi+1(τ ) ≤ Nx − Np

0 otherwise
(7)

The integrating and self-firing are the same as the single DSN. Fig. 3 shows the cross-firing that connects DSNs
in ring topology. The cross-firing is characterized by the connection signal zi. For simplicity, we consider the
case where each DSN outputs a PST with period MNp and the RDSNN consists of M pieces of DSNs. We
define the M -phase synchronization (M-SYN) with period MNp.

xi(τ ) = xi(τ + MNp), yi(τ ) = yi(τ + MNp), i ∈ {1, · · · , M}
xj(τ ) = xj+1(τ + Np), yj(τ ) = yj+1(τ + Np), j ∈ {1, · · · , M}
zi(τ ) = 1 for some τ ∈ {1, · · · , MNp}

(8)

where xM+1 ≡ x1 and yM+1 ≡ y1. Note that non-zero connection signal zi(τ ) is required for the M-SYN because
all the DSNs are isolated if zi(τ ) = 0 for all τ . Fig. 4 illustrates an M-SYN of PSTs with period MNp for M = 6
and corresponding output spike-train of the RDSNN. The existence and stability of M-SYN is discussed in [6].

The output spike-train y is given through time dependent selection switches Si operation of which is repre-
sented by the connection matrix W = (wij):

y(τ ) =

M
∑

i=1

wijyi(τ ) for τ ∈ Ij , j ∈ {1, · · · , M}, y(τ + T ) = y(τ ) (9)
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Fig. 2. RDSNN for M = 6.

Fig. 3. Cross-firung of the RDSNN

wij =

{

1 if the i-th DSN is selected (Si =on) for τ ∈ Ij

0 if the i-th DSN is not selected (Si =off) for τ ∈ Ij
(10)

where one period of PST (I ≡ [0, MNp)) is divided into M subintervals

I1 = [0, Np), I2 = [Np, 2Np), · · · , IM = [(M − 1)Np, MNp).

and wij is constant in each subinterval. If the i-th DSN is selected in the j-th subinterval Ij (wij = 1) then Ij

is said to be activated by Si.

Since possible connection number of DSNs is zero to M in each subinterval and since each DSN outputs one
spike in each subinterval, the RDSNN can output zero to M spikes in each subinterval. Fig. 4 shows an example
of output y for M = 6 where the selection is given by the following selection matrix and the PST of the first
DSN is given by Fig. 1.

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0 0
0 1 1 1 0 0
0 1 1 0 1 1
0 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

The output PST is characterized by six spike-phases: {θa, θb, θc, θd, θe, θf}. Adjusting the selection matrix,
the RDSNN can output various PSTs consisting of any combination of 6 spike-phases {θa, θb, θc, θd, θe, θf}. In
general, if a DSN outputs a PST with period MNp consisting of M spike-phases then the RDSNN can output
various PSTs consisting of any combination of the M spike-phases. It goes without saying that such an output
is impossible in the single DSN [5].
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Fig. 4. M-phase synchronization of PSTs and output spike-train for M = 6.

4 Spike-train Approximation

We apply the RDSNN to spike-train approximation. First, we define a target PST yt(τ ) with period T = MNp:

yt(τ ) =

{

1 for τ = τk

0 otherwise
k ∈ {1, · · · , Q}, 0 < τ1 < · · · < τQ < T (12)

where τn denotes the n-th spike-position and yt(τ + T ) = yt(τ ). The target PST consists of Q spikes per one
period. For convenience, let the target spike-train be represented by inter-spike intervals (ISIs)

D = (d1, d2, · · · , dQ−1), dl = τl+1 − τl, l ∈ {1, · · · , Q− 1} (13)

where dl is the l-th ISI and D is the target ISI sequence.
Here we consider approximate of a target PST by the output of the RDSNN. In order to realize the approxi-

mation, suitable operation of the selection switches Si is necessary. We present the WTA switching to determine
the selection matrix for the suitable operation of Si:

wij =

{

1 if yt(τ ) = 1 and xi(τ ) is the maximum at time τ (xi(τ ) > xk(τ ), k �= j)
0 otherwise

(14)

where τ ∈ Ij. Fig. 5 illustrate the WTA switching. This switching tries to select a DSN having the highest
approximation potential when the target spike arrives.

If the WTA switching selects the i-th DSN at the j-th subinterval Ij (wij = 1) then the Ij is said to
be activated by Si. As an target PST yt(τ ) is applied, the RDSNN with the WTA switching outputs an

Fig. 5. WTA switching rule.
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approximated PST ya(τ ) where 0 ≤ τ < T = MNp. For simplicity, we consider the case where yt(τ ) and
ya(τ ) consist of the same number of spikes. The approximated PST ya is characterized by an ISI sequence
D′ = (d′

1, d
′

2, · · · , d′

Q−1
). The approximation accuracy is evaluated by the matric of ISI error:

εp =
1

Q − 1

Q−1
∑

i=1

|di − d′

i|. (15)

If the WTA misses some target spike then the ISI error is calculated after removing the missing spike(s). The
number of the missing spikes is used as the other evaluation matric.

We have investigated the approximation function in Verilog simulation. The Verilog simulation is a first step
to realize a utility hardware. Fig. 6 shows the target PST characterized by D = (21, 11, 9, 7, 7, 6, 6, 7, 6, 9) and
approximated PST from the RDSNN with the WTA switching. In the RDSNN, the selection matrix is given by

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0 1
0 0 1 1 1 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(16)

The target PST is given by discrete exponential distribution discussed afterward. In the Verilog simulation, the
RDSNN is constructed by shift registers, D flip-flops and several switching elements. The basic circuit design
can be found in [6]. The approximation is evaluated by εp = 0.5.

Fig. 6. Target spike-train and approximated spike-train in Verilog similation.

Fig. 7. Discrete exponential distribution (dmin = 6, λ = 0.25).

In order to consider the approximation function in more detail, we have performed fundamental numerical
experiments. For simplicity, we consider the approximation of target PST with period T = 6Np by RDSNN

ICONIP2019 Proceedings 5

Volume 17, No. 2 Australian Journal of Intelligent Information Processing Systems



6 Uchida, Saito

of 6 DSNs (M = 6). The target PST is given by discrete exponential distribution f(d) as shown in Fig. 7
where d is a random variable corresponding to ISI. If the firing frequency of spikes per subinterval follows the
Poisson distribution, the firing interval of spikes (ISI) follows the exponential distribution. In the exponential
distribution, we have fixed parameters as dmin = 6 and λ = 0.25: in some subinterval In, 0 to 3 spikes can
appear. In order not to missing spikes, the number of DSNs must be 3 or more (M ≥ 3). We have investigated
influence of the number of DSNs in the following two cases.
Case 1: The number of DSN is reduced in the order of activation frequency in the subinterval selection. For
example, if the j-th DSN has the lowest activation frequency then the j-th DSN is disconnected (Sj=off) from
the output.
Case 2: The number of DSN is reduced randomly.

We have executed 10 trials and the results are measured by average of ISI error (Avg of εp), standard
deviation of ISI error (SD of εp), and spike missing rate (SMR). In Tables 1 and 2, we can see that if the number
of DSNs is 6, the approximation property of almost the same in the Case 1 and Case 2. As the number of DSNs
decreases, the Case 1 exhibits better approximation performance than Case 2 in both ISI error and spike missing
rate. Especially, in the case of three DSNs, the Case 1 exhibits much better approximation performance than
the Case 2. These results suggest that existence of an optimal combination of DSNs for efficient approximation
and the WTA switching is effective to determine the selection matrix.

Table 1. Results in Case 1.

#DSN AVG of εp SD of εp SMR[%]

6 0.96 0.18 0.00
5 1.08 0.22 0.00
4 1.20 0.28 0.94
3 1.99 0.69 0.94

Table 2. Results in Case 2.

#DSN AVG of εp SD of εp SMR[%]

6 0.96 0.18 0.00
5 2.01 0.79 0.00
4 2.21 0.60 7.55
3 2.88 0.78 11.3

5 Conclusions

The RDSNN is presented and its application to spike-train approximation is considered in this paper. The RD-
SNN can realize stable multi-phase synchronization of various PSTs. Applying the WTA switching to selection
of suitable DSNs, the RDSNN can approximate target PSTs if the number of spikes per period of base signal
does not exceed the number of DSNs. The relation between approximation error and the number of DSNs are
investigated and basic information for efficient network design is given. Presenting a Verilog simulation, basic
approximation function is confirmed experimentally.

Future problems include analysis of the optimal combination of DSNs for spike-train approximation, im-
plementation of RDSNN on an FPGA board and development into large scale spike-based digital reservoir
computing system.

References

1. Torikai, H., Funew, A., Saito, T.: Digital spiking neuron and its learning for approximation of various spike-trains.
Neural Networks, 21, 140-149 (2008)

2. Uchida, H., Saito, T.: Implementation of desired digital spike maps in the digital spiking neurons. D. Liu et al.
(Eds.): ICONIP 2017, Part VI, LNCS 10639, 804-811 (2017)

3. Izhikevich, E.M.: Dynamical systems in neuroscience. MIT Press (2006)
4. Torikai, H., Saito, T., Schwarz, W.: Synchronization via multiplex pulse trains. IEEE Trans. Circuits Syst. I, 46(9),

1072-1085 (1999)
5. Uchida, H., Saito, T.: A Variety of periodic spike-trains in a ladder-type digital spiking neural network. L. Cheng et

al. (Eds.): ICONIP 2018, LNCS 11301, 555-562 (2018)
6. Uchida, H., Saito, T.: Multi-phase synchronization phenomena in a ring-coupled system of digital spiking neurons.

IEICE Trans. Fund., E102-A, 1, 235-241 (2019)
7. Iguchi, T., Hirata, A., Torikai, H.: Theoretical and heuristic synthesis of digital spiking neurons for spike-pattern-

division multiplexing. IEICE Trans. Fund., E93-A, 8, 1486-1496 (2010)
8. Lozano, A., Rodriguez, M., Roberto Barrio, R.: Control strategies of 3-cell central pattern generator via global

stimuli. Sci. Rep. 6, 23622 (2016)
9. Appeltant, L., Soriano, M. C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso,

C. R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun., 2:468;
doi: 10.1038/ncomms1476 (2011)

10. Zhang, A., Zhu, W., Liu, M.: Self-organizing reservoir computing based on spiking-timing dependent plasticity and
intrinsic plasticity mechanisms. IEEE Chinese Automation Congress; doi: 10.1109/CAC.2017.8243892 (2017)

6 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 17, No. 2


	275
	455
	59
	54
	625
	517
	297
	245
	Dissect Sliced-RNN in Multi-Attention View

	363
	Discovering Sequences in Systems Logs by Neural Networks


