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Abstract—Extractive speech summarization attempts to select a
representative set of sentences from a spoken document so as to
succinctly describe the main theme of the original document. In
this paper, we adapt the notion of risk minimization for extrac-
tive speech summarization by formulating the selection of sum-
mary sentences as a decision-making problem. To this end, we de-
velop several selection strategies and modeling paradigms that can
leverage supervised and unsupervised summarization models to in-
herit their individual merits as well as to overcome their inherent
limitations. On top of that, various component models are intro-
duced, providing a principled way to render the redundancy and
coherence relationships among sentences and between sentences
and the whole document, respectively. A series of experiments on
speech summarization seem to demonstrate that the methods de-
duced from our summarization framework are very competitive
with existing summarization methods.

Index Terms—Decision-making, language modeling, loss func-
tions, risk minimization, speech summarization.

I. INTRODUCTION

UGE volumes of multimedia data are continuously filling
H up our computers, networks, and daily lives. Automatic
summarization that facilitates users to quickly digest the im-
portant information conveyed by either a single or a cluster of
documents plays an ever-increasing role in managing the mul-
timedia content [1]. Due to the maturity of text summarization
[2], this realm of research has been extended to speech sum-
marization over the years [3]-[8]. Speech summarization is in-
evitably faced with the problem of incorrect information caused
by recognition errors when using automatic speech recognition
(ASR) techniques to transcribe the spoken documents into text
forms. However, speech summarization also presents opportu-
nities that do not exist for text summarization; for example, in-
formation cues about prosody/acoustics and emotion/speakers
can help the determination of the importance and structure of
spoken documents [4], [9].
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Broadly speaking, a summary can be either abstractive or ex-
tractive [2]. In abstractive summarization, a fluent and concise
abstract that reflects the key concepts of a document is gen-
erated, whereas in extractive summarization, the summary is
usually formed by selecting salient sentences from the original
document. The former requires highly sophisticated natural lan-
guage processing (NLP) techniques, including semantic repre-
sentation and inference, as well as natural language generation,
while this would make abstractive approaches difficult to repli-
cate or extend from constrained domains to more general do-
mains. In addition to being abstractive or extractive, a summary
may also be generated by considering several other aspects like
being generic or query-oriented summarization, single-docu-
ment or multi-document summarization, and so forth. Interested
readers are encouraged to refer to [2] for an excellent and enter-
taining overview of document summarization. In this paper, we
focus exclusively on generic, extractive speech summarization
since it usually constitutes the essential building block for many
other speech summarization tasks.

A spoken sentence to be selected as part of a summary may
be considered from the following three factors (although one
can still tackle the extractive summarization problem from a dif-
ferent point of view): 1) salience—the importance of the sen-
tence itself, which is usually evident by its structure, location,
prosodic or word-usage information, and many more; 2) rele-
vance—the more relevant a sentence to the whole document or
the other sentences in the document, the more likely it should
be included in the summary; and 3) redundancy—the informa-
tion carried by the sentence and that of the already selected
summary sentences should cover different topics or concepts
of the document. Quite a few studies with either supervised
or unsupervised machine-learning methods have been designed
to address the above three factors to a certain extent. For the
salience factor, a typical example is to estimate the salience of
each spoken sentence with supervised machine-learning tech-
niques. It can be thought of as a two-class (i.e., summary and
non-summary) sentence-classification problem [10]: a sentence
with a set of indicative features is fed to the classifier (or sum-
marizer) and a classification result is then output from it in view
of these features. Summary sentences are subsequently ranked
and compiled according to those classification results. Although
such supervised summarizers are effective, most of them usually
explicitly assume that sentences are independent of each other
and each sentence is classified individually without allowing for
the relationship among the sentences (the so-called “bag-of-sen-
tences” assumption) [11]. The other potential shortcoming is
that a set of handcrafted document-reference summary exem-
plars are required for training the summarizers; however, such
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summarizers tend to limit their generalization capability and
might not be readily applicable for new tasks or domains.

There is another school of thought that attempts to conduct
document summarization using unsupervised machine-learning
approaches, getting around the need for manual annotation of
training data. The common basic idea behind these summarizers
is typically based on the conception of the relevance (or simi-
larity) of a sentence to other sentences [12]. Put simply, sen-
tences bearing more similarity to the document itself (or the
other sentences in the document) are deemed more relevant to
the main theme of the document; such sentences thus will be
selected as part of the summary. Moreover, unsupervised sum-
marizers are usually constructed only on the basis of the lex-
ical information without considering other sources of informa-
tion, whereas imperfect speech recognition often leads to de-
graded performance when using the lexical information solely.
On the other hand, for the last factor, redundancy, maximum
marginal relevance (MMR) [13] is usually considered to be a
good remedy. MMR performs sentence selection iteratively by
striking the balance between topic relevance and coverage.

We have recently introduced a new perspective on the
problem of speech summarization, saying that it can be ap-
proached with a modeling framework built on the notion of risk
minimization [14], [15], which shows good promise to inherit
the merits of most existing summarization methods, as well as
to provide a general and flexible way to allow for the afore-
mentioned three factors. Our work in this paper continues this
general framework of research in several significant aspects: 1)
we investigate leveraging several selection strategies and mod-
eling paradigms to construct the component models involved
in such a framework; 2) we explore various ways to devise
the loss functions that can effectively render the dependence
relationship among the sentences of a spoken document to be
summarized; 3) more extra information cues are incorporated
into the summarization framework that can further enhance
the summarization performance; 4) we also provide extensive
analysis and a series of experiments, showing that the methods
deduced from such a risk-aware modeling framework are in-
deed very competitive with the existing speech summarization
methods; and 5) we again confirm the added benefit of using
non-lexical features for speech summarization.

The remainder of this paper is structured as follows. We begin
by giving a brief review of the related work on extractive sum-
marization in Section II, with a focus on supervised and un-
supervised machine-learning methods. In Section III, we de-
scribe how to cast extractive speech summarization as a risk
minimization problem, followed by a detailed elucidation of the
proposed methods in Section IV. After that, the experimental
setup and several sets of experiments and associated discus-
sions are presented in Sections V and VI, respectively. Finally,
Section VII concludes our presentation and suggests avenues for
future work.

II. RELATED WORK

Speech summarization can be conducted using either super-
vised or unsupervised machine-learning methods. In the fol-
lowing, we briefly review a few celebrated machine-learning
methods that have been applied to speech summarization with

varying degrees of success, as well as some other considerations
pertaining to spoken documents.

A. Supervised Summarizers

The supervised machine-learning approaches usually treat
speech summarization as a two-class (summary and non-sum-
mary) sentence-classification problem: A spoken sentence S;
is characterized by a set of indicative features, such as lexical
features [16], structural features [17], acoustic features [16],
discourse features [18], relevance features [19], etc. Then, the
corresponding feature vector X; of S; is taken as the input to
the classifier. If the output (classification) score belongs to the
positive class, S; will be selected as part of the summary; oth-
erwise, it will be excluded [10]. Specifically, the problem can
be formulated as follows: Construct a sentence ranking model
that assigns a classification score (or a posterior probability)
of being in the summary class to each sentence; important
sentences are subsequently ranked and selected according to
these scores. To this end, several popular machine-learning
methods could be utilized to serve the purpose, like Bayesian
classifier (BC) [10], Gaussian mixture model (GMM) [20],
hidden Markov model (HMM) [21], support vector machine
(SVM) [22], maximum entropy (ME) [23], conditional random
field (CRF) [11], [24], to name a few.

In general, these methods require a training set comprised of
several documents and their corresponding handcrafted sum-
maries to train the classifiers (summarizers). However, manual
annotation is often expensive in terms of time and personnel.
Moreover, such summarizers tend to limit their generalization
capability and might not be readily applicable for new tasks or
domains. Another major shortcoming of these summarizers is
that most of them usually implicitly assume that sentences are
independent of each other (or the so-called “bag-of-sentences”
assumption) and classify each sentence individually without
leveraging the dependence relationship among the sentences or
the global structure of the document [11].

B. Unsupervised Summarizers

The unsupervised summarization approaches usually rely on
some heuristic rules or statistical evidences (such as word oc-
currence statistics) between each sentence and the document,
without recourse to manual annotation of training data. Most
previous studies conducted along this line revolve around the
conception of sentence centrality [12], [25]-[27]. That is, sen-
tences more similar to others are deemed more relevant to the
main theme of the document; such sentences thus will be se-
lected as part of the summary. For example, the vector space
model (VSM) approach represents each sentence of a document
and the document itself as vectors in the index term space [12],
and computes the relevance score between each sentence and the
document (e.g., the cosine measure of the proximity between
two vectors). Then, the sentences with the highest relevance
scores are included in the summary. A natural extension is to
represent each document and each sentence as vectors in a latent
semantic space, instead of simply using the literal term informa-
tion as that done by VSM. On the other hand, the graph-based
methods, such as LexRank [25] and TextRank [27], conceptu-
alize the document to be summarized as a network of sentences,
where each node represents a sentence and the associated weight
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of each link represents the lexical or topical similarity relation-
ship between a pair of nodes. Document summarization thus ex-
ploits the global structural information conveyed by such con-
ceptualized network, rather than merely considering the local
features of each node or sentence.

However, due to the lack of document-summary reference
pairs, the performance of the unsupervised summarizers might
be worse than that of the supervised summarizers, but their do-
main-independent and easy-to-implement properties still make
them attractive. Moreover, most of the unsupervised summa-
rizers are usually constructed solely on the basis of the lex-
ical information without leveraging other sources of information
cues, and the imperfect speech recognition results often lead to
severely degraded performance [19].

C. Spoken Documents

Most of the above-mentioned methods can be equally applied
to both text and speech summarization [3], [4]; the latter, in
particular, presents unique difficulties, such as speech recog-
nition errors, problems with spontaneous speech, and the lack
of correct sentence or paragraph boundaries. It has been shown
that speech recognition errors are the dominating factor for the
performance degradation of speech summarization when using
speech recognition transcripts instead of manual transcripts,
whereas erroneous sentence boundaries cause relatively minor
problems [5], [19]. As an illustration, it has been shown that
when the speech recognition error rate is in the range between
20% and 40%, a severe performance drop of about 50% is
encountered for summarizing broadcast news speech with
speech recognition transcripts [19]. To relieve this problem,
we may develop techniques that can robustly represent the
spoken documents as a straightforward remedy, apart from the
many approaches to improving speech recognition accuracy.
For example, multiple recognition hypotheses, beyond the top
scoring ones, are expected to provide alternative representations
for the confusing portions of the spoken documents. A recent
trend in speech summarization has been to pursue different
ways for robustly representing the recognition hypotheses of
spoken documents, such as the use of word lattices, confusion
networks, and N -best lists [28], [29].

In addition, prosodic (acoustic) features, e.g., intonation,
pitch, formant, energy, and pause duration, can provide im-
portant clues for speech summarization. Some recent work
has revealed that exploring more non-lexical features such as
the prosodic features is beneficial for speech summarization
especially when the speech recognition accuracy is not perfect
[16], [18], [30], although reliable and efficient ways to use such
features still await further studies. The summaries of spoken
documents can be presented in either text or speech form.
The former has the advantage of easier browsing and further
processing, but it is subject to speech recognition errors, as well
as the loss of the speaker’s emotional/prosodic information,
which can only be conveyed by speech signals [3].

III. RISK-AWARE SUMMARIZATION FRAMEWORK

Extractive summarization can be alternatively viewed as a
decision-making process in which the summarizer attempts

to select a representative subset of sentences from the orig-
inal documents. Among the several analytical methods that
can be employed for the decision-making process, the Bayes
decision theory, which quantifies the tradeoff between various
decisions and the potential cost that accompanies each decision
[31], is perhaps the most suited one that can be used to guide
the summarizer in choosing a course of action in the face of
some uncertainties underlying the decision-making process. In
formal terms, a decision-making problem may consist of four
basic elements: 1) an observation O from a random variable O;
2) a set of possible decisions (or actions) a € A; 3) the state of
nature # € © which denotes the possible states existing in the
problem; and 4) a loss function L(a, #) which specifies the cost
associated with a chosen decision a given that f is the true state
of nature. As an illustration, for a binary classification problem,
the state of nature # can be either “the positive class (§ = 1)”
or “the negative class (¢ = 0),” while the decision ¢ means the
class assignment for a particular observation. The expected risk
associated with taking decision a is given by

R(al0) = [ Lia.0)p(6810)a5 0

4

where p(0|O) is the posterior probability of the state of nature
being 6 given the observation O. The Bayes decision theory
states that the optimum decision can be made by contemplating
each action a, and then choosing the action a* for which the
expected risk is minimum:

a* = arg min R(a|O). )

The notion of minimizing the Bayes risk have recently attracted
much attention and been applied with success to many natural
language processing tasks, such as automatic speech recognition
(ASR) [32], machine translation (MT) [33], and information re-
trieval (IR) [34]. However, as far as we are aware, this notion has
never been extensively explored for either text or speech sum-
marization.

Along this same vein, we formulate extractive speech sum-
marization as a Bayes risk minimization problem in this paper.
Without loss of generality, let us denote 7 € II as one of possible
selection strategies which comprises a set of indicators used to
address the importance of each sentence .S; in a document D to
be summarized. For notational convenience, we refer to the kth
action ay, as choosing the kth selection strategy 7y, and the ob-
servation O as the document D to be summarized. The expected
risk of a certain selection strategy 7 is given by

R(my| D) = / L(mp, m)p(r| D) dr. 3)

s

Consequently, the ultimate goal of extractive summarization
could be stated as the search of the best selection strategy 7*
from the space of all possible selection strategies that minimizes
the expected risk defined as follows:

m* = arg min R(7|D)

T

= argmin/L(ﬂkﬂr)p(ﬂD)dw. @

Th
™
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As can be seen in (4), the realization of the Bayes decision
theory for extractive speech summarization requires: 1) a prac-
tical definition of the selection strategy 7; 2) an efficient and ac-
curate way to estimate the probability of choosing a particular
selection strategy 7 given D (i.e.,p(w|D)); and 3) an effective
mechanism to measure the loss function between any two se-
lection strategies (i.e., L(m, 7)). In what follows, we will shed
light on each of these three ingredients from various points of
view.

A. Selection Strategy

A feasible selection strategy can be fairly arbitrary according
to the underlying principle. For example, it could be a set of
binary indicators denoting whether a sentence should be se-
lected as part of summary or not. In addition, it may also be
a ranked list used to address the importance degree of each in-
dividual sentence. Here, we present two different instantiations
of it where the selection strategy can be either “sentence-wise”
or “list-wise.”

1) Sentence-Wise Selection Strategy: For the sentence-wise
selection strategy, we assume that summary sentences can be
iteratively chosen (i.e., one at each iteration) from the orig-
inal document until the aggregated summary reaches a prede-
fined target summarization ratio. More concretely, the selection
strategy is represented by a binary decision vector, of which
each element corresponds to a specific sentence .S; in the docu-
ment D and designates whether it should be selected as part of
the summary or not. It turns out that the binary vector for each
possible action will have just one element equal to 1 and all the
others equal to zero (or the so-called “one-of-n” coding). For
ease of notation, we denote the binary vector by S; when the 7th
element has a value of 1. Therefore, (4) can be reduced to

S*

arg min R(S7|l~))
SiGB

= argmin Y L(S;,S;)P(S;|D) (5)

SieD S; Eg

where D denotes the remaining sentences that have not been
selected into the summary yet (i.e., the “residual” document);
P(S;|D) reflects the importance degree of a sentence S; given
the residual document D.

2) List-Wise Selection Strategy: The iterative (or greedy)
selection procedure described above may sometimes result in
a suboptimal selection. For example, the information carried
by a verbose sentence would be succinctly depicted by one or
more other concise (short) sentences which cover more topics
of interest. To address this potential shortcoming, one may
formulate the extractive summarization as a maximum conver-
gence problem under a summary length constraint and solve
the problem by exploiting some global inference algorithms,
such as the integer linear programming (ILP) [35], [36] or
graph-based submodular selection [37] methods. We, however,
present here an alternative remedy to address the issue by ex-
ploring the so-called list-wise selection strategy under the risk
minimization framework. Specifically, we contemplate every

possible combination (or subset) of sentences in a spoken doc-
ument as a candidate summary ¢; and then the best summary
can be constructed through the following equation:

Summary = arg min Z L(hi, i) P(1|D)  (6)

P, €¥p ;€W p

where ¥ denotes all possible combinations of sentences in a
spoken document D (i.e., the set of all possible candidate sum-
maries); P(1;|D) is the probability of ¢, being the summary
given the document D.

For practical implementation, it would be impossible to
enumerate all possible combinations of summary sentences for
forming the summary of a spoken document, due to the reason
that the number of possible combinations would grow exponen-
tially as the number of sentences in a document increases. To
reduce the computational overhead, we can first use some prior
knowledge, for example, the sentence-wise selection strategy,
to select a set of possible summary sentences as the candidates
for being considered to be included in the summary, and then
enumerate all possible combinations (or samplings) of these
sentences under a specific constraint of the length of the target
summary.

B. Evidence Modeling

The posterior probability P(w|D) of a particular selection
strategy 7 given the document D could be estimated from two
different schools of thought: generative- and direct- modeling
paradigms [38]. Each school has its own advantages and has
shown promise in many NLP applications. Here, we illustrate
how these two modeling paradigms can be adopted in the pre-
sented risk-aware summarization framework.

1) Generative Modeling: In generative modeling, the poste-
rior probability P(|D) is evaluated through the data generation
process. The basic idea behind this line of research assumes that
the data is drawn from some parameterized probabilistic models
and prior beliefs. By the application of Bayes’ rule, the poste-
rior probability P(w|D) can be further decomposed as

P(D|m)P(r)

P(rID) = = 5ps ™
where P(D|) is the generative probability given a particular
selection strategy m, P(m) is the prior probability of  and P(D)
is the marginal probability of D, which, for example, can be
approximated by the following expression when the possible
selection strategies are countable:

> p(DIr")P(x'). 8)

w'ell

P(D) =

2) Direct Modeling: Direct modeling, on the other hand, fo-
cuses on learning (or estimating) the probability of a direct map-
ping from an input variable (e.g., D) to an output variable (e.g.,
). In other words, the posterior probability P(w|D), viewed as
a kind of discriminative model, is estimated directly without re-
course to an intermediate step that explicitly represents the data
generation process as done by generative modeling. It should
be noted that direct modeling usually demands the training data
equipped with labeled information for learning the associated
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parameters. Interested readers may refer to [38] for a thorough
discussion of generative modeling and direct modeling.

C. Loss Function

The loss function L(7;, 7;) introduced in the proposed risk-
aware summarization framework is to measure the relationship
between any pair of selection strategies. For example, in the sen-
tence-wise selection strategy, when a given sentence is more dis-
similar from most of the other sentences, it may incur higher
loss as it is taken as the representative sentence (or summary
sentence) to represent the main theme embedded in the other
ones. Consequently, the loss function can be built on the grounds
of the similarity measure. Here, we take the sentence-wise se-
lection strategy as an example to illustrate how to measure the
relationship between any pair of sentences through the design
of meaningful loss functions L(.S;, S;), while the loss functions
for the list-wise selection strategy can be constructed in the same
spirit.

1) VSM Loss Function: We may fist represent each sentence
S; in vector form, where each dimension specifies the weighted
statistic 2 ;, e.g., the product of the term frequency (TF) and in-
verse document frequency (IDF) scores associated with a word
wy, reflecting its importance to S;. Then, the cosine similarity
measure Sim(S;, S;) is used to estimate the relevance between
any given two selection strategies .S; and S; (it is assumed that
the relevance between two selection strategies is correlated with
the similarity between them):

Y i Xz
Sim(Si, S;) = L T 9)
\/Zi‘t/:l 2 X \/22:1 %

where V' is the number of distinct words in the vocabulary. The
loss function is thus defined by

LVSM(Sh SJ) =1- Szm(S’L, SJ) (10)
This means that Lysm(S;, Sj) is reversely proportional to the
similarity measure Sim(S;, S;j) between sentences .S; and S.

2) KL-Divergence Loss Function: We may assume that if
two sentences .S; and S; are similar to each other, words w in
each of them should be drawn from the same probability dis-
tribution. Therefore, we can use the KL-divergence measure,
which assesses the relationship between any pair of probability
distributions from a rigorous information-theoretic perspective,
to quantify how close any two sentences S; and S; are [39]

Lx1.(S;, S5) = Z P(w|5j)108%

WEW

Y

where w denotes a specific word in the vocabulary set w. It
should be borne in mind that the closer the sentence generative
model P(w|S;) (see Section IV for more details about the pa-
rameter estimation) to the sentence generative model P(w|S;),
the more likely S; is relevant to S;. Therefore, (11) is a kind of
the probability distance between the sentence generative models
of S; and Sj.

IV. IMPLEMENTATION

In this section, we elaborate a few practical implementation
and technical details involved in the risk-aware summarization
framework.

A. Generative Modeling

1) Generative Probability: We explore the language mod-
eling (LM) approach, which has been introduced in a wide
range of IR tasks and demonstrated with good empirical suc-
cess, to predict the generative probability P(D|r), as shown in
(7). In the LM approach, each selection strategy = (virtually, 7
may correspond to a sentence for the sentence-wise selection
strategy, or a subset of possible summary sentences for the
list-wise selection strategy) can be simply regarded as a proba-
bilistic model for predicting the document. If we further assume
that words are conditionally independent given 7 and their order
is of no importance (i.e., the so-called “bag-of-words” assump-
tion), then P(D|x) can be decomposed as a product of unigram
probabilities of words w generated by 7

P(Dlx) = ] P(w|m)")
wED

(12)

where ¢(w, D) is the number of times that index term (or word)
w occurs in D, reflecting that w will contribute more in the
calculation of P(D|r) if it occurs more frequently in D. The
simplest way is to estimate the probabilistic model P(w|r) on
the basis of the frequency of word w occurring in 7, with the
maximum-likelihood estimation (MLE)

c(w, )

P(w|r) = (13)

||
where ¢(w, ) is the number of times that word w occurs in 7
and |r| is the number of words in 7. In a sense, (12) belongs
to a kind of literal term matching strategy and may suffer the
problem of unreliable model estimation owing particularly to
only a few sampled words present in 7 [39]. To mitigate this
potential problem, a unigram probability (or background model)
P(w|BG) estimated from a general collection, which models
the generic characteristics of words in the target language, is
often used to smooth the generative model:

P(w|r) = X- Pw|r)+ (1= )\) - P(w|BG)  (14)
where A is a weighting parameter. Interested readers may also
refer to [39] an in-depth treatment of more elaborate ways to
construct the generative model.

As an illustration, consider the sentence-wise selection
strategy where the calculation of the probability P(D|r) is
equivalent to the calculation of sentence generative probability
P(D|S;) if m corresponds to any arbitrary sentence S;. The
probability P(D|S;) can be interpreted as the likelihood of the
(residual) document D being generated by S;. If S; generate
D with a higher likelihood, it would be more likely to be a
summary sentence. Phrased another way, P(D|S;) captures the
degree of relevance of S; to D. Following the same spirit, we
can also use P(D]1)) to measure the similarity of a candidate
summary (namely, a subset of possible summary sentences) 1)
to D for the list-wise selection strategy.
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2) Prior Probability: The prior probability P(w), as shown
in (7), can be regarded as the likelihood of a selection strategy
7 being important without seeing the whole document. It could
be assumed uniformly distributed or estimated from a wide va-
riety of factors, such as the positional information, the lexical
information, the structural information or the inherent prosodic
properties embedded in a sentence (or a subset of sentences) of
the spoken document to be summarized.

Taking the sentence-wise selection strategy as an example, a
straightforward way is to assume that the sentence prior prob-
ability P(S;) is set in proportion to the posterior probability
of a sentence S; being included in the summary class when
observing a set of indicative features X; of S; derived from
its structure, location, prosodic and word-usage information, or
other sentence importance measures [10]. These features can
be integrated in a systematic way into the proposed framework
by taking the advantage of the learning capability of the super-
vised machine-learning methods. Specifically, the prior proba-
bility P(S;) can be approximated by

P(s,) p(XIS)PS)
777 P(X,I8)P(S) + P(X,[5)P(S)

(15)

where P(X;|S) and P(X|S) are the likelihoods that a sen-
tence S; with features X; are generated by the summary class S
and the non-summary class S, respectively; the prior probability
P(8S) and P(S) are set to be equal in this research. To estimate
P(X;|S) and P(X;|S), several popular supervised classifiers
(or summarizers), like BC, can be employed for this purpose.

On the other hand, the prior probability of each candidate
summary P(7)) in the list-wise selection strategy can be esti-
mated in a similar way as the sentence-wise selection strategy,
or, alternatively, by considering the informativeness, clarity or
redundancy of the constituent elements in the candidate sum-
mary (i.e., the subset of possible summary sentences). How-
ever, since in this research, the list-wise selection strategy is
implemented by a two-stage selection procedure by first using
the sentence-wise selection strategy to select a set of summary
sentences to form the combinations of sentences as the possible
candidate summaries, each candidate summary 1, to a certain
degree, is presumably representative enough. Thus, we might
simply assume that the prior probability of each candidate sum-
mary P(1)) is uniformly distributed.

B. Direct Modeling

To accomplish direct modeling of the posterior probability
P(w|D), in this study, we employ the global conditional log-
linear model (GCLM) [40] to fulfill this goal. In GCLM, the
posterior probability of an output 7' given an observation (or
input) R is represented by

P(T|R;a) =

exp (®(T,R) - a) (16)

1
Z(R,a)
where ®(7', R) is a feature vector used to characterize the re-
lationship between 1" and R, « is the corresponding parameter
vector, ®(T, R) - a is the dot product of (7T, R) and a, and
Z(R,a) = > 7, exp(®(T’, R) - @) is a normalization factor
that depends on R and a. In the context of speech summariza-
tion, for a spoken document D and a given selection strategy 7

(i.e., 7 is a possible summary sentence for the sentence-wise se-
lection strategy, or a subset of possible summary sentences for
the list-wise selection strategy) associated with its feature vector
X, the posterior probability p(7|D) thus can be represented by

P(r|D;a) =

oxp( Xy - @) (17)

1
Z(D, a)
where Z(D,a) = >, gexp(Xy - @) and X, is the fea-
ture vector for an arbitrary selection strategy 7’. Given a set
of training documents with their corresponding reference-sum-
mary information, the parameter vector a can be estimated with
the stochastic gradient-descent method [40].

C. Relation to Other Summarization Methods

In this subsection, we illustrate the relationship between our
summarization framework (especially taking the pairing of the
sentence-wise selection strategy and the generative modeling
paradigm as an example) and a few existing summarization ap-
proaches. We start by considering a special case where a 0—1
loss function is used in (5), namely, the loss function will take
value 0 if the two sentences are identical, and 1 otherwise. Then,
(5) can be alternatively represented by

P(D|S;)P(S;)
> S5)P(S;
SjeB’Sj?ﬁSi sze:B P(D|Sm)P(Sm)
P(D|S;)P(S;)

> P(D|Sm)P(Sm)
Sm€D
= arg max P(D|Si) P(S:)
S;eD

S* = arg min
S;eD

arg max
S:€D

(18)

which actually provides a natural integration of a supervised
summarizer (i.e., P(S;)) and an unsupervised summarizer (i.e.,
P(D|S;)), as mentioned previously.

If we further assume the prior probability P(S;) is uniformly
distributed, the important (or summary) sentence selection
problem has now been reduced to the problem of measuring
the sentence generative probability P(D|S;), or the relevance
between the document and the sentence. By the same token, the
important sentences of a document can be selected (or ranked)
solely based on the prior probability /(.S;) with the assumption
of an equal sentence generative probability P(D|S;).

V. EXPERIMENTS SETUP

A. Data

The summarization dataset employed in this study is a
broadcast news corpus collected by the Academia Sinica and
the Public Television Service Foundation of Taiwan between
November 2001 and April 2003 [41], which has been seg-
mented into separate stories and transcribed manually. Each
story contains the speech of one studio anchor, as well as
several field reporters and interviewees. A subset of 205 broad-
cast news documents compiled between November 2001 and
August 2002 was reserved for the summarization experiments.
We chose 20 documents as the held-out test set while the
remaining 185 documents as the training set. Twenty-five hours
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TABLE I
STATISTICAL INFORMATION OF THE BROADCAST NEWS
DOCUMENTS USED FOR THE SUMMARIZATION

Training Set Evaluation Set

Recordine Period Nov. 07,2001 — Jan. 24,2002 —

e Jan. 22,2002 Aug. 20, 2002
Number of Documents 100 20.0
Average Dur:fmon per 129 4 1413

Document (in sec.)
Avg. Number of words per 326 2903
Document
Avg. Number of 200 233
Sentences per Document

Avg. Character Error Rate 34.4% 36.2%

of gender-balanced speech from the remaining speech data
were used to train the acoustic models for speech recognition.
The data was first used to bootstrap the acoustic model training
with the ML criterion. Then, the acoustic models were further
optimized by the minimum phone error (MPE) discriminative
training algorithm [42]. The average Chinese character error
rate (CER) obtained for the 205 spoken documents was about
35%. Table I shows some basic statistics about the 205 spoken
documents.

A large number of text news documents collected by the Cen-
tral News Agency (CNA) between 1991 and 2002 (the Chinese
Gigaword Corpus released by LDC) were used. The documents
collected in 2000 and 2001 were used to train N-gram language
models for speech recognition with the SRI Language Modeling
Toolkit [43]. In addition, a subset of about 14 000 text news
documents, compiled during the same period as the broadcast
news documents to be summarized, was employed to estimate
the background model P(w|BG) that is used to smooth the gen-
erative model P(w|r) in (14).

B. Performance Evaluation

Three subjects were asked to create summaries of the 205
spoken documents for the summarization experiments as
references (the gold standard) for evaluation. The reference
summaries were generated by ranking the sentences in the
manual transcript of a spoken document by importance without
assigning a score to each sentence. For the assessment of sum-
marization performance, we adopted the widely-used ROUGE
measure [44]. It evaluates the quality of the summarization by
counting the number of overlapping units, such as N-grams,
longest common subsequences or skip-bigram, between the
automatic summary and a set of reference summaries. Three
variants of the ROUGE measure were used to quantify the utility
of the proposed methods. They are, respectively, the ROUGE-1
(unigram) measure, the ROUGE-2 (bigram) measure and the
ROUGE-L (longest common subsequence) measure [44].

The summarization ratio, defined as the ratio of the number
of words in the automatic (or manual) summary to that in the
reference transcript of a spoken document, was set to 10% in
this research. Since increasing the summary length tends to in-
crease the chance of getting higher scores in the recall rate of the
various ROUGE measures and might not always select the right

TABLE II
AGREEMENT AMONG THE SUBJECTS FOR IMPORTANT SENTENCE
RANKING FOR THE EVALUATION SET

ROUGE-1
0.600

ROUGE-2
0.532

ROUGE-L
0.527

Kappa
0.400

TABLE III
BASIC SENTENCE FEATURES USED BY SUPERVISED SUMMARIZERS

1.Position of the current sentence
2.Duration of the current sentence
3.Length of the current sentence
1.Number of named entities

Structural features

Lexical 2.Number of stop words
Features 3.Bigram language model scores
4.Normalized bigram scores
1.The 1st formant
Acoustic 2.The 2nd formant
Features 3.The pitch value

4.The peak normalized cross-correlation of pitch
1.VSM score

Relevance Feature

number of informative words in the automatic summary as com-
pared to the reference summary, all the experimental results re-
ported hereafter are obtained by calculating the F-scores of these
ROUGE measures. Table II shows the levels of agreement (the
Kappa statistic and ROUGE measures) between the three sub-
jects for important sentence ranking. Each of these values was
obtained by using the summary created by one of the three sub-
jects as the reference summary, in turn for each subject, while
those of the other two subjects as the test summaries, and then
taking their average. These observations seem to reflect the fact
that people may not always agree with each other in selecting
the summary sentences for representing a given document.

C. Features for Supervised Summarizers

Several features have been designed and widely-used in
speech summarization, especially with the supervised ma-
chine-learning approaches [10], [19]. In this paper, we take BC
as the representative supervised summarizer and use a set of
28 indicative features, as outlined in Table III, to characterize
a spoken sentence, including the structural features, the lexical
features, the acoustic features and the relevance feature. In-
terested readers may refer to [19] for detailed accounts on the
characteristics of these features, and comparisons among them.
Also noteworthy is that, for each kind of acoustic features,
the minimum, maximum, mean, difference value and mean
difference value of a spoken sentence are extracted. The differ-
ence value is defined as the difference between the minimum
and maximum values of the spoken sentence, while the mean
difference value is defined as the mean difference between
a sentence and its previous sentence. All the 28 features are
further normalized to zero mean and unit variance:

~ T — Hm
Ty = —

(19)
Om
where ., and o, are, respectively, the mean and standard

deviation of a feature z,,, estimated from the training set (cf.
Section V-A).
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TABLE 1V
RESULTS ACHIEVED BY THE BC AND LM SUMMARIZERS, RESPECTIVELY

Text Documents (TD)

Spoken Documents (SD)

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
BC 0.445 0.346 0.404 0.369 [0.314] 0.241[0.174] 0.321[0.276]
(0.390 - 0.504) (0.201 - 0.415) (0.348 - 0.468) (0.316 - 0.426) (0.183-0.302) (0.268 - 0.378)
LM 0.387 0.264 0.334 0.319 [0.266] 0.164 [0.106] 0.253 [0.204]
(0.302 - 0.474) (0.168 - 0.366) (0.251-0.415) (0.274 - 0.367) (0.115-0.224) (0.215-0.301)
TABLE V
RESULTS ACHIEVED BY SEVERAL METHODS DERIVED FROM THE SENTENCE-WISE SELECTION STRATEGY
CONDUCTED IN CONJUNCTION WITH THE GENERATIVE-MODELING PARADIGM
Text Documents (TD) Spoken Documents (SD)
Loss ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
0-1 0.501 0.401 0.459 0417 0.281 0.356
SIM 0.524 0.425 0.473 0.475 0.351 0.420
KL 0.531 0.429 0.484 0.467 0.336 0.409
MMR 0.529 0.426 0.479 0.475 0.351 0.420

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Baseline Experiments

At the outset, we evaluate the performance of a special case
of the risk-aware summarization framework when conducting
speech summarization with both the sentence-wise selection
strategy and the generative-modeling paradigm, but using either
the sentence generative model (denoted by the LM summarizer)
or the sentence prior model (denoted by the BC summarizer),
exclusively (cf. Section IV-A). Here the loss function is simply
set to the 0—1 loss function. The corresponding results are
detailed in Table IV, where the values shown in the parentheses
are the associated 95% confidence intervals. It is also worth
mentioning that TD denotes the summarization results obtained
based on the manual transcripts of spoken documents while
SD denotes the results using the speech recognition transcripts
which may contain speech recognition errors and sentence
boundary detection errors. In this research, sentence boundaries
were determined by speech pauses [19]. For the TD case, the
acoustic features were obtained by aligning the manual tran-
scripts to their spoken documents counterpart by performing
word-level forced alignment.

Furthermore, the ROUGE measures, in essence, are eval-
uated by counting the number of overlapping units between
the automatic summary and the reference summary; the cor-
responding evaluation results, therefore, would be severely
affected by speech recognition errors when applying the var-
ious ROUGE measures to quantify the performance of speech
summarization. In order to get rid of the confounding effect of
this issue, it is assumed that the selected summary sentences are
presented in speech form (besides text form) such that users can
directly listen to the audio segments of the summary sentences
to bypass the problem caused by speech recognition errors.
Consequently, we align the speech recognition transcripts of
the summary sentences to their respective audio segments to
obtain the correct (manual) transcripts for the summarization
performance evaluation (i.e., for the SD case). On the other
hand, the results obtained by directly evaluating the automatic
summary based on its associated speech recognition transcripts
also are shown in the brackets of Table IV for comparison.

We observe two phenomena from Table IV. One is that
there are significant performance gaps between conducting
summarization based on the manual transcripts and the erro-
neous speech recognition transcripts. The relative performance
degradations are about 15%, 34%, and 23%, respectively, for
ROUGE-1, ROUGE-2, and ROUGE-L measures. One expla-
nation is that the erroneous speech recognition transcripts of
spoken sentences would probably carry wrong information and
thus deviate somewhat from representing the true theme of the
spoken document. The other is that the supervised summarizer
(i.e., BC) outperforms the unsupervised summarizer (i.e., LM).
The better performance of BC can be further explained by two
reasons. One is that BC is trained with the handcrafted docu-
ment-summary sentence labels in the training set, while LM is
instead conducted in a purely unsupervised manner. Another is
that BC utilizes a rich set of lexical and non-lexical features to
characterize a given spoken sentence, while LM is constructed
solely on the basis of the lexical (unigram) information.

B. Experiments on the Proposed Summarization Framework

We then turn our attention to investigate the utility of several
methods deduced from the risk-aware summarization frame-
work. We first evaluate the performance of the sentence-wise
selection strategy conducted in conjunction with the genera-
tive-modeling paradigm [cf. (5) and (7)]. As can be seen from
the first row of Table V, a simple combination of BC and LM [cf.
(18)] can give about 4% to 5% absolute improvements as com-
pared to the results of BC illustrated at the first row of Table I'V.
It shows the feasibility of combining the supervised with unsu-
pervised summarizers. The result, to some extent, also confirms
the complementary properties of lexical features and non-lexical
features. Moreover, we consider the use of the loss functions de-
fined in (10) (denoted by SIM) and (11) (denoted by KL), and
the corresponding results are shown in the second and third rows
of Table V, respectively. Consulting Table V, we notice two par-
ticularities. First, properly leveraging the loss function greatly
boosts the summarization performance. Second, KL performs
slightly worse than SIM for the SD case. A possible explanation
is that the speech recognition errors will result in an inaccurate
estimation of (13) since there are only a few words present in the
erroneous speech transcription transcripts of spoken sentences.
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TABLE VI
RESULTS ACHIEVED BY SEVERAL METHODS DERIVED FROM THE SENTENCE-WISE SELECTION STRATEGY CONDUCTED
IN CONJUNCTION WITH THE GENERATIVE-MODELING PARADIGM AND WITH UNIFORM PRIOR PROBABILITY
Text Documents (TD) Spoken Documents (SD)
Loss ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
0-1 0.387 0.264 0.334 0.319 0.164 0.253
SIM 0.405 0.281 0.348 0.365 0.209 0.305
KL 0.424 0.303 0.368 0.364 0.209 0.301
MMR 0417 0.282 0.359 0.391 0.236 0.338
TABLE VII
RESULTS ACHIEVED BY SEVERAL METHODS DERIVED FROM THE SENTENCE-WISE SELECTION STRATEGY
CONDUCTED IN CONJUNCTION WITH THE DIRECT-MODELING PARADIGM
Text Documents (TD) Spoken Documents (SD)
Loss ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
0-1 0.512 0415 0.463 0.423 0.294 0.360
SIM 0.513 0.417 0.470 0.430 0.300 0.371
KL 0.513 0.413 0.469 0.430 0.300 0.366
MMR 0.515 0418 0.476 0.430 0.300 0.371

However, we believe that KL still has the merit of being able
to accommodate more elaborate model estimation techniques to
improve the performance in a systematic way (see Section VI-D
for more details on this issue). Furthermore, one potential draw-
back of these two approaches is that they do not take the redun-
dancy factor into account. To avoid such a problem of selecting a
summary sentence having similar (redundant) information that
is also contained in the already selected summary sentences, we
may borrow the idea form the MMR method [13] and redefine
the loss function shown in (10) as

LMMR(S,L',S]') =1- [)’ . SZTTL(S,SJ) — (1 — ,3)

(20)

max
S’eSumm

Sim(S;, S")
where Summ represents the set of sentences that have already
been included into the summary and the novelty factor (3 is used
to control the tradeoff between relevance and redundancy. That
is, the loss function expressed in (20) is derived according to two
criteria: 1) whether S; is more similar (relevant) to S; than the
other sentences; and 2) whether S; is less similar (relevant) to
the set of summary sentences selected so far than the other sen-
tences. As can be seen in the last row of Table V, it is evident
that MMR delivers slightly higher summarization performance
than SIM, which in turn verifies the merit of incorporating the
MMR concept into the proposed framework for extractive sum-
marization. If we further compare the results achieved by MMR
with those of BC and LM as shown in Table IV, we can find sig-
nificant improvements for both the TD and SD cases. To recap,
for the TD case, this summarization method offers relative per-
formance improvements of about 19%, 23%, and 19%, respec-
tively, in the ROUGE-1, ROUGE-2, and ROUGE-L measures as
compared to the BC baseline; while the relative improvements
are 29%, 46%, and 31%, respectively, in the same measurements
for the SD case. On the other hand, the performance gap be-
tween the TD and SD cases are reduced to a good extent by
using the risk-aware summarization framework.

In the next set of experiments, we simply assume the sentence
prior probability P(.S;) is uniformly distributed; namely, we do

not use any supervised information cue but use the unsupervised
lexical information only:

S* =argmin Y  L(S;, S;)P(D|S;). 1)

S:eD S; eD

The importance of a given sentence is thus considered from
two angles: 1) the relationship between a sentence and the
residual document (i.e., the sentence generative probability
P(D|S})), and 2) the relationship between the sentence and the
other individual sentences (i.e., the value of the loss function
L(S;,S;)). The corresponding results are illustrated in the
Table VI. It should be noted that the coupling of the uniform
prior probability and the 0-1 loss function is equivalent to the
baseline LM approach. These results seem to reflect that the
additional consideration of the “sentence-sentence” relation-
ship is beneficial as compared to that considering only the
“document-sentence” relevance information (cf. the second
row of Table IV). It also gives competitive results as compared
to the performance of BC for the SD case (cf. the first row of
Table IV).

We then explore the performance of the sentence-wise selec-
tion strategy conducted in conjunction with the direct-modeling
paradigm [cf. (17)] and the corresponding results are shown in
Table VII. It is worth mentioning that we take the scores ob-
tained by LM as an additional feature to augment the basic fea-
ture set (cf., Table III) for a fair comparison with the genera-
tive-modeling paradigm whose results are shown in Table V.
Two observations can be made from Table VII. First, when a
0-1 loss function is being used, the summary sentences are se-
lected solely based on the posterior probability of each sentence
[cf. (17)]. As compared to the results shown in the first row of
Table V, we can find that the direct-modeling paradigm seems
to perform slightly better than the generative-modeling para-
digm for all cases. Second, as can be seen from Table V, the
use of the other loss functions, rather than the 0—1 loss function,
provides moderate but consistent improvements. However, such
improvements are not as apparent as those gains achieved by the
sentence-wise selection strategy conducted in conjunction with
the generative-modeling paradigm (cf. Table V). We speculate
one possible reason is that the posterior probability estimated
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TABLE VIII
RESULTS ACHIEVED BY SEVERAL METHODS DERIVED FROM THE LIST-WISE SELECTION STRATEGY
CONDUCTED IN CONJUNCTION WITH THE GENERATIVE-MODELING PARADIGM

Text Documents (TD) Spoken Documents (SD)
Loss ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
0-1 0.544 0.448 0.505 0.466 0.336 0.409
SIM 0.544 0.448 0.505 0.482 0.359 0.435
KL 0.527 0.427 0.486 0.486 0.364 0.436
by the direct-modeling paradigm is already good enough, which TABLE IX
seems to overwhelm the added merit of using the various loss  RESULTS ACHIEVED BY SEVERAL CONVENTIONAL SUMMARIZATION METHODS
ffunctlf)ns.. However, the exact reason is still worthy of further Spoken Documents (SD)
investigation. N o Method ROUGE-I ___ROUGE-2 __ ROUGE-L
To go a step further, we evaluate the utility of the list-wise se- LEAD 0312 0.168 0251
lection strategy conducted in conjunction with the generative-  Unsupervised _ VSM 0.337 0.189 0277
modeling paradigm, and the corresponding results are shown in Summarizer _ LexRank 0.348 0.204 0.294
Table VIIL. As can be seen, the list-wise selection strategy con- : ILP 0.356 0.203 0312
sistently outperforms the sentence-wise selection strategy (cf. Supervised SVM 0.362 0.215 0.290
Table V) even under the assumption of uniformly distributed Summarizer CRE 0.358 0220 0.291
priors P (). In the case of the 0-1 loss function, the selection
TABLE X

of summary sentences relies solely on the list generative prob-
ability. It can be also seen that the 0—1 loss function performs
on par with SIM (and even better than KL) in the TD case, and
the performance gaps between the 0—1 loss function and SIM
(and between the 0—1 loss function and KL as well) are reduced
to a certain extent in the SD case as compared to that of the
sentence-wise counterparts shown in Table V. One reason for
this may be that speech summarization using the list generative
probability alone is quite good enough for the list-wise selec-
tion strategy, leading to that the contributions made by further
incorporating the various loss functions (viz. SIM and KL) are
less pronounced.

The above results seem to demonstrate that the list-wise selec-
tion strategy overcomes the problem of suboptimal performance
faced by most of the current commonly-used sentence-wise se-
lection strategies for extractive summarization. To better under-
stand why it outperforms the sentence-wise selection strategy,
we further analyze the average number of sentences respec-
tively selected by these two strategies subject to the same length
constraint. We observed the list-wise selection strategy selects
about 5.1 sentences on average while the sentence-wise selec-
tion strategy selects about 4.1 sentences into the summary under
the same word length constraint (i.e., 10% summarization ratio).
In other words, these statistics reveal that the list-wise selection
strategy can, to some extent, avoid selecting verbose sentences
into the summary.

C. Comparison With Conventional Summarization Methods

Furthermore, we compare our proposed summarization
methods with a few existing summarization methods that have
been well-practiced in various summarization tasks, including
LEAD, VSM [12], LexRank [25], ILP [35], SVM, and CRF
[11]; the corresponding results for the SD case are shown in
Table IX. It should be noted that the LEAD-based method
simply extracts the first few sentences from a document as
the summary. For ILP method, we follow [35] to define the
associated cost function and constraints and use the “Ipsolve”
[45] software as the ILP solver to find the optimal solution.
From Table IX, we observe the following remarks. First, to our
surprise, CRF does not provide superior results as compared

SUBJECTIVE EVALUATION FOR THE AUTOMATIC SUMMARIES GENERATED BY
THE BC SUMMARIZATION METHOD AND THE PROPOSED METHOD

BC Proposed Method
Informativeness 3.59 (0.25) 4.09 (0.18)
Readability 3.43 (0.30) 3.57(0.24)

to the other summarization methods. One possible explanation
is that the structural evidence of the spoken documents in the
test set is not strong enough for CRF to show its advantage of
modeling the global structural information among sentences.
Second, LexRank gives a very promising performance in spite
that it only utilizes lexical information in an unsupervised
manner. This somewhat reflects the importance of capturing the
global relationship for the sentences in the spoken document
to be summarized. Third, ILP performs better than VSM. The
results confirm the utility of the global inference algorithm for
extractive summarization. By and large, the evidence accumu-
lated so far seems to suggest that our proposed methods can
provide substantial improvements compared to these conven-
tional summarization methods.

In addition, we further evaluate the summarization results
obtained by the BC summarization method and the proposed
summarization method (i.e., conducting the list-wise selection
strategy in conjunction with the generative-modeling paradigm
and with the KL loss function) by using the Mean Opinion Score
(MOS) test. Six graduate students were invited to evaluate the
automatic summaries given that the associated reference tran-
scripts were provided. They were asked to judge the informa-
tiveness and readability of automatic summaries by assigning
scores ranging from 1.0 to 5.0, where 5.0 represents the best
rating and 1.0 represents the worst rating. The average results
of the subjective evaluation are shown in Table X, where the
numbers shown in the parentheses are the associated standard
deviations of the scores. We can see that the quality of the pro-
posed method is better than BC in terms of informativeness
of automatic summaries. On the other hand, the average read-
ability scores show no significant difference between these two
methods. One possible explanation is that summary sentences
are simply presented in the summary according to their original
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order in the document without any further post-processing (e.g.,
reparagraphing or rephrasing). Hence, it would sometimes hurt
the readability of automatic summaries.

D. Incorporation of Extra Information Cues

In the final set of experiments, we further advance the pro-
posed risk-aware summarization framework by incorporating
some extra information cues, including the use of multiple
recognition hypotheses and the use of more training data, for
achieving robust estimation of the sentence generative model
and the loss function. Here, we exploit the position specific
posterior lattices (PSPL) [46] to represent the spoken sentences
of a document to be summarized, since it achieved the best
performance over the other mechanisms in our previous work
[28]. On the other hand, as mentioned previously, because
there are only a few words present in a spoken sentence, it
would be difficult to make reliable estimation of the sentence
generative model with the MLE criterion when adopting the
generative-modeling paradigm. A simple and intuitive way
is to adopt the conception of relevance class [39], originally
proposed in the context of IR, to facilitate accurate estimation
of the sentence generative models. We may assume that each
sentence S; of the spoken document D to be summarized has
its own associated relevance class R, . This class is defined as
the subset of documents in the collection that are relevant to the
sentence S;. The relevance model (RM) of the sentence S; is
therefore defined to be the probability distribution P(w|Rs;),
which gives the probability that we would observe a word w
if we were to randomly select a document from the relevance
class Rs; and then pick up a random word from that document.
Once the relevance model of the sentence RSJ. is constructed,
it can be used to replace the original sentence generative model
or to be combined with the original sentence generative model
to produce a more accurate estimate. Since there is no prior
knowledge about the subset of relevant documents for each
sentence S, a local relevance feedback-like procedure can be
employed by taking S; as a query and posing it to an IR system
to obtain a ranked list of documents from a large document
repository (here we take the text news document collection
mentioned in Section V-A as the repository). The top M docu-
ments returned from the IR system are assumed to be the ones
relevant to S;, and can be therefore used to approximate the
relevance model for S;.

Taking the sentence-wise selection strategy as an illustration,
Table XI shows the summarization results when respectively
using the PSPL and RM cues and with some specific settings
of the sentence prior model and the loss function. Comparing
to the results (with the same corresponding settings) shown in
Tables V and VI, it turns out that incorporating these two kinds
of information cues provides additional performance gains for
speech summarization. We may thus expect that exploring more
extra information cues and sophisticated modeling paradigms,
such as rhetorical information [47], topic modeling [48]-[50], to
name a few, will enhance the component models of the proposed
risk-aware summarization framework.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a risk-aware modeling
framework for extractive speech summarization, which has

TABLE XI
RESULTS ACHIEVED BY SEVERAL METHODS DERIVED FROM
THE SENTENCE-WISE SELECTION STRATEGY CONDUCTED IN
CONJUNCTION WITH THE GENERATIVE-MODELING PARADIGM
AND SOME EXTRA INFORMATION CUES

Spoken Documents (SD)

Extra Cue Prior Loss ROUGE-1 ROUGE-2 ROUGE-L
PSPL  Uniform 0-1 0.352 0.198 0.285
BC 0-1 0.444 0.313 0.387
RM Uniform KL 0.389 0.236 0.327
BC KL 0.486 0.365 0.426

the capability to select summary sentences in a sentence-wise
manner or in a list-wise manner, in conjunction with a gen-
erative-modeling paradigm or a direct-modeling paradigm.
Furthermore, we have also demonstrated how to systemati-
cally integrate several existing summarization methods into
the proposed framework. The empirical results show that
our proposed methods substantially boost the summarization
performance when compared to a number of popular summa-
rization methods. It is worth emphasizing that the list-wise
selection strategy conducted in conjunction with the genera-
tive-modeling paradigm achieved the best results for speech
summarization using either the manual transcripts or the speech
recognition transcripts of spoken documents. How to imple-
ment the list-wise selection strategy more efficiently would
be worthy of future investigation. We list below some other
possible future extensions: 1) exploring more extra information
cues and sophisticated modeling paradigms for this framework;
2) investigating various discriminative training criteria for
training the component models of this framework, 3) extending
and applying the proposed framework to multi-document
summarization tasks, and 4) incorporating the summarization
results into audio indexing for better retrieval and browsing of
spoken documents.
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