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A risk-based, value-oriented approach to quality requirements

Abstract

Quality requirements, i.e. those requirements that pertain to a system's quality attributes, are
traditionally regarded to be useful only when they are represented quantitatively so that they can be
measured. This article presents a value-oriented approach to specifying quality requirements that
deviates from the classic approach. This approach uses a broad range of potential representations that
are selected on the basis of risk assessment. Requirements engineers select a quality requirement
representation such that they get an optimal balance between mitigating the risk of developing a system
that doesn't satisfy the stakeholders' desires and needs on the one hand and the cost of specifying the
requirement in the selected representation on the other hand. This issue is part of a special issue on
quality requirements.
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A Risk-Based, Value-
Oriented Approach to 
Quality Requirements

Martin Glinz, University of Zurich

This value-oriented 
approach to 
specifying quality 
requirements uses 
a range of potential 
representations 
chosen on the basis  
of assessing risk 
instead of quantifying 
everything.

W
hen quality requirements are elicited from stakeholders, they’re often 

stated qualitatively, such as “the response time must be fast” or “we need 

a highly available system.” (See the “Defining Quality Requirements” 

sidebar for a definition of quality requirements.) However, qualitatively 

represented requirements are ambiguous and thus difficult to verify. As a consequence, we 

may encounter three kinds of problems:

 1. The system developers build a system that de-

livers less than the stakeholders expect. This re-

sults in stakeholder dissatisfaction and might, in 

extreme cases, render a system useless.

 2. The system developers build a system that de-

livers more than the stakeholders need. This 

results in systems that are more expensive than 

necessary.

 3. The developers and the customer disagree 

whether the delivered system meets a given 

quality requirement—and there is no clear cri-

terion to decide who is right.

For example, if the stakeholders mean 7 days × 

24 hours of operation when they say “We need a 

highly available system” but the developers interpret 

this requirement as “at least 23 hours per working 

day,” we have the first kind of problem. Conversely, 

if the stakeholders would be happy with availability 

from 6 a.m. to 8 p.m. on all work days while the de-

velopers build a 7×24 system with all the additional 

effort to develop and operate a continuously run-

ning system, we have the second kind of problem. 

Problems of type 1 typically also imply a problem 

of type 3.

The traditional way of solving these problems 

is to quantify all quality requirements. But quanti-

fication isn’t the best solution in all cases. Instead, 

a quality requirement should be represented such 

that it delivers optimum value. You can determine 

such an optimal representation using a risk-based 

strategy.

Quantification
Quantification means defining metrics that 

make a requirement measurable (see the “Measur-

ing Quality Requirements” sidebar). For example, 

we could quantify the requirement “The response 

time must be fast” as “The response time shall be 

less than 0.5 seconds in 98 percent of all user input 

actions.” Work on quantification was pioneered by 

Barry Boehm1 and Tom Gilb,2 among others. To-

day, this topic is broadly covered by standards3, 4 

and textbooks.5

Some quality requirements are directly mea-

surable—that is, a single well-defined metric ad-

equately measures it. For example, performance 

requirements are directly measurable. The only dif-

ficulty in this case is to get the necessary quantita-

tive input from the stakeholders—that is, motivat-
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ing them to specify concrete threshold values such 

as “< 0.5 seconds” instead of “fast.”

On the other hand, for some quality require-

ments, such a metric doesn’t exist or its application 

is too expensive. Usability is a typical example of the 

first kind. We don’t have a single metric for quan-

tifying a requirement such as “The system shall be 

user friendly.” Portability is an example of the sec-

ond kind. We can measure it directly with the metric 

Mport(s) = 1 − Eport(s) / Enew(s), where Eport(s) is the 

average effort for porting the system s to a new plat-

form and Enew(s) is the average effort for developing 

s from scratch for a given platform. So the require-

ment “The system shall be highly portable” could 

be quantified as Mport(s) ≥ 0.8. However, calculat-

ing this metric for a given system s would mean that 

Eport(s) and Enew(s) must be measured, which in turn 

would imply both porting s to the new platform and 

redeveloping s from scratch for the new platform 

(while keeping constant all other factors that influ-

ence the effort). Clearly, the cost of doing this is pro-

hibitively high. Also, estimating Eport(s) and Enew(s) 

Defining Quality Requirements

The term quality requirement denotes those requirements 
that pertain to a system’s attributes, such as performance at-
tributes or specific qualities. For example, the following are 
quality requirements: “The system shall be user friendly,” “The 
time interval between two consecutive scans of the tempera-
ture sensor shall be below two seconds,” “The probability of 
successful, unauthorized intrusion into the database shall be 
smaller than 10–6.”

The term should not be confused with the notion of require-
ments that are of high quality—those that are adequate, un-
ambiguous, consistent, verifiable, and so on.

There are different ways of positioning quality 
requirements in requirements classification frame-
works. This article uses the classification shown 
in figure A, where quality requirements are de-
noted as attributes.1 In this classification, system 
(or product) requirements are classified accord-
ing to their concern. Requirements pertaining to 
a functional concern become functional require-
ments. A performance requirement pertains to a 
performance concern. A specific quality require-
ment pertains to a quality concern other than the 
quality of meeting the functional requirements. 
Eventually, a constraint is a requirement that 
constrains the solution space beyond what’s nec-
essary for meeting the given functional, perfor-
mance, and specific quality requirements. Qual-
ity requirements, or attributes, are performance 
requirements or specific quality requirements.

The ISO/IEC 25030 standard classifies soft-
ware product requirements according to the ISO 

quality model terminology (see figure B).2 In this standard, 
software quality requirements ar a subcategory of inher-
ent property requirements. The latter, together with assigned 
property requirements, forms the category of software product 
requirements.

References
 1. M. Glinz, “On Non-Functional Requirements,” Proc. 15th IEEE Int’l Require-

ments Eng. Conf. (RE’07), IEEE CS Press, pp. 21−26.
 2. ISO/IEC 25030: Software Engineering—Software Product Quality Require-

ments and Evaluation (SQUARE)—Quality Requirements, Int’l Organization 
for Standardization, 2007.
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directly (without using subcharacteristics) is impos-

sible except when an organization has ample experi-

ence both in porting and developing systems of simi-

lar size and complexity—and that’s rare.

To measure these two kinds of quality require-

ments, we must find subcharacteristics of the given 

requirement that are directly measurable and whose 

values are strongly correlated with the values of the 

given quality requirement.

For example, the ISO/IEC 9126 standard1-3 (see 

the sidebar “Standards for Quality Requirements”) 

defines usability through the subcharacteristics  

understandability, learnability, operability, attrac-

tiveness, and usability compliance. Each of these 

again have directly measurable subcharacteristics. 

For example, a subcharacteristic of understand-

ability is completeness of description, which we 

can measure as C(s) = Fu(s) / Ftot(s) where Fu(s) is the 

number of functions understood and Ftot is the total 

number of functions in a system s.

Practically speaking, the quantification of a qual-

ity requirement which is not directly measurable 

implies first defining an appropriate set of measur-

able subcharacteristics and then determining the 

required values for every subcharacteristic.

Advantages and drawbacks

The advantages of quantifying quality require-

ments are obvious: we get unambiguous, verifiable 

requirements and thus reduce the risk of delivering 

systems that don’t satisfy stakeholders’ desires and 

needs. So it’s tempting to state “You shall quantify 

all quality requirements” as the first commandment 

of quality requirements engineering.

However, these advantages come with a price 

tag. For example, if we quantify the requirement 

“The system shall be user friendly” by using the us-

ability characteristics given in the ISO/IEC 9126, 

we’d have to elicit required values for 28 directly 

measurable usability subcharacteristics and, when 

verifying the requirement, compute the actual val-

ues of 28 metrics. Worse, this might not even suf-

fice. For example, in a Web-based order tracking 

system designed for use by untrained, casual us-

ers, an important usability subcharacteristic is the 

ratio of failed or aborted tracking attempts versus 

the total number of tracking operations. However, 

ISO/IEC 9126 doesn’t include this characteristic as 

a subcharacteristic.

So, the disadvantage of quantifying quality 

requirements is equally obvious: it can be time- 

consuming and expensive. Dogmatically applying 

the rule “You shall quantify all quality require-

ments” might thus result in huge, unjustified re-

quirement costs.

One might try to limit the cost of quantifying 

a quality requirement by quantifying only some 

selected subcharacteristics. However, focusing on 

achieving selected subcharacteristics and deliber-

ately neglecting all others can easily result in a sys-

tem that completely fails on the neglected ones, so 

that the total quality level of the system with respect 

to that requirement is lower than it could have been 

without any quantification.

A means, not an end

At this point, we should remember that require-

Measuring Quality Requirements

Measurement is the principle of making perceived attributes of an entity 
more objective by mapping attribute values to a scale such that the attribute’s 
properties are mapped to corresponding properties of the scale. For exam-
ple, if we have an attribute value a1 that is lower than another attribute value 
a2, the corresponding scale values s1 and s2 should be such that s1 < s2. A 
procedure for measuring an attribute together with a suitable scale is called 
a metric. Every scale has a type, which determines what we can do with the 
scale values. For example, on an ordinal scale, comparison is the only opera-
tion we can apply to scale values. In contrast, if we want to compute percent-
ages and statistics such as mean and standard deviation, we need a ratio 
scale. More detail is beyond this article’s scope. You’ll find a comprehensive 
introduction to measurement and metrics in a textbook by Norman Fenton 
and Shari Lawrence Pfleeger.1 The new ISO/IEC 25020 standard provides a 
reference model for software quality measurement.2

Defining a metric for a given attribute enables us to quantitatively assess 
attribute values—for example, comparing values or computing statistics. Intui-
tively, measuring a quality attribute requires at least a scale, a measurement 
procedure, a lowest acceptable value, and a planned value.3,4

For example, when we use this style, we can quantify the requirement 
“Need less time to service an incoming request than today” (see example of 
Jane’s volunteer drivers’ service in the text) as follows:

Attribute: Average time that a dispatcher needs to service a request
Scale: Seconds (type: ratio scale)
Procedure: Measure time required from picking up a request to receiv-
ing the schedule confirmation from the system; take the average over  
20 service requests. Web requests that can be scheduled automatically 
by the system count as zero.
Planned value: 50 percent less than reference value
Lowest acceptable value: 30 percent less than reference value
Reference value: Average service request time as of today

References
 1. N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed., 

PWS Publishing, 1998.
 2. ISO/IEC 25020: Software Engineering—Software Product Quality Requirements and Evalua-
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tion, 2007.
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ments are a means, not an end. We want require-

ments that deliver value, defined here as the benefit 

of reducing development risk (developing a system 

that doesn’t satisfy stakeholders’ desires and needs) 

minus the cost of specifying the requirements.

Consequently, we should replace the rule “You 

shall quantify all quality requirements” with “A 

quality requirement should be represented such that 

it delivers optimum value.” I’ll demonstrate that 

risk assessment is the key means to determine how 

a given quality requirement should be represented.

This approach deviates both from classic think-

ing about quality requirements and from established 

quality standards such as ISO/IEC 91263 and ISO/

IEC 25030,4 where only a quantified quality re-

quirement is a good quality requirement. However, 

reality is on my side: people have developed lots of 

successful software products without fully quanti-

fying the quality requirements. Moreover, the new 

rule doesn’t dismiss full quantification: it just pro-

vides a broader perspective, where full quantifica-

tion is a valid option among others. By choosing 

the representation on the basis of a risk assessment, 

we also emphasize the fact that projects can fail if 

quality requirements aren’t considered and treated 

adequately.

Risk-based analysis  
and representation

Basically, we must assess how every quality re-

quirement should be represented so that it delivers 

the most value. This means assessing the risk of de-

veloping a system that doesn’t satisfy the stakehold-

ers’ desires and needs with respect to a given quality 

requirement, and how we can mitigate this risk at 

the lowest possible cost.

A risk-based, value-oriented strategy for speci-

fying quality requirements needs a broad range of 

representation forms, as characterized in table 1.

Whenever there’s a high risk that the deployed 

system won’t meet a quality requirement to the sat-

isfaction of a critical stakeholder (and there’s no 

way to weaken the requirement, lower the stake-

holder’s expectations, or shift the risk onto some-

body else’s shoulders), the best way to mitigate this 

risk is still a classic, comprehensive quantification of 

the requirement.

However, on the other end of the spectrum, if we 

have an implicit shared understanding among stake-

holders and developers about a quality requirement, 

there’s no need to specify it. The often-heard argu-

ment that not specifying implicit requirements is a 

recipe for disaster (and, hence, that implicit require-

ments always should be made explicit) doesn’t pass a 

reality test. In our daily life, we have many contrac-

tual situations where we rely on an implicit shared 

understanding of requirements. For example, when 

a person orders a new car from a car dealer, she will 

not insist on putting requirements into the contract 

such as “The car shall be equipped with a working 

engine, passenger seats, and four tires pumped to 

the right pressure,” because she relies on a shared 

implicit understanding of what comes with a new 

car. Problems with implicit requirements only arise 

when there’s no or insufficient shared understand-

ing. In this case, it’s indeed important to make im-

plicit requirements explicit.

Standards for Quality Requirements

ISO/IEC 91261−4 is the classic international standard for software product 
quality. In part 1 the standard defines a model of quality characteristics and 
subcharacteristics (see figure C). Parts 2−4 specify how to measure the sub-
characteristics and define metrics for measuring them.

A new series of standards in the framework of SQUARE (Software Quality 
Requirements and Evaluation) is under development. The important ones in 
this context are ISO/IEC 25010 (still being developed), which is planned to 
become the successor of ISO/IEC 9126; ISO/IEC 25020,5 which specifies a 
measurement reference model; and ISO/IEC 25030,6 which deals with qual-
ity requirements in software engineering.

References
 1. ISO/IEC 9126-1: Software Engineering—Product Quality—Part 1: Quality Model, Int’l Organi-

zation for Standardization, 2001.
 2. ISO/IEC TR 9126-2: Software Engineering—Product Quality—Part 2: External Metrics, Int’l 

Organization for Standardization, 2003.
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Organization for Standardization, 2003.
 4. ISO/IEC TR 9126-4: Software Engineering—Product Quality—Part 4: Quality in Use Metrics, 
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In situations where we have a degree of shared 

understanding that allows all involved parties to 

generalize properly from examples, specifying a 

quality requirement by giving an example can be 

very efficient. For example, you could specify a 

system’s attractiveness by requiring it to be as at-

tractive as a competitor’s existing system.

When a manager assigns a task to an assis-

tant in daily business life, she’ll often give him 

only general direction, because she trusts him and 

knows that he’ll carry out the task to her satis-

faction. Any detailed task specification would be 

a waste of effort in this situation. An analogous 

situation can occur with quality requirements: for 

example, when a client has a history of successful 

collaboration with a supplier so that the supplier 

perfectly knows the client’s business, problems, 

and needs, a qualitatively stated quality require-

ment such as “The new data entry function shall 

be recoverable” can suffice to achieve the value—

that is, that the client is satisfied with the recovery 

features he gets for the new function.

The problem now is to assess, for a concrete 

quality requirement in hand, how to choose the 

representation that yields the most value. 

One of the most important assessment criteria 

is the requirement’s criticality (see figure 1). Along 

one dimension (the x-axis in figure 1), we analyze 

the importance of the stakeholder who states a 

quality requirement. For this purpose, stakehold-

ers are classified in three categories: minor, major, 

and critical.6 The other dimension (the y-axis) 

represents the impact of not meeting this require-

ment. Impact is typically regarded as the product 

of the damage incurred when a requirement isn’t 

met and the probability that this will happen. 

The more critical a requirement is, the higher the 

probability is that quantification is necessary to 

achieve the best value. (Recall that “value” was 

defined earlier as the benefit of reducing the de-

velopment risk minus the cost for specifying the 

requirements.)

Table 2 lists a set of factors that influence risk 

assessment. We might also use requirements triage 

techniques7 to assess a quality requirement’s rela-

tive importance.

Impact on elicitation  

and stakeholder analysis

Risk-based engineering of quality requirements, 

where we employ representations ranging from 

omission to full quantification, must not be mis-

used as an excuse for treating quality requirements 

sloppily. In particular, quality requirements must 

be carefully and systematically elicited, no mat-

ter how they’re eventually represented: you can-

not assess quality requirements that haven’t been 

elicited previously. The framework of character-

istics and subcharacteristics provided by a quality 

model—for example, the one defined in ISO/IEC 

9126—helps cover all areas of potential quality 

requirements when stakeholders don’t state them 

spontaneously.

Equally important is a careful stakeholder an-

alysis prior to eliciting requirements. Otherwise, 

Importance of stakeholder

Critical

Critical

Uncritical

Minor Major

High

Medium

Im
p
a
ct

Low

Figure 1. Assessing  

a quality requirement’s 

criticality.

Table 1

The range of adequate quality requirements representation
Situation Adequate representation Verification technique

1. Implicit shared understanding among stakeholders and developers Omission Implicit

2. Need to state a general quality direction explicitly but trusting that the 
supplier will get the details right on this basis

Qualitative Inspection

3. Involved parties have sufficient shared understanding to generalize 
properly from examples 

By example Inspection; may be  
some measurement

4. High risk of not meeting stakeholders’ desires and needs adequately Quantitative in full Measurement

5. Somewhere between situations 2 and 4 Qualitative with partial 
quantification

Inspection and partial 
measurement
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the criticality assessment described in figure 1 is 

impossible.

Impact on verification

Verifying a quantified quality requirement is 

straightforward: after we’ve developed a system or 

component, we measure the property of the system 

or component that corresponds to the requirement 

and compare the obtained measure to the expected 

value(s) stored in the requirement. If we have pre-

cise and unambiguous metrics, the verification re-

sults will also be precise and unambiguous.

Giving up full quantification implies giving up 

this form of verification. The right-hand column of 

table 1 lists the verification techniques to be applied 

in different situations.

When a quality requirement is specified quali-

tatively, we need to substitute human judgment for 

measurement. This is not a priori bad and subjec-

tive: by using inspection techniques in the same way 

as in software inspections, we can objectify human 

judgment. Moreover, several metrics eventually 

also depend on human judgment. For example, the 

measurement procedure for the metric Operational 

consistency in use in ISO/IEC 9126 is “Observe the 

behavior of the user and ask the opinion.”

If the specification of a quality requirement 

refers to an example, inspection is again the 

primary verification technique. In this case, it’s 

also possible to measure and compare some core 

properties of the example and the developed sys-

tem or component that pertain to the quality re-

quirement to be verified.

A partially quantified quality requirement 

is verified by a combination of inspection and 

measurement.

If a quality requirement isn’t specified owing 

to shared understanding, verification is implicit: 

as long as no stakeholder complains, the require-

ment is satisfied.

Example
Let’s look at a hypothetical but realistic scenario 

to illustrate this approach.

The scenario:  

Jane’s volunteer drivers’ service

Jane’s volunteer drivers’ service is an organi-

zation of volunteers who drive elderly or disabled 

people when, for example, they must see a doctor, 

want to visit somebody, or wish to attend a reli-

gious service. When a person needs transporta-

tion, he calls the number of the volunteer drivers’ 

service. Two dispatchers, Jane and Peter, alternate 

Table 2

Factors influencing risk assessment
Factor Description

Criticality The more critical a requirement, the higher the probability that quantification is necessary to achieve the best value.

Quantification effort The lower the effort for quantification, the higher the probability that quantification will add value.

Validity of obtained 
measurements

When measuring a quality requirement indirectly through subcharacteristics, it is not a priori granted that the 
subcharacteristics’ measurement values correlate with the degree of fulfillment of the requirement. The less 
evidence we have for these correlations, the less value we get from quantification.

Distinctiveness When a quality requirement is distinctive for a product to be developed, not meeting such a requirement has a 
high impact on the product. So, a higher effort for specifying this requirement is justified than for nondistinctive 
requirements.

Shared understanding When an implicit shared understanding exists about a quality requirement, specifying it explicitly has little value.

Reference systems When a reference system (for example, a previous product or a competitor’s product) exists, it might be much 
cheaper to specify a quality requirement by referring to the reference system’s corresponding quality than by 
explicitly quantifying the requirement.

Length of feedback cycle The shorter the feedback cycle (the time interval between expressing a need and receiving a system that should 
satisfy this need), the less verification and rework costs you can save through upfront requirements engineering. 
For quality requirements, this rule implies that the shorter the feedback cycle, the less payoff we get from 
quantifying the requirement.

Kind of customer-supplier 
relationship

The better the customer-supplier relationship (in terms of mutual respect and trust), the less requirements need 
to be contractually specified in an unambiguous and verifiable way—that is, the less we need quantified quality 
requirements.

Certification required If an authority needs to certify a system, all certification-relevant quality requirements might need to be specified 
quantitatively.
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in servicing incoming calls, making schedules, and 

calling volunteer drivers, giving them driving or-

ders. They use a spreadsheet to create schedules.

Jane, with help from Peter and his wife, 

founded the service three years ago. Jane and Peter 

are friends and know each other’s work habits and 

preferences pretty well.

Today, the service has grown to 20 volunteers 

and is still growing. The three founding members 

act as an executive board. With the organization’s 

current size, the spreadsheet-based, manual dis-

patching no longer works efficiently. Therefore, 

the board has decided they need a computer 

system to support the ordering and dispatching 

processes. 

In his professional life, Peter is the owner and 

chief engineer of a 10-person software company. 

He has informed his employees about this project 

and they’ve decided to contribute by building an 

open source, free system.

Stakeholder analysis

In this scenario, a stakeholder analysis would 

typically yield the following results: dispatcher 

would be critical; service user, volunteer driver, 

and system operator would be major; and devel-

oper, executive board member, person calling the 

service for somebody else, and any other stake-

holder (for example, Internet access provider or 

hardware provider) would be minor.

Some requirements

Let’s assume that stakeholders make the fol-

lowing statements (among others) when being in-

terviewed. Lucy (a 76-year-old service user): “It 

would be great if I could make reservations over 

the Internet some weeks in advance and also view 

a list of my current reservations—I am a bit forget-

ful, you know. However, it must be very simple and 

easy to use.” John (a deaf service user): “As I can’t 

make calls myself, I need a Web-based reservation 

Table 3

Analysis of quality requirements
Quality  

requirement

Stakeholder  

importance Impact

Other  

considerations Result

“Some weeks in 
advance”

Major Low Easy to quantify Quantify. For example “Reservations can be made 
up to 21 days in advance.”

“Very simple and easy 
to use”

Major Low to 
medium*

Hard to quantify Don’t quantify. Reduce risk with user interface 
prototyping and let selected service users inspect 
the fulfillment of this requirement by working with 
the prototype.

“Same service level 
as provided by calling 
today”

Major Low to 
medium

Reference system 
available, hard to 
quantify

Don’t quantify. Instead, use current system 
as a reference system; maybe elaborate some 
examples that illustrate the current service level. 
Let selected service users inspect the fulfillment 
of this requirement by working with the prototype.

“Immediate 
confirmation in most 
cases”

Major Low to 
medium

Easy to quantify Quantify. For example, quantify “immediate” as 
“in less than 30 seconds” and “most cases” as “in 
at least 90% of all cases.”

“Supports the 
growing number of 
service requests”

Critical High Other stakeholders 
also impacted, easily 
measurable, system 
architect must make 
a decision about 
upper limit for service 
requests anyway

Quantify. Specify values for the expected average 
number of service requests per week and the 
maximum number of service requests per week 
that the system shall be able to handle.

“As simple to use 
as our current 
spreadsheet”

Critical Medium Shared understanding 
between stakeholder 
and system architect, 
hard to quantify

Don’t state explicitly as a requirement.

“Need less time to 
service an incoming 
request than today”

Critical High Distinctive, easy  
to quantify

Quantify (see example in “Measuring Quality 
Requirements” sidebar).

* People can still call instead of using the Web interface.
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option. It should have the same service level as pro-

vided by calling today, in particular immediate con-

fi rmation in most cases.” Jane (dispatcher): “My 

biggest concern is that the system must support the 

growing number of service requests but remain as 

simple to use as our current spreadsheet.” Peter (the 

dispatcher and head of the development team): “I 

primarily want the system to help me work faster—

that is, on average, I’ll need less time to service an 

incoming request than today.”

Risk-value assessment

General considerations: The customer and the 

supplier organization overlap in personnel (Peter, 

for example), and both organizations have a shared 

interest in producing a useful system. No certifi ca-

tion or formal contract is required.

Table 3 presents an analysis of the individual 

quality requirements that we can extract from the 

requirements just stated.

R isk-based, value-oriented treatment of 

quality requirements extends the clas-

sic approach of making every quality re-

quirement measurable. When we consider the value 

that the specifi cation of a quality requirement adds, 

quantifi cation is clearly not always the best way 

to represent a quality requirement. The approach 

shown here helps treat quality requirements ad-

equately over a wide range of project situations and 

so helps advance software quality.
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