
 Open access Journal Article DOI:10.1109/MS.2008.31

A Risk-Based, Value-Oriented Approach to Quality Requirements — Source link

Martin Glinz

Institutions: University of Zurich

Published on: 01 Mar 2008 - IEEE Software (IEEE)

Topics: Requirements management, Quality (business), Risk management and Software quality

Related papers:

 Software Architecture in Practice

 Software Quality Requirements: How to Balance Competing Priorities

 Supporting Roadmapping of Quality Requirements

 On Non-Functional Requirements in Software Engineering

Competitive Engineering: A Handbook For Systems Engineering, Requirements Engineering, And Software
Engineering Using Planguage

Share this paper:

View more about this paper here: https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-
5cmioo4o9r

https://typeset.io/
https://www.doi.org/10.1109/MS.2008.31
https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r
https://typeset.io/authors/martin-glinz-1qcfuyqpt0
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/journals/ieee-software-2xp8dbta
https://typeset.io/topics/requirements-management-3veie0yn
https://typeset.io/topics/quality-business-3c356nfw
https://typeset.io/topics/risk-management-21iu676p
https://typeset.io/topics/software-quality-2k0jztl1
https://typeset.io/papers/software-architecture-in-practice-1msttzulix
https://typeset.io/papers/software-quality-requirements-how-to-balance-competing-1x3btitole
https://typeset.io/papers/supporting-roadmapping-of-quality-requirements-4pbt91oet4
https://typeset.io/papers/on-non-functional-requirements-in-software-engineering-3a6a23qlo6
https://typeset.io/papers/competitive-engineering-a-handbook-for-systems-engineering-4rtb88t4xf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r
https://twitter.com/intent/tweet?text=A%20Risk-Based,%20Value-Oriented%20Approach%20to%20Quality%20Requirements&url=https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r
https://typeset.io/papers/a-risk-based-value-oriented-approach-to-quality-requirements-5cmioo4o9r

University of Zurich
Zurich Open Repository and Archive

Winterthurerstr. 190

CH-8057 Zurich

http://www.zora.uzh.ch

Year: 2008

A risk-based, value-oriented approach to quality requirements

Glinz, M

Glinz, M (2008). A risk-based, value-oriented approach to quality requirements. IEEE Software, 25(2):34-41.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
IEEE Software 2008, 25(2):34-41.

Glinz, M (2008). A risk-based, value-oriented approach to quality requirements. IEEE Software, 25(2):34-41.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
IEEE Software 2008, 25(2):34-41.

A risk-based, value-oriented approach to quality requirements

Abstract

Quality requirements, i.e. those requirements that pertain to a system's quality attributes, are
traditionally regarded to be useful only when they are represented quantitatively so that they can be
measured. This article presents a value-oriented approach to specifying quality requirements that
deviates from the classic approach. This approach uses a broad range of potential representations that
are selected on the basis of risk assessment. Requirements engineers select a quality requirement
representation such that they get an optimal balance between mitigating the risk of developing a system
that doesn't satisfy the stakeholders' desires and needs on the one hand and the cost of specifying the
requirement in the selected representation on the other hand. This issue is part of a special issue on
quality requirements.

focus

34 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

qua l i t y r e qu ir em en t s

A Risk-Based, Value-
Oriented Approach to
Quality Requirements

Martin Glinz, University of Zurich

This value-oriented
approach to
specifying quality
requirements uses
a range of potential
representations
chosen on the basis
of assessing risk
instead of quantifying
everything.

W
hen quality requirements are elicited from stakeholders, they’re often

stated qualitatively, such as “the response time must be fast” or “we need

a highly available system.” (See the “Defining Quality Requirements”

sidebar for a definition of quality requirements.) However, qualitatively

represented requirements are ambiguous and thus difficult to verify. As a consequence, we

may encounter three kinds of problems:

 1. The system developers build a system that de-

livers less than the stakeholders expect. This re-

sults in stakeholder dissatisfaction and might, in

extreme cases, render a system useless.

 2. The system developers build a system that de-

livers more than the stakeholders need. This

results in systems that are more expensive than

necessary.

 3. The developers and the customer disagree

whether the delivered system meets a given

quality requirement—and there is no clear cri-

terion to decide who is right.

For example, if the stakeholders mean 7 days ×

24 hours of operation when they say “We need a

highly available system” but the developers interpret

this requirement as “at least 23 hours per working

day,” we have the first kind of problem. Conversely,

if the stakeholders would be happy with availability

from 6 a.m. to 8 p.m. on all work days while the de-

velopers build a 7×24 system with all the additional

effort to develop and operate a continuously run-

ning system, we have the second kind of problem.

Problems of type 1 typically also imply a problem

of type 3.

The traditional way of solving these problems

is to quantify all quality requirements. But quanti-

fication isn’t the best solution in all cases. Instead,

a quality requirement should be represented such

that it delivers optimum value. You can determine

such an optimal representation using a risk-based

strategy.

Quantification
Quantification means defining metrics that

make a requirement measurable (see the “Measur-

ing Quality Requirements” sidebar). For example,

we could quantify the requirement “The response

time must be fast” as “The response time shall be

less than 0.5 seconds in 98 percent of all user input

actions.” Work on quantification was pioneered by

Barry Boehm1 and Tom Gilb,2 among others. To-

day, this topic is broadly covered by standards3, 4

and textbooks.5

Some quality requirements are directly mea-

surable—that is, a single well-defined metric ad-

equately measures it. For example, performance

requirements are directly measurable. The only dif-

ficulty in this case is to get the necessary quantita-

tive input from the stakeholders—that is, motivat-

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

 March/April 2008 I E E E S O F T W A R E 35

ing them to specify concrete threshold values such

as “< 0.5 seconds” instead of “fast.”

On the other hand, for some quality require-

ments, such a metric doesn’t exist or its application

is too expensive. Usability is a typical example of the

first kind. We don’t have a single metric for quan-

tifying a requirement such as “The system shall be

user friendly.” Portability is an example of the sec-

ond kind. We can measure it directly with the metric

Mport(s) = 1 − Eport(s) / Enew(s), where Eport(s) is the

average effort for porting the system s to a new plat-

form and Enew(s) is the average effort for developing

s from scratch for a given platform. So the require-

ment “The system shall be highly portable” could

be quantified as Mport(s) ≥ 0.8. However, calculat-

ing this metric for a given system s would mean that

Eport(s) and Enew(s) must be measured, which in turn

would imply both porting s to the new platform and

redeveloping s from scratch for the new platform

(while keeping constant all other factors that influ-

ence the effort). Clearly, the cost of doing this is pro-

hibitively high. Also, estimating Eport(s) and Enew(s)

Defining Quality Requirements

The term quality requirement denotes those requirements
that pertain to a system’s attributes, such as performance at-
tributes or specific qualities. For example, the following are
quality requirements: “The system shall be user friendly,” “The
time interval between two consecutive scans of the tempera-
ture sensor shall be below two seconds,” “The probability of
successful, unauthorized intrusion into the database shall be
smaller than 10–6.”

The term should not be confused with the notion of require-
ments that are of high quality—those that are adequate, un-
ambiguous, consistent, verifiable, and so on.

There are different ways of positioning quality
requirements in requirements classification frame-
works. This article uses the classification shown
in figure A, where quality requirements are de-
noted as attributes.1 In this classification, system
(or product) requirements are classified accord-
ing to their concern. Requirements pertaining to
a functional concern become functional require-
ments. A performance requirement pertains to a
performance concern. A specific quality require-
ment pertains to a quality concern other than the
quality of meeting the functional requirements.
Eventually, a constraint is a requirement that
constrains the solution space beyond what’s nec-
essary for meeting the given functional, perfor-
mance, and specific quality requirements. Qual-
ity requirements, or attributes, are performance
requirements or specific quality requirements.

The ISO/IEC 25030 standard classifies soft-
ware product requirements according to the ISO

quality model terminology (see figure B).2 In this standard,
software quality requirements ar a subcategory of inher-
ent property requirements. The latter, together with assigned
property requirements, forms the category of software product
requirements.

References
 1. M. Glinz, “On Non-Functional Requirements,” Proc. 15th IEEE Int’l Require-

ments Eng. Conf. (RE’07), IEEE CS Press, pp. 21−26.
 2. ISO/IEC 25030: Software Engineering—Software Product Quality Require-

ments and Evaluation (SQUARE)—Quality Requirements, Int’l Organization
for Standardization, 2007.

Functionality
and behavior:

Functions

Data

Stimuli

Reactions

Behavior

Time and space
bounds:

Timing

Speed

Volume

Throughput

Physical

Legal

Cultural

Environmental

Design and
implementation

Interface

...

“-ilities”:

Reliability

Usability

Security

Availability

Portability

Maintainability

...

Functional
requirement

System
requirement

Attribute

Constraint
Performance
requirement

Specific quality
requirement

Requirement

Project
requirement

Process
requirement

Figure A. The requirements classification used in this article.1

 Functional requirements

 Quality in use requirements

 External quality requirements

 Internal quality requirements

 Managerial requirements including, for example, requirements for
 price, delivery date, product future, and product supplier

Software product

requirements

Inherent property

requirements

Assigned property requirements

Software quality

requirements

Figure B. Classification of software product requirements according to ISO/IEC 25030.2

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

36 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

directly (without using subcharacteristics) is impos-

sible except when an organization has ample experi-

ence both in porting and developing systems of simi-

lar size and complexity—and that’s rare.

To measure these two kinds of quality require-

ments, we must find subcharacteristics of the given

requirement that are directly measurable and whose

values are strongly correlated with the values of the

given quality requirement.

For example, the ISO/IEC 9126 standard1-3 (see

the sidebar “Standards for Quality Requirements”)

defines usability through the subcharacteristics

understandability, learnability, operability, attrac-

tiveness, and usability compliance. Each of these

again have directly measurable subcharacteristics.

For example, a subcharacteristic of understand-

ability is completeness of description, which we

can measure as C(s) = Fu(s) / Ftot(s) where Fu(s) is the

number of functions understood and Ftot is the total

number of functions in a system s.

Practically speaking, the quantification of a qual-

ity requirement which is not directly measurable

implies first defining an appropriate set of measur-

able subcharacteristics and then determining the

required values for every subcharacteristic.

Advantages and drawbacks

The advantages of quantifying quality require-

ments are obvious: we get unambiguous, verifiable

requirements and thus reduce the risk of delivering

systems that don’t satisfy stakeholders’ desires and

needs. So it’s tempting to state “You shall quantify

all quality requirements” as the first commandment

of quality requirements engineering.

However, these advantages come with a price

tag. For example, if we quantify the requirement

“The system shall be user friendly” by using the us-

ability characteristics given in the ISO/IEC 9126,

we’d have to elicit required values for 28 directly

measurable usability subcharacteristics and, when

verifying the requirement, compute the actual val-

ues of 28 metrics. Worse, this might not even suf-

fice. For example, in a Web-based order tracking

system designed for use by untrained, casual us-

ers, an important usability subcharacteristic is the

ratio of failed or aborted tracking attempts versus

the total number of tracking operations. However,

ISO/IEC 9126 doesn’t include this characteristic as

a subcharacteristic.

So, the disadvantage of quantifying quality

requirements is equally obvious: it can be time-

consuming and expensive. Dogmatically applying

the rule “You shall quantify all quality require-

ments” might thus result in huge, unjustified re-

quirement costs.

One might try to limit the cost of quantifying

a quality requirement by quantifying only some

selected subcharacteristics. However, focusing on

achieving selected subcharacteristics and deliber-

ately neglecting all others can easily result in a sys-

tem that completely fails on the neglected ones, so

that the total quality level of the system with respect

to that requirement is lower than it could have been

without any quantification.

A means, not an end

At this point, we should remember that require-

Measuring Quality Requirements

Measurement is the principle of making perceived attributes of an entity
more objective by mapping attribute values to a scale such that the attribute’s
properties are mapped to corresponding properties of the scale. For exam-
ple, if we have an attribute value a1 that is lower than another attribute value
a2, the corresponding scale values s1 and s2 should be such that s1 < s2. A
procedure for measuring an attribute together with a suitable scale is called
a metric. Every scale has a type, which determines what we can do with the
scale values. For example, on an ordinal scale, comparison is the only opera-
tion we can apply to scale values. In contrast, if we want to compute percent-
ages and statistics such as mean and standard deviation, we need a ratio
scale. More detail is beyond this article’s scope. You’ll find a comprehensive
introduction to measurement and metrics in a textbook by Norman Fenton
and Shari Lawrence Pfleeger.1 The new ISO/IEC 25020 standard provides a
reference model for software quality measurement.2

Defining a metric for a given attribute enables us to quantitatively assess
attribute values—for example, comparing values or computing statistics. Intui-
tively, measuring a quality attribute requires at least a scale, a measurement
procedure, a lowest acceptable value, and a planned value.3,4

For example, when we use this style, we can quantify the requirement
“Need less time to service an incoming request than today” (see example of
Jane’s volunteer drivers’ service in the text) as follows:

Attribute: Average time that a dispatcher needs to service a request
Scale: Seconds (type: ratio scale)
Procedure: Measure time required from picking up a request to receiv-
ing the schedule confirmation from the system; take the average over
20 service requests. Web requests that can be scheduled automatically
by the system count as zero.
Planned value: 50 percent less than reference value
Lowest acceptable value: 30 percent less than reference value
Reference value: Average service request time as of today

References
 1. N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed.,

PWS Publishing, 1998.
 2. ISO/IEC 25020: Software Engineering—Software Product Quality Requirements and Evalua-

tion (SQUARE)—Measurement Reference Model and Guide, Int’l Organization for Standardiza-
tion, 2007.

 3. T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.
 4. T. Gilb, Competitive Engineering: A Handbook for Systems Engineering, Requirements Engi-

neering, and Software Engineering Using Planguage, Butterworth-Heinemann, 2005.

■

■

■

■

■

■

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

 March/April 2008 I E E E S O F T W A R E 37

ments are a means, not an end. We want require-

ments that deliver value, defined here as the benefit

of reducing development risk (developing a system

that doesn’t satisfy stakeholders’ desires and needs)

minus the cost of specifying the requirements.

Consequently, we should replace the rule “You

shall quantify all quality requirements” with “A

quality requirement should be represented such that

it delivers optimum value.” I’ll demonstrate that

risk assessment is the key means to determine how

a given quality requirement should be represented.

This approach deviates both from classic think-

ing about quality requirements and from established

quality standards such as ISO/IEC 91263 and ISO/

IEC 25030,4 where only a quantified quality re-

quirement is a good quality requirement. However,

reality is on my side: people have developed lots of

successful software products without fully quanti-

fying the quality requirements. Moreover, the new

rule doesn’t dismiss full quantification: it just pro-

vides a broader perspective, where full quantifica-

tion is a valid option among others. By choosing

the representation on the basis of a risk assessment,

we also emphasize the fact that projects can fail if

quality requirements aren’t considered and treated

adequately.

Risk-based analysis
and representation

Basically, we must assess how every quality re-

quirement should be represented so that it delivers

the most value. This means assessing the risk of de-

veloping a system that doesn’t satisfy the stakehold-

ers’ desires and needs with respect to a given quality

requirement, and how we can mitigate this risk at

the lowest possible cost.

A risk-based, value-oriented strategy for speci-

fying quality requirements needs a broad range of

representation forms, as characterized in table 1.

Whenever there’s a high risk that the deployed

system won’t meet a quality requirement to the sat-

isfaction of a critical stakeholder (and there’s no

way to weaken the requirement, lower the stake-

holder’s expectations, or shift the risk onto some-

body else’s shoulders), the best way to mitigate this

risk is still a classic, comprehensive quantification of

the requirement.

However, on the other end of the spectrum, if we

have an implicit shared understanding among stake-

holders and developers about a quality requirement,

there’s no need to specify it. The often-heard argu-

ment that not specifying implicit requirements is a

recipe for disaster (and, hence, that implicit require-

ments always should be made explicit) doesn’t pass a

reality test. In our daily life, we have many contrac-

tual situations where we rely on an implicit shared

understanding of requirements. For example, when

a person orders a new car from a car dealer, she will

not insist on putting requirements into the contract

such as “The car shall be equipped with a working

engine, passenger seats, and four tires pumped to

the right pressure,” because she relies on a shared

implicit understanding of what comes with a new

car. Problems with implicit requirements only arise

when there’s no or insufficient shared understand-

ing. In this case, it’s indeed important to make im-

plicit requirements explicit.

Standards for Quality Requirements

ISO/IEC 91261−4 is the classic international standard for software product
quality. In part 1 the standard defines a model of quality characteristics and
subcharacteristics (see figure C). Parts 2−4 specify how to measure the sub-
characteristics and define metrics for measuring them.

A new series of standards in the framework of SQUARE (Software Quality
Requirements and Evaluation) is under development. The important ones in
this context are ISO/IEC 25010 (still being developed), which is planned to
become the successor of ISO/IEC 9126; ISO/IEC 25020,5 which specifies a
measurement reference model; and ISO/IEC 25030,6 which deals with qual-
ity requirements in software engineering.

References
 1. ISO/IEC 9126-1: Software Engineering—Product Quality—Part 1: Quality Model, Int’l Organi-

zation for Standardization, 2001.
 2. ISO/IEC TR 9126-2: Software Engineering—Product Quality—Part 2: External Metrics, Int’l

Organization for Standardization, 2003.
 3. ISO/IEC TR 9126-3: Software Engineering—Product Quality—Part 3: Internal Metrics, Int’l

Organization for Standardization, 2003.
 4. ISO/IEC TR 9126-4: Software Engineering—Product Quality—Part 4: Quality in Use Metrics,

Int’l Organization for Standardization, 2004.
 5. ISO/IEC 25020: Software Engineering—Software Product Quality Requirements and Evalua-

tion (SQUARE)—Measurement Reference Model and Guide, Int’l Organization for Standardiza-
tion, 2007.

 6. ISO/IEC 25030: Software Engineering—Software Product Quality Requirements and Evalua-
tion (SQUARE)—Quality Requirements, Int’l Organization for Standardization, 2007.

External and internal quality

Efficiency Maintainability PortabilityUsabilityReliabilityFunctionality

Quality in use

Safety SatisfactionProductivityEffectiveness

Time
behavior

Resource
utilization

Efficiency
compliance

Analyzability

Changeability

Stability

Testability

Maintainability
compliance

Adaptability

Installability

Coexistence

Replaceability

Portability
compliance

Understandability

Learnability

Operability

Attractiveness

Usability
compliance

Maturity

Fault tolerance

Recoverability

Reliability
compliance

Suitability

Accuracy

Interoperabilty

Security

Functionality
compliance

Figure C. Overview of the ISO/IEC 9126 quality model.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

38 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

In situations where we have a degree of shared

understanding that allows all involved parties to

generalize properly from examples, specifying a

quality requirement by giving an example can be

very efficient. For example, you could specify a

system’s attractiveness by requiring it to be as at-

tractive as a competitor’s existing system.

When a manager assigns a task to an assis-

tant in daily business life, she’ll often give him

only general direction, because she trusts him and

knows that he’ll carry out the task to her satis-

faction. Any detailed task specification would be

a waste of effort in this situation. An analogous

situation can occur with quality requirements: for

example, when a client has a history of successful

collaboration with a supplier so that the supplier

perfectly knows the client’s business, problems,

and needs, a qualitatively stated quality require-

ment such as “The new data entry function shall

be recoverable” can suffice to achieve the value—

that is, that the client is satisfied with the recovery

features he gets for the new function.

The problem now is to assess, for a concrete

quality requirement in hand, how to choose the

representation that yields the most value.

One of the most important assessment criteria

is the requirement’s criticality (see figure 1). Along

one dimension (the x-axis in figure 1), we analyze

the importance of the stakeholder who states a

quality requirement. For this purpose, stakehold-

ers are classified in three categories: minor, major,

and critical.6 The other dimension (the y-axis)

represents the impact of not meeting this require-

ment. Impact is typically regarded as the product

of the damage incurred when a requirement isn’t

met and the probability that this will happen.

The more critical a requirement is, the higher the

probability is that quantification is necessary to

achieve the best value. (Recall that “value” was

defined earlier as the benefit of reducing the de-

velopment risk minus the cost for specifying the

requirements.)

Table 2 lists a set of factors that influence risk

assessment. We might also use requirements triage

techniques7 to assess a quality requirement’s rela-

tive importance.

Impact on elicitation

and stakeholder analysis

Risk-based engineering of quality requirements,

where we employ representations ranging from

omission to full quantification, must not be mis-

used as an excuse for treating quality requirements

sloppily. In particular, quality requirements must

be carefully and systematically elicited, no mat-

ter how they’re eventually represented: you can-

not assess quality requirements that haven’t been

elicited previously. The framework of character-

istics and subcharacteristics provided by a quality

model—for example, the one defined in ISO/IEC

9126—helps cover all areas of potential quality

requirements when stakeholders don’t state them

spontaneously.

Equally important is a careful stakeholder an-

alysis prior to eliciting requirements. Otherwise,

Importance of stakeholder

Critical

Critical

Uncritical

Minor Major

High

Medium

Im
p
a
ct

Low

Figure 1. Assessing

a quality requirement’s

criticality.

Table 1

The range of adequate quality requirements representation
Situation Adequate representation Verification technique

1. Implicit shared understanding among stakeholders and developers Omission Implicit

2. Need to state a general quality direction explicitly but trusting that the
supplier will get the details right on this basis

Qualitative Inspection

3. Involved parties have sufficient shared understanding to generalize
properly from examples

By example Inspection; may be
some measurement

4. High risk of not meeting stakeholders’ desires and needs adequately Quantitative in full Measurement

5. Somewhere between situations 2 and 4 Qualitative with partial
quantification

Inspection and partial
measurement

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

 March/April 2008 I E E E S O F T W A R E 39

the criticality assessment described in figure 1 is

impossible.

Impact on verification

Verifying a quantified quality requirement is

straightforward: after we’ve developed a system or

component, we measure the property of the system

or component that corresponds to the requirement

and compare the obtained measure to the expected

value(s) stored in the requirement. If we have pre-

cise and unambiguous metrics, the verification re-

sults will also be precise and unambiguous.

Giving up full quantification implies giving up

this form of verification. The right-hand column of

table 1 lists the verification techniques to be applied

in different situations.

When a quality requirement is specified quali-

tatively, we need to substitute human judgment for

measurement. This is not a priori bad and subjec-

tive: by using inspection techniques in the same way

as in software inspections, we can objectify human

judgment. Moreover, several metrics eventually

also depend on human judgment. For example, the

measurement procedure for the metric Operational

consistency in use in ISO/IEC 9126 is “Observe the

behavior of the user and ask the opinion.”

If the specification of a quality requirement

refers to an example, inspection is again the

primary verification technique. In this case, it’s

also possible to measure and compare some core

properties of the example and the developed sys-

tem or component that pertain to the quality re-

quirement to be verified.

A partially quantified quality requirement

is verified by a combination of inspection and

measurement.

If a quality requirement isn’t specified owing

to shared understanding, verification is implicit:

as long as no stakeholder complains, the require-

ment is satisfied.

Example
Let’s look at a hypothetical but realistic scenario

to illustrate this approach.

The scenario:

Jane’s volunteer drivers’ service

Jane’s volunteer drivers’ service is an organi-

zation of volunteers who drive elderly or disabled

people when, for example, they must see a doctor,

want to visit somebody, or wish to attend a reli-

gious service. When a person needs transporta-

tion, he calls the number of the volunteer drivers’

service. Two dispatchers, Jane and Peter, alternate

Table 2

Factors influencing risk assessment
Factor Description

Criticality The more critical a requirement, the higher the probability that quantification is necessary to achieve the best value.

Quantification effort The lower the effort for quantification, the higher the probability that quantification will add value.

Validity of obtained
measurements

When measuring a quality requirement indirectly through subcharacteristics, it is not a priori granted that the
subcharacteristics’ measurement values correlate with the degree of fulfillment of the requirement. The less
evidence we have for these correlations, the less value we get from quantification.

Distinctiveness When a quality requirement is distinctive for a product to be developed, not meeting such a requirement has a
high impact on the product. So, a higher effort for specifying this requirement is justified than for nondistinctive
requirements.

Shared understanding When an implicit shared understanding exists about a quality requirement, specifying it explicitly has little value.

Reference systems When a reference system (for example, a previous product or a competitor’s product) exists, it might be much
cheaper to specify a quality requirement by referring to the reference system’s corresponding quality than by
explicitly quantifying the requirement.

Length of feedback cycle The shorter the feedback cycle (the time interval between expressing a need and receiving a system that should
satisfy this need), the less verification and rework costs you can save through upfront requirements engineering.
For quality requirements, this rule implies that the shorter the feedback cycle, the less payoff we get from
quantifying the requirement.

Kind of customer-supplier
relationship

The better the customer-supplier relationship (in terms of mutual respect and trust), the less requirements need
to be contractually specified in an unambiguous and verifiable way—that is, the less we need quantified quality
requirements.

Certification required If an authority needs to certify a system, all certification-relevant quality requirements might need to be specified
quantitatively.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

40 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

in servicing incoming calls, making schedules, and

calling volunteer drivers, giving them driving or-

ders. They use a spreadsheet to create schedules.

Jane, with help from Peter and his wife,

founded the service three years ago. Jane and Peter

are friends and know each other’s work habits and

preferences pretty well.

Today, the service has grown to 20 volunteers

and is still growing. The three founding members

act as an executive board. With the organization’s

current size, the spreadsheet-based, manual dis-

patching no longer works efficiently. Therefore,

the board has decided they need a computer

system to support the ordering and dispatching

processes.

In his professional life, Peter is the owner and

chief engineer of a 10-person software company.

He has informed his employees about this project

and they’ve decided to contribute by building an

open source, free system.

Stakeholder analysis

In this scenario, a stakeholder analysis would

typically yield the following results: dispatcher

would be critical; service user, volunteer driver,

and system operator would be major; and devel-

oper, executive board member, person calling the

service for somebody else, and any other stake-

holder (for example, Internet access provider or

hardware provider) would be minor.

Some requirements

Let’s assume that stakeholders make the fol-

lowing statements (among others) when being in-

terviewed. Lucy (a 76-year-old service user): “It

would be great if I could make reservations over

the Internet some weeks in advance and also view

a list of my current reservations—I am a bit forget-

ful, you know. However, it must be very simple and

easy to use.” John (a deaf service user): “As I can’t

make calls myself, I need a Web-based reservation

Table 3

Analysis of quality requirements
Quality

requirement

Stakeholder

importance Impact

Other

considerations Result

“Some weeks in
advance”

Major Low Easy to quantify Quantify. For example “Reservations can be made
up to 21 days in advance.”

“Very simple and easy
to use”

Major Low to
medium*

Hard to quantify Don’t quantify. Reduce risk with user interface
prototyping and let selected service users inspect
the fulfillment of this requirement by working with
the prototype.

“Same service level
as provided by calling
today”

Major Low to
medium

Reference system
available, hard to
quantify

Don’t quantify. Instead, use current system
as a reference system; maybe elaborate some
examples that illustrate the current service level.
Let selected service users inspect the fulfillment
of this requirement by working with the prototype.

“Immediate
confirmation in most
cases”

Major Low to
medium

Easy to quantify Quantify. For example, quantify “immediate” as
“in less than 30 seconds” and “most cases” as “in
at least 90% of all cases.”

“Supports the
growing number of
service requests”

Critical High Other stakeholders
also impacted, easily
measurable, system
architect must make
a decision about
upper limit for service
requests anyway

Quantify. Specify values for the expected average
number of service requests per week and the
maximum number of service requests per week
that the system shall be able to handle.

“As simple to use
as our current
spreadsheet”

Critical Medium Shared understanding
between stakeholder
and system architect,
hard to quantify

Don’t state explicitly as a requirement.

“Need less time to
service an incoming
request than today”

Critical High Distinctive, easy
to quantify

Quantify (see example in “Measuring Quality
Requirements” sidebar).

* People can still call instead of using the Web interface.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

 March/April 2008 I E E E S O F T W A R E 41

option. It should have the same service level as pro-

vided by calling today, in particular immediate con-

fi rmation in most cases.” Jane (dispatcher): “My

biggest concern is that the system must support the

growing number of service requests but remain as

simple to use as our current spreadsheet.” Peter (the

dispatcher and head of the development team): “I

primarily want the system to help me work faster—

that is, on average, I’ll need less time to service an

incoming request than today.”

Risk-value assessment

General considerations: The customer and the

supplier organization overlap in personnel (Peter,

for example), and both organizations have a shared

interest in producing a useful system. No certifi ca-

tion or formal contract is required.

Table 3 presents an analysis of the individual

quality requirements that we can extract from the

requirements just stated.

R isk-based, value-oriented treatment of

quality requirements extends the clas-

sic approach of making every quality re-

quirement measurable. When we consider the value

that the specifi cation of a quality requirement adds,

quantifi cation is clearly not always the best way

to represent a quality requirement. The approach

shown here helps treat quality requirements ad-

equately over a wide range of project situations and

so helps advance software quality.

References
 1. B. Boehm, J.R. Brown, and M. Lipow, “Quantitative

Evaluation of Software Quality,” Proc. 2nd Int’l Conf.
Software Eng., ACM Press, 1976, pp. 592−605.

 2. T. Gilb, Principles of Software Engineering Manage-
ment, Addison-Wesley, 1988.

 3. ISO/IEC 9126-1: Software Engineering—Product
Quality—Part 1: Quality Model, Int’l Organization for
Standardization, 2001.

 4. ISO/IEC 25030: Software Engineering—Software
Product Quality Requirements and Evaluation
(SQUARE)—Quality Requirements, Int’l Organization
for Standardization, 2007.

 5. N.E. Fenton and S.L. Pfl eeger, Software Metrics: A
Rigorous and Practical Approach, 2nd ed., PWS Pub-
lishing, 1998.

 6. M. Glinz and R. Wieringa, “Stakeholders in Require-
ments Engineering,” guest editors’ introduction, IEEE
Software, vol. 24, no. 2, 2007, pp. 18−20.

 7. A. Davis, Just Enough Requirements Management,
Dorset House, 2005.

About the Author

Martin Glinz is a full professor of informatics at the University of Zurich. His interests
include requirements and software engineering—in particular, modeling, validation, and
quality—and software engineering education. He received his Dr. rer. nat. in computer sci-
ence from RWTH Aachen University. Contact him at the Dept. of Informatics, Univ. of Zurich,
Binzmühlestrasse 14, 8050 Zurich, Switzerland; glinz@ifi .uzh.ch.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Submissions must be original and

no more than 5,400 words, including

200 words for each table and figure.

Author guidelines: www.computer.org/
software/author.htm
Further details: software@computer.org

www.computer.org/software

Call
Articlesfor

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 03:39 from IEEE Xplore. Restrictions apply.

