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  ARTICLE  

     A Risk Model for Prediction of Lung Cancer  
    Margaret R   .   Spitz   ,      Waun Ki     Hong   ,      Christopher I   .   Amos   ,      Xifeng     Wu   ,      Matthew B   .   Schabath   , 
     Qiong     Dong   ,      Sanjay     Shete   ,      Carol J   .   Etzel                 

   Background   Reliable risk prediction tools for estimating individual probability of lung cancer have important public 
health implications. We constructed and validated a comprehensive clinical tool for lung cancer risk pre-
diction by smoking status.  

   Methods   Epidemiologic data from 1851 lung cancer patients and 2001 matched control subjects were randomly 
divided into separate training (75% of the data) and validation (25% of the data) sets for never, former, and 
current smokers, and multivariable models were constructed from the training sets. The discriminatory 
ability of the models was assessed in the validation sets by examining the areas under the receiver operat-
ing characteristic curves and with concordance statistics. Absolute 1-year risks of lung cancer were com-
puted using national incidence and mortality data. An ordinal risk index was constructed for each smoking 
status category by summing the odds ratios from the multivariable regression analyses for each risk 
factor.  

   Results   All variables that had a statistically significant association with lung cancer (environmental tobacco 
smoke, family history of cancer, dust exposure, prior respiratory disease, and smoking history variables) 
have strong biologically plausible etiologic roles in the disease. The concordance statistics in the valida-
tion sets for the never, former, and current smoker models were 0.57, 0.63, and 0.58, respectively. The 
computed 1-year absolute risk of lung cancer for a hypothetical male current smoker with an estimated 
relative risk close to 9 was 8.68%. The ordinal risk index performed well in that true-positive rates in the 
designated high-risk categories were 69% and 70% for current and former smokers, respectively.  

   Conclusions   If confirmed in other studies, this risk assessment procedure could use easily obtained clinical information 
to identify individuals who may benefit from increased screening surveillance for lung cancer. Although 
the concordance statistics were modest, they are consistent with those from other risk prediction models.  
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                   Approximately 85% of all lung cancers occur in current or former 
cigarette smokers ( 1 ). Peto et al. ( 2 ) has computed the cumulative 
risk of lung cancer in long-term cigarette smokers by age 75 to be 
approximately 16% for men and 9.5% for women. These fi ndings 
pose two challenges for estimating lung cancer risk. First, how do 
we identify those ever cigarette smokers who have the highest risk 
of developing lung cancer? Second, what are the risk factors for the 
15% of lung cancers that occur in lifetime never smokers? 

 The potential public health benefi ts of individualized estimates 
of the probability of developing lung cancer are large. Prevention 
of even 10% of annual deaths from lung cancer would save more 
than 16   000 lives, more than all the annual deaths in the United 
States from ovarian cancer or from brain cancers ( 3 ). High-risk 
individuals could undergo a program of screening surveillance that 
might not be appropriate for lower risk individuals and may also 
consider chemoprevention interventions. Moreover, as Bach et al. 
( 4 ) have pointed out, risk prediction tools could be incorporated 
into the design of smaller, more powerful, and “smarter” preven-
tion trials by enriching the number of observed events. 

 Risk prediction is most well developed in the context of cardio-
vascular diseases, for which prediction models use a combination 

of variables (blood pressure, smoking history, lipid levels, and fam-
ily history of heart disease) to assess an individual’s risk of heart 
disease ( 5 ). Risk data from the Framingham Heart Study have 
been used to construct the Framingham Coronary Risk Prediction 
Model and to formulate guidelines for cholesterol-lowering ther-
apy ( 6 ). As Grundy et al. ( 6 ) note, the Framingham risk scores can 
both motivate and reassure the patient; they also illustrate the 
cumulative nature of multiple risk factors. 

 The National Cancer Institute in its 2006 budget proposal cited 
risk prediction as an area of extraordinary opportunity ( 7 ). The 
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best known and most widely applied cancer risk prediction model 
is that developed by Gail et al. ( 8 ), which uses a woman’s current 
age and panel of risk factors to estimate her risk of breast cancer 
over a defi ned period, taking into account information on relative 
risks (RRs), baseline hazard rate, and competing risks. Newer 
modifi cations of the Gail model with increased numbers of risk 
factors ( 9 ) or addition of mammographic density ( 10 ) to the model 
have produced modest improvements in discriminatory power. 
Women found to be at high risk based on their Gail model scores 
are encouraged to undergo screening or genetic evaluation and are 
eligible to be enrolled in chemoprevention trials (e.g., the Study of 
Tamoxifen and Raloxifene). The Gail model has been shown to 
reliably predict risk at the population level, but its discriminatory 
accuracy at the individual level is modest ( 11 ). 

 Other statistical models have been developed to estimate an 
individual’s risk of developing breast cancer ( 10 , 12 , 13 ), colorectal 
cancer ( 14  –  16 ), melanoma ( 17 , 18 ), ovarian cancer ( 19 ), and pros-
tate cancer ( 20 ). Relatively few models have been developed to 
estimate lung cancer risk. Previous lung cancer risk prediction 
models ( 2 , 4 , 21 ) have tended to concentrate on smoking character-
istics, sex, and age. Bach et al. ( 4 ) used smoking history data from a 
large randomized trial of retinol and carotene in heavy smokers and 
asbestos-exposed individuals to generate a lung cancer risk predic-
tion model that is applicable to smokers between 50 and 75 years 
of age, who are or were heavy smokers (10 – 60 cigarettes per day for 
25 – 60 years) and who had quit no more than 20 years previously. 

 To extend the work of Bach et al. ( 4 ) and to include additional 
risk factors beyond smoking history and asbestos exposure, we 
used epidemiologic data from a large case – control study of lung 
cancer to construct and validate a risk prediction tool for lung 
cancer. We divided the data into training sets to guide model 
development and validation sets to assess the prediction of risk. 
Matching variables were not included in the analysis, and because 
the study design matched on smoking status, all model building 
and analytic approaches were stratifi ed by this important predictor. 
We constructed multivariable models separately for never, former, 
and current smokers, incorporating into each model variables that 
exhibited statistically signifi cant main effects. We computed the 
absolute risk of lung cancer in the presence of competing causes 
of death. Finally, ordinal risk indices were constructed from the 
statistically signifi cant risk factors that were included in the fi nal 
models. 

  Methods 
  Study Population and Epidemiologic Data 

 The recruitment of case patients and control subjects for an ongo-
ing molecular epidemiology study of lung cancer has been described 
previously ( 22 , 23 ). Briefly, lung cancer patients have been recruited 
from the Thoracic Center at The University of Texas M. D. 
Anderson Cancer Center since July 1995. The case patients are all 
newly diagnosed patients presenting with histologically confirmed 
lung cancer and are enrolled before initiation of chemo- or radia-
tion therapy. There are no age, sex, ethnicity, or disease stage 
restrictions on recruitment, but emphasis has been placed on 
enrolling subsets of special interest, including minority patients, 
younger (<50 years of age) patients, and lifetime never smokers. 
Healthy control subjects without a prior history of cancer (except 
nonmelanoma skin cancer) are recruited from the Kelsey – Seybold 
clinics, the largest private multispecialty physician group in the 
Houston metropolitan area, which includes a network of 23 clinics 
and more than 300 physicians. Control subjects are frequency 
matched to the case patients by age (±5 years), sex, ethnicity, and 
smoking status (never, former, or current). All study participants 
provide written informed consent, and trained M. D. Anderson 
interviewers administer an epidemiologic questionnaire to study 
participants. 

 Data collected at the interview include demographic char-
acteristics, smoking history, occupation, information about specifi c 
exposures at work or from hobbies, medical history, and family 
history of cancer in fi rst-degree relatives. An individual who has 
never smoked or has smoked less than 100 cigarettes in his or her 
lifetime is defi ned as a never smoker. An individual who has 
smoked at least 100 cigarettes in his or her lifetime but quit smok-
ing more than 12 months before lung cancer diagnosis (for case 
patients) or before the interview (for control subjects) is considered 
to be a former smoker. Current smokers include those currently 
smoking and “recent quitters,” i.e., those who quit smoking less 
than 12 months before diagnosis (for case patients) or interview 
(for control subjects). Data on smoking history include smoking 
duration, number of cigarettes smoked per day, computed pack-
years smoked, and age at smoking initiation (for all smokers) plus 
age at smoking cessation and computed years since cessation (for 

   CONTEXT AND CAVEATS 

  Background 

 Risk prediction models for cancer could be valuable for identifying 
individuals who may benefit from preventive treatments or in -
creased surveillance or who are good candidates to participate in 
clinical trials. Existing models for lung cancer prediction focus 
mainly on smokers.  

  Study design 

 Predictive models were developed for never, former, and current 
smokers using a portion of the data from a case – control study of 
lung cancer. The models were validated using the rest of the data.  

  Contribution 

 The models could predict the development of lung cancer with 
modest discriminatory accuracy, similar to that of other cancer 
prediction models. The statistically significant variables in the 
models (including history of exposure to environmental tobacco 
smoke, family history of cancer, dust and asbestos exposure, his-
tory of respiratory diseases, and smoking history) can be assessed 
by patient interview.  

  Implications 

 The models can be used to compute absolute risks of lung cancer, 
and risks can be presented using an easy-to-understand ordinal 
risk index that may be helpful for risk communication.  

  Limitations 

 The models may not be sufficiently discriminatory to allow accu-
rate risk assessment at the individual level. In addition, the models 
were developed in a single population and need to be validated in 
independent populations.   
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former smokers). Exposure to second-hand smoke (environmental 
tobacco smoke, or ETS) is ascertained for never and former smok-
ers and is defi ned as having been exposed to someone else’s ciga-
rette smoke at home or at work on a regular basis, i.e., daily or 
weekly, as well as on years of exposure to ETS. 

 Family history of cancer in fi rst-degree relatives is obtained 
from participant-reported cancer histories in parents, siblings, 
and offspring. For each affected relative, we obtain information on 
year of birth, age at time of interview of the case or control subject, 
smoking status (never or ever), type of cancer, age at diagnosis, and 
year of death. For each unaffected relative, we obtain information 
on current age or age at death. Family histories of any cancer and 
of smoking-related cancers (defi ned as lung, upper aerodigestive 
tract, esophagus, renal, pancreas, bladder, cervix) are analyzed 
separately. 

 Participants are classifi ed as positive for asbestos exposure if 
they report having been employed within a documented asbestos-
related occupation or industry. Other self-reported exposures are 
classifi ed as regular (8 hours a week) and/or prolonged (at least 
1 year) exposure to a predefi ned list of chemicals (solvents, paint 
thinners, dry cleaning fl uids, motor oils, gasoline, tar, hydrochlo-
ric acid, or bleach/cleansers); fumes (glues, paints, plastics, pesti-
cides, car and truck exhaust, natural gas, or foam insulation); 
dusts (metal, concrete, sawdust, cotton, textile fi bers, fi berglass, 
sand or dust, or dust storms); or a subcategory of wood dusts 
based on specifi c self-reported work exposures to wood dust, 
sawdust, or sanding dust. Participants are asked whether they 
have ever been diagnosed by a physician with emphysema, hay 
fever, or asthma. 

 All study participants are Texas residents. This analysis was 
limited to white non-Hispanic participants because there were 
inadequate numbers of nonwhite participants to perform smoking 
stratum – specifi c analyses. Through May 2006 (end date for this 
analysis), response rates among both the case patients and the 
control subjects have averaged 75%. This research has been 
approved by the Institutional Review Boards of the M. D. 
Anderson Cancer Center and the Kelsey – Seybold Clinics.  

  Statistical Analysis 

 The data for each smoking stratum were initially split at random 
into training sets (constituting 75% of the participants in the 
stratum) to guide the building of the smoking status – specific risk 
models and validation sets (constituting the remaining 25% of 
participants) to assess performance of each of the three models 
individually. Before building the models, we screened all variables 
(i.e., ETS exposure; physician-diagnosed emphysema, hay fever, or 
asthma; exposure to dusts, fumes, chemicals, asbestos, pesticides, or 
wood dusts; family history of cancer; age at smoking initiation, age 
at smoking cessation, number of years since smoking cessation, and 
pack-years of smoking) by univariate logistic regression in the 
training sets to examine their main effects by smoking status and 
by sex. Differences in the distribution of demographic variables 
(including sex and smoking status) between case patients and con-
trol subjects were evaluated by the two-sided chi-square test. For 
univariate analysis, several of the continuous variables were catego-
rized as follows: age stopped smoking (<42 years, 42 – 53 years, and 
 ≥ 54 years, based on the tertile distribution of age at cessation in 

former smoker control subjects in the training set) and pack-years 
of smoking (<28 pack-years, 28 – 41.9 pack-years, 42 – 57.4 pack-
years, and  ≥ 57.5 pack-years, based on the quartile distribution of 
pack-years among control current smokers in the training set). 
Differences in the distribution of continuous variables were evalu-
ated using two-sided Student’s  t  test. Odds ratios (ORs) and 95% 
confidence intervals (CIs) were calculated as estimates of relative 
risk. Unless otherwise stated, all analyses were performed using 
Statistical Analysis System (SAS) software Version 9.1 (SAS 
Institute, Cary, NC). 

  Risk Model Building.     Variables that were statistically signifi cantly 
associated with lung cancer risk at the 5% level in univariate analy-
sis in the three training sets were included in the multivariable 
logistic regression analyses for construction of the fi nal risk models. 
In these analyses, we used the pack-year variable as the measure of 
smoking intensity for current and former smokers. There were no 
marked differences in risk estimates by sex, and we therefore report 
the relative risk estimates and three model validation results for 
males and females combined. 

 We used a backward selection procedure to choose the vari-
ables included in each of the fi nal multivariable models. To fur-
ther minimize the possibility of confounding effects due to high 
collinearity between predictor variables, we calculated a variance 
infl ation factor for each variable ( 24 ). All variance infl ation factor 
values were well below 10 (data not shown), indicating no collin-
earity between the fi nal list of predictor variables within any of the 
models. 

 To test for the statistically signifi cant contribution of interac-
tion terms, we included each pairwise interaction term in the pre-
liminary main-effects models and reran the logistic regression. No 
interaction terms were found to be statistically signifi cant at the 
 P  less than .05 level in either the never-smoker or former-smoker 
models. One interaction term (emphysema and family history of 
smoking-related cancers) was statistically signifi cant ( P  = .03) in the 
current-smoker model. However, given that multiple statisti  cal 
tests were performed and that the interaction term did not substan-
tially modify the Akaike Information Criterion (data not shown), 
we elected not to include this interaction in the fi nal model.  

  Classification and Regression Tree Analysis.     Due to sample size 
restrictions, we were not able to investigate all possible higher 
order interactions in our model building. Therefore, we used clas-
sifi cation and regression tree (CART) analysis ( 25 ) to evaluate 
higher order (three-way and above) interactions in the training sets. 
We applied the recursive partitioning technique “rpart” package 
that was developed for Splus (Insightful Corporation, Seattle, WA) 
by Therneau and Atkinson ( 26 ) ( http://mayoresearch.mayo.edu/
mayo/research/biostat/splusfunctions.cfm ) to discriminate low- 
and high-risk subgroups. We grew each decision tree (one for each 
smoking status group) with the stipulation that each subsequent 
split yields two daughter nodes with at least 10 participants per 
node. An unconditional logistic regression model was fi t at each 
recursive split to estimate the risk of lung cancer (as odds ratios with 
95% confi dence intervals) adjusted by age and sex; any branch that 
was not deemed to be statistically signifi cant ( P <.05) was pruned off 
the tree.  
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  Assessment of Model Fit.       We used a three-phase approach to 
model validation: First, each of the three models was evaluated by 
the Hosmer – Lemeshow goodness-of-fi t test in the appropriate 
validation set. Next, using the validation set for each risk model, 
we calculated specifi city and sensitivity of the resulting logistic 
regression model by constructing receiver operating characteristic 
curves and calculated the area under the curve (AUC) statistic to 
estimate each model’s ability to discriminate between patients and 
control subjects. Approximate 95% confi dence intervals for the 
AUCs were calculated using SPSS statistical software (SPSS Inc 
V12.0, Chicago, IL), assuming a binegative exponential distribu-
tion. An AUC of 0.5 indicates chance prediction (equivalent to a 
coin toss), whereas a statistic of 0.7 indicates good discrimination 
( 27 ). Once the fi nal variables for the three models had been vali-
dated in their respective validation sets, data from the training and 
validation sets were combined to calculate more precise overall risk 
estimates. 

 After calculating the risk estimates for the fi nal models (which 
were based on the combined training and validation sets), we also 
evaluated fi nal model discrimination by performing threefold cross 
validation, as follows ( 28 ). For each model, we randomly divided 
the combined data from the training and validation sets into 
three equally sized groups. Using two of the groups, we built a risk 
model (separately for never, former, and current smokers) using 
the fi nal set of variables. For each risk model, we then used the 
remaining data group to calculate the concordance statistic ( C ) for 
each model, which, like the AUC, is an index of the model’s ability 
to predict case patient or control subject status. We repeated this 
process three times and calculated the average  C , namely C  and its 
associated standard deviation,  S C , across the cross-validations. We 
then calculated 95% confi dence intervals as C ± 1.96 S C   .

  Risk Index.       To create a simple and logical index for risk stratifi ca-
tion, we generated a numerical score by assigning integer points 
based on the odds ratios from the logistic regression model for 
each risk factor that was statistically signifi cantly associated with 
lung cancer in the respective multivariable model. The points were 
summed to compute a score that can be used to assign individuals 
to low-, medium-, or high-risk groups within their smoking status 
category. We used CART analysis on the training set to determine 
the cut points for low, medium, and high risk scores and then 
used these cut points to categorize subjects according to their risk. 
When necessary, we rounded to the nearest tenth of a decimal 
point for ease of scoring. These scoring metrics were developed in 
the training sets and validated in the validation sets. This approach 
provided an additional method to evaluate the discriminatory pre-
diction accuracy of the models and also allowed us to convert a 
numeric risk estimate to a risk level assignment that lay users 
might fi nd easier to interpret. We classifi ed case patients and con-
trol subjects by their risk scores and calculated true-positive and 
true-negative rates for the high- and low-risk score categories, 
respectively.  

  Absolute 1-Year Risk of Lung Cancer.       Estimates of absolute risk 
were developed based on the methods of Gail et al. ( 8 ) and Fears 
et al. ( 18 ). To calculate relative risk estimates, we multiplied the 
log-odds of the individual risk components from the fi nal logistic 

model and denoted the relative risk as  r . We estimated baseline 
hazards for male and female never, former, and current smokers 
separately as  h 1ji =  v ji (1�si),     where  v ji  is the age-specifi c incidence 
rate of lung cancer for men ( j  = 1) and women ( j  = 2) from the 
Surveillance, Epidemiology, and End Results (SEER) program for 
2005 ( 29 ) adjusted for smoking status (never smokers [ i  = 1], for-
mer smokers [ i  = 2], and current smokers [ i  = 3]) and  s   i   is the attrib-
utable risk derived from the relative risk model as described in 
Fears et al. ( 18 ) for never smokers ( i  = 1), former smokers ( i  = 2), 
and current smokers ( i  = 3). We obtained the adjusted incidence 
rates in the following manner: Defi ne Ii  as the age-specifi c inci-
dence rate of lung cancer for males ( j  = 1) and females ( j  = 2) from 
SEER data. This value is the ratio of the number of new cases ( s ) 
to the number of individuals at risk in the population (N), I j  = s/N . 
Approximately 90% of all new male lung cancer cases and 80% of 
all new female lung cancer cases are ever smokers ( 30 ), and 23.2% 
of men and 19.2% of women are current smokers, 48.4% of men 
and 59.5% of women are never smokers ( 31 ), leaving 28.4% of 
men and 21.3% of women estimated as former smokers. Therefore, 
the adjusted incidence rate for male current smokers ( j  = 1,  i  = 3) 
can be estimated as the ratio of the number of new lung cancer cases 
who currently smoke to the number of current smokers in the pop-
ulation, which can be written as v13 = 0.90s/0.232N = (0.90/0.232)I1,  
where I1  is the age-specifi c incidence rate for males. Hence, the 
adjusted incidence rate for any gender – smoking group combina-
tion can be estimated as  vji = cji Ij, where  c   ji   is defi ned as the adjust-
ment constant for each sex – smoking status group. Values for  c    ji    are 
given in  Appendix Table 1 . Furthermore, if  a  is the age in years 
and  h  2 j   the mortality rate from other causes excluding lung cancer 
for males ( j  = 1) and females ( j  = 2) derived from National Center 
for Health Statistics (NCHS), 1999 – 2003 mortality rates ( 32 ) 
( Appendix Table 2 ), the absolute 1-year risk is estimated as  

P a, r, i, j
h r

h r h
h r h

ji

ji j
ji j( ) = {1 exp[ ( )]}

1

1 2
1 2+

− − +










 We evaluated the utility of the absolute 1-year risk model for 
lung cancer by creating three different risk profi le examples. We 
converted the odds ratios of the selected risk factors ( Table 3 ) to 
relative risks using the formula RR = OR/(1  –  P) + (P × OR). In 
general, P is defi ned as the incidence of the outcome of interest in 
the unexposed group. For our calculations, we defi ne P as the age- 
and sex-specifi c incidence rates of lung cancer for white men and 
women obtained from SEER data. However, in all instances, we 
found that the odds ratio approximated the relative risk closely, and 
we have therefore used odds ratios for all subsequent estimations.    

  Results 
 Epidemiologic data from 1851 patients with lung cancer and 2001 
control subjects, all of whom were non-Hispanic whites, were 
available for this analysis ( Table 1 ). By study design, the case 
patients and control subjects were well matched by sex, although 
there was a slight excess of males. Case patients were, on average, 
2 years older than control subjects but within the 5-year fre-
quency matching criterion ( Table 1 ). There were no statistically 
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significant differences in the distribution of case patients and 
control subjects by smoking status, a matching criterion, although 
there were more current smokers (39.8%) and fewer former 
smokers (42.4%) among the case patients than among the control 
subjects (36.9% and 44.2%, respectively). Not surprisingly, the 
case patients were also heavier smokers than the control subjects 
in terms of pack-years smoked (51.9 and 44.6, respectively); 
case patients had smoked cigarettes for an average of 36.1 years 

(±standard deviation [SD] 12.5), compared with 32.7 years (±SD 
13.0) for the control subjects ( P <.001). In addition, case patients 
were heavier daily smokers (mean cigarettes smoked per day = 
28.1 [±SD 13.7]) than control subjects (26.4 [±SD 14.4];  P  ≤ .001; 
data not shown in Table).     

 To identify risk factors to include in the multivariable model, 
we performed univariate analyses by smoking status ( Table 2 ). 
Among never smokers (330 case patients and 379 control sub-
jects), exposure to ETS (OR = 1.77, 95% CI = 1.2 to 2.6) or dust 
(OR = 1.48, 95% CI = 1.0 to 2.1) and family history of any cancer 
in two or more fi rst-degree relatives (OR = 1.96, 95% CI = 1.3 to 
2.9) were all statistically signifi cantly associated with lung cancer 
risk. Asthma was associated with a 1.43-fold increase in risk 
among never smokers, but this increase was not statistically sig-
nifi cant (95% CI = 0.9 to 2.2). Among former smokers (784 case 
patients, 884 control subjects), risks were statistically signifi -
cantly elevated with exposure to ETS (OR = 2.07, 95% CI = 1.3 
to 3.2), dusts (OR = 1.64, 95% CI = 1.3 to 2.0), fumes (OR = 1.32, 
95% CI = 1.1 to 1.6), and chemicals (OR = 1.25, 95% CI = 1.0 to 
1.5); with a history of emphysema (OR = 2.99, 95% CI = 2.2 to 
4.0); with a family history in two or more relatives of any cancer 
(OR = 1.84, 95% CI = 1.4 to 2.4) or smoking-related cancers 
(OR = 1.40, 95% CI = 1.1 to 1.7); and with a history of hay fever 
(OR = 0.72, 95% CI = 0.6 to 0.9). Risk factors among current 
smokers (737 case patients, 738 control subjects) were similar to 

 Table 1.      Distribution of study population by select variables  

  Variables

Case patients 

(N = 1851)

Control subjects 

(N = 2001)  P   *   

  Sex, n (%)  
     Male 975 (52.7) 1021 (51.0)  
     Female 876 (47.3) 980 (49.0) .306 
 Mean age (SD†), y 62.0 (11.2) 60.2 (10.7) <.001 
 Smoking status, n (%)  
     Never 330 (17.8) 379 (18.9)  
     Former 784 (42.4) 884 (44.2)  
     Current 737 (39.8) 738 (36.9) .170 
 Mean pack-years 
  smoked (SD)

51.9 (31.7) 44.6 (30.7) <.001
  

  *    P  value from the two-sided chi-square test (for categorical variables) and 
Student’s  t  test (for continuous variables).  

   †    SD = standard deviation.   

 Table 2.      Univariate analysis of lung cancer risk factors (as odds ratios with 95% confidence intervals) by smoking status *   

  

 Risk factor

Never smokers  

(330 case patients/

379 control subjects)

Former smokers  

(784 case patients/

884 control subjects)

Current smokers   

(737 case patients/

738 control subjects)  

  Exposure  
     ETS  1.77   (1.2 to 2.6)  2.07   (1.3 to 3.2) NA 
     Emphysema NA  2.99   (2.2 to 4.0)  2.69   (2.0 to 3.6)  
     Hay fever 0.90 (0.7 to 1.3)  0.72   (0.6 to 0.9)  0.62   (0.5 to 0.8)  
     Dusts  1.48   (1.0 to 2.1)  1.64   (1.3 to 2.0)  1.67   (1.4 to 2.1)  
     Fumes 1.02 (0.7 to 1.4)  1.32   (1.1 to 1.6)  1.31   (1.1 to 1.6)  
     Chemicals 1.00 (0.7 to 1.4)  1.25   (1.0 to 1.5)  1.34   (1.1 to 1.7)  
     Asbestos 0.86 (0.4 to 1.8) 1.25 (0.9 to 1.7)  1.78   (1.3 to 2.4)  
     Pesticides 1.52 (0.7 to 3.3) 1.22 (0.8 to 1.8 1.0 (0.7 to 1.4) 
     Wood dust 0.87 (0.5 to 1.7) 1.23 (0.9 to 1.7) 1.20 (0.9 to 1.6) 
     Asthma 1.43 (0.9 to 2.2) 1.23 (0.9 to 1.6) 1.01 (0.8 to 1.4) 
 Family history of cancer  †    
     0 1.0 (referent) 1.0 (referent) 1.0 (referent) 
     1 1.19 (0.8 to 1.7) 1.16 (0.9 to 1.5) 1.24 (1.0 to 1.6) 
      ≥ 2  1.96   (1.3 to 2.9)  1.84   (1.4 to 2.4)  1.68   (1.3 to 2.2)  
 Family history of smoking-related 
  cancer  †  

 

     0 1.0 (referent) 1.0 (referent) 1.0 (referent) 
      ≥ 1 1.17 (0.8 to 1.7)  1.40   (1.1 to 1.7)  1.58   (1.3 to 2.0)  
 Age at smoking initiation 
  (continuous)

NA 1.01 (0.99 to 1.0) 0.97 (0.95 to 1.0) 

 Age stopped smoking (>39 y 
  versus  ≤ 38 y)

NA  1.57   (1.2 to 2.0) NA 

 Age at smoking cessation 
  (continuous)

NA  1.03   (1.02 to 1.04) NA 

 Years of cessation (continuous) NA 0.99 (0.99 to 1.00) NA 
 Pack-years smoked (continuous) NA  1.00   (1.00 to 1.01)  1.01   (1.01 to 1.02)   

  *   Numbers in bold type indicate statistically significant odds ratios. ETS = environmental tobacco smoke; NA = not applicable.  

   †    Number of first-degree relatives with cancer. Smoking-related cancers include renal cancer and cancers of the lung, upper aerodigestive tract, esophagus, 
pancreas, bladder, and cervix.   
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those for former smokers, with statistically signifi cant associations 
for emphysema (OR = 2.69, 95% CI = 2.0 to 3.6); exposure to 
dusts (OR = 1.67, 95% CI = 1.4 to 2.1), fumes (OR = 1.31, 95% 
CI = 1.1 to 1.6), chemicals (OR = 1.34, 95% CI = 1.1 to 1.7), or 
asbestos (OR = 1.78, 95% CI = 1.3 to 2.4); a family history in two 
or more relatives of any cancer (OR = 1.68, 95% CI = 1.3 to 2.2) 
or a smoking-related cancer (OR = 1.58, 95% CI = 1.3 to 2.0); 
and a history of hay fever (OR = 0.62, 95% CI = 0.5 to 0.8). 
Smoking variables (age at smoking cessation, for former smokers, 
and measures of smoking intensity, for both former and current 
smokers) were also statistically signifi cantly associated with lung 
cancer risk.      

  Multivariable Risk Models 

 In the multivariable logistic regression analyses based on the com-
bined training and validation datasets ( Table 3 ), both exposure to 
ETS and family history of any cancer were statistically significantly 
associated with lung cancer in never smokers. Among former and 

current smokers, lung cancer was statistically significantly associated 
with exposure to dust, no prior history of hay fever (as the risk-
 conferring value of the variable), personal history of emphysema, 
family history of any cancer (for former smokers) or tobacco-related 
cancers (for current smokers), and smoking intensity (for current 
smokers) and age at smoking cessation (for former smokers). In addi-
tion, exposure to asbestos was statistically significantly associated 
with lung cancer in current smokers but not in former smokers.     

 We also constructed smoking status – specifi c risk models 
stratifi ed by sex (data not shown) and found only a few differences 
in risk factors among men and women. Specifi cally, among former 
smokers, both age at smoking cessation and no prior hay fever 
were statistically signifi cantly associated with lung cancer risk in 
men but not in women. Among current smokers, asbestos exposure 
was statistically signifi cantly associated with lung cancer risk in 
men but not in women. 

 The same variables that were associated with lung cancer 
risk in the logistic regression analysis were also identifi ed in the 

 Table 3  .    Multivariable logistic model for lung cancer by smoking status *   

  Risk factor Regression coefficient  P    †  OR (95% CI)  

  Never smoker  
     Intercept  − 0.8806 <.001  
     ETS (yes vs no) 0.5874 .0042 1.80 (1.20 to 2.69) 
     Family history ( ≥ 2 vs <2)‡ 0.6954 <.001 2.00 (1.39 to 2.90) 
 Former smoker  
     Intercept  − 0.7606 <.001  
     Emphysema (yes vs no) 0.9734 <.001 2.65 (1.95 to 3.60) 
     Dust exposure (yes vs no) 0.4654 <.001 1.59 (1.29 to 1.97) 
     Family history ( ≥ 2 vs <2)‡ 0.4636 <.001 1.59 (1.28 to 1.98) 
     Age stopped smoking §  
      <42 y Referent  
      42 – 53 y 0.2130 .1110 1.24 (0.95 to 1.61) 
       ≥ 54 y 0.4080 .0018 1.50 (1.16 to 1.94) 
  P  for trend = .017  

     Hay fever (no) 0.3711 .00e55 1.45 (1.12 to 1.88) 
 Current Smoker  
     Intercept  − 0.7173 <.001  
     Emphysema (yes) 0.7561 <.001 2.13 (1.58 to 2.88) 
     Pack-years  ||   
      <28 Referent  
      28 – 41.9 0.2219 .1932 1.25 (0.89 to 1.74) 
      42 – 57.4 0.3747 .0241 1.45 (1.05 to 2.01) 
       ≥ 57.5 0.6151 <.001 1.85 (1.35 to 2.53) 
  P  for trend<.001  

     Dust exposure (yes vs no) 0.3067 .0075 1.36 (1.09 to 1.70) 
     Asbestos exposure (yes vs no) 0.4109 .0127 1.51 (1.09 to 2.08) 
     Family history ¶  
      0 Referent  
       ≥ 1 0.3859 .0021 1.47 (1.15 to 1.88) 
     Hay fever (no) 0.4047 .0054 1.49 (1.13 to 1.99)  

  *   Regression analysis was based on entire dataset (training and validation sets combined). OR = odds ratio; CI = confidence interval; ETS = environmental 
tobacco smoke.  

   †     P  value from Wald test.  

   ‡  Number of first-degree relatives with any cancer.  

  §   Cut points based on the tertile of age at smoking cessation in control subjects in the training set.  

   ||    Cut points based on the quartile of current smoker pack-years in control subjects in the training set.  

  ¶   Number of first-degree relatives with a smoking-related cancer (i.e., renal cancer and cancers of the lung, upper aerodigestive tract, esophagus, pancreas, bladder, 
and cervix).   
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decision trees of the CART models ( Figs. 1  and  2 ). No higher 
order interactions were evident from these models, but we did 
observe that, among never smokers, both exposure to ETS and 
family history of cancer were strongly associated with lung cancer 
risk (data not shown) as defi ned in our logistic regression model-
ing. Among former smokers, a history of emphysema was again 
the strongest risk factor (OR = 4.55, 95% CI = 3.0 to 6.8), fol-
lowed by dust exposure in those without a history of emphysema 
(OR = 2.35, 95% CI = 1.7 to 3.3) ( Fig. 1 ). For those former smok-
ers without emphysema or dust exposure, later age at smoking 
cessation was associated with a 1.88-fold increase in risk (95% 
CI = 1.4 to 2.5), and the combination of dust exposure and family 
history of any cancer was associated with an OR of 3.41 (95% 
CI = 2.2 to 5.3). Among current smokers ( Fig. 2 ), a history of em -
physema was the strongest risk factor for lung cancer (OR = 4.20, 
95% CI = 2.9 to 6.2), whereas smoking intensity ( ≥ 37 pack-years) 
was strongly associated with lung cancer risk among current 
smokers without emphysema (OR = 2.55, 95% CI = 1.9 to 3.5). 

A family history of smoking-related cancers was associated with 
lung cancer in subjects with heavier smoking histories (OR = 
3.09, 95% CI = 2.0 to 4.7), as well as among those with lighter 
smoking histories and self-reported dust exposure (OR = 5.12, 
95% CI = 2.6 to 10.3). Hay fever, which was identifi ed in the 
backward selection procedures, appeared in a lower (albeit pruned 
off) branch of the tree, suggesting that the contribution to risk 
from hay fever was less than that for emphysema and smoking 
history in this analysis.          

  Model Validation 

 We next used a three-phase validation process to assess the per-
formance, in the validation sets, of the models developed in the 
training sets. As illustrated in  Table 4 , the risk models were well 
calibrated throughout the entire range of probabilities, as indicated 
by the non – statistically significant Hosmer – Lemeshow goodness-
of-fit test statistics (0.777 for never smokers, 0.712 for former 
smokers, and 0.688 for current smokers). The AUC statistic 

 Fig. 1  .    Classifi cation and regression tree 
analysis of risk predictors in former smok-
ers. Nodes of the classifi cation tree are 
formed by recursive splits of lung cancer 
case/control status by predictor variables. 
The numbers within each node indicate 
the number of control subjects/number of 
case patients. Within each terminal node, 
the odds ratio (with 95% confi dence inter-
val) of lung cancer (adjusted by age and 
sex) is shown for that node with respect 
to the reference node ( dotted  terminal 
node). LFH = lung cancer family history.    

 Fig. 2  .    Nodes of the classifi cation tree are 
formed by recursive splits of lung cancer 
case/control status by predictor variables. 
The numbers within each node indicate 
the number of control subjects/number of 
case patients. Within each terminal node, 
the odds ratio (with 95% confi dence 
interval) of lung cancer (adjusted by age 
and sex) is shown for that node with 
respect to the reference node ( dotted  
terminal node). SR-FH = family history of 
smoking-related cancer .    
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ob  tained from the validation sets ( Table 4 ) was low for never smok-
ers (AUC = 0.57, 95% CI = 0.47 to 0.66) and current smokers 
(AUC = 0.58, 95% CI = 0.52 to 0.64) and slightly higher for former 
smokers (AUC = 0.63, 95% CI = 0.58 to 0.69). The resulting con-
cordance statistics, calculated by threefold cross-validation of the 
combined dataset, were 0.59, 0.63, and 0.65 for never, current, and 
former smokers, respectively, indicating that the models performed 
reasonably well in discriminating between case patients and control 
subjects ( Table 4 ).     

 Given the lack of consistency in the literature on the associa-
tion between hay fever and lung cancer risk, we reran our models 
excluding hay fever as a covariate and obtained similar results. We 
also evaluated the fi t of the Bach et al. ( 4 ) model using our own 
data in ever smokers (i.e., never smokers were not used to develop 
the Bach data). The resulting AUC was only 0.57 (95% CI = 0.56 
to 0.59), indicating that adding clinical and epidemiologic variables 
improves the risk prediction.  

  Estimation of Absolute 1-Year Risk for Lung Cancer 

 We next used the lung cancer risk model to estimate 1-year abso-
lute risks for lung cancer for three hypothetical individuals at high, 
moderate, and low risks. The first individual is a 75-year-old white 
man, a current smoker with a 58 – pack-year smoking history (i.e., 
he smoked approximately 1 pack a day for 60 years), a history of  
both emphysema and hay fever, two first-degree relatives diagnosed 
with a smoking-related cancer, and prior asbestos exposure. Based 
on the model, his estimated relative risk of lung cancer compared 
with a man of similar age but without these risk factors is 8.75, as 
derived from multiplying the component risk estimates for each 
risk factor ( r  = 1.85 × 2.13 × 1.47 × 1.51; see  Table 3 ). The baseline 
hazard is obtained from the sex/smoking status adjustment constant 
(3.88 in this case;  Appendix Table 1 ), age-specific SEER ( 29 ) lung 
cancer incidence rates for white men 75 – 79 years old (564.36 per 
100   000;  Appendix Table 2 ), and the attributable risk for men, as 
derived from the model for current smokers (0.51404), as  h  113  = 3.88 × 
564.36/100   000 × (1  –  0.51404). On the basis of NCHS data ( 32 ), 
we estimated the mortality rate from causes other than lung cancer 
among white men 75 – 79 years old as  h  21  = 4836.4/100   000. The 
estimated 1-year absolute risk of lung cancer for this man is calcu-
lated as  p  = (0.010641148 × 8.75)/(0.010641148 × 8.75 + 0.048364) × 
{1  −  exp[ − (0.010641148 × 8.75 + 0.048364)]} = .0868236. This risk 
(8.68%) is more than 15 times that of the age-specific SEER inci-
dence rate for lung cancer in white men (0.56%). 

 For a white female former smoker, aged 66, who quit smoking 
at age 54 and had a history of dust exposure but no family history 

of cancer and no prior hay fever, the estimated relative risk of lung 
cancer, based on our model is 3.458 ( r  = 1.50 × 1.59 × 1.45) times 
that of a white woman of the same age without those risk factors. 
The lung cancer incidence rate from SEER ( 29 ) for white women 
65 – 69 years old is 246.85/100   000 ( Appendix Table 2 ), the adjust-
ment constant for a female former smoker is 3.76 ( Appendix Table 
1 ), and the attributable risk for former smokers from our model is 
0.45352, hence the baseline hazard  h  122  = 3.76 × 0.002468457 × 
(1  −  0.45352). The mortality rate from NCHS ( 32 ) for white 
women 65 – 69 years old from causes other than lung cancer is  h  22  = 
1197/100   000. The estimated 1-year absolute risk for lung cancer 
for this woman is  p  = (0.00507210 × 3.458)/(0.00507210 × 3.458 + 
0.01197) × {1  −  exp[ − (0. 00507210 × 3.458 + 0.01197)]} = 0.017284. 
This risk (1.70%) is seven times higher than the age-specifi c 
SEER ( 29 ) incidence of lung cancer for white women (0.24%). 

 A third example is a white male never smoker, aged 45 years, 
with no exposure to ETS and no family history of cancer. His esti-
mated relative risk based on our model for never smoker is 1 ( r  = 1 × 
1). The lung cancer incidence rate from SEER ( 29 ) for men 45 – 
49 years old is 25.49/100   000 ( Appendix Table 2 ), and the adjust-
ment constant for a male never smoker is 0.21 ( Appendix Table 1 ). 
The attributable risk for never smokers from our model is 0.4751. 
The baseline hazard is  h  111  = 0.21 × 0.000254856 × (1  −  0.4751). The 
mortality rate from NCHS ( 32 ) for men 45 – 49 years old from 
causes other than lung cancer is  h  21  = 400.7/100   000. The estimated 
1-year absolute risk for lung cancer for the man is  p  = (0.000028108 × 
1)/(0.000028108 × 1 + 0.004007) × {1  −  exp[ − (0.000028108 × 1 + 
0.004007)]} = 0.000028052. This estimated risk is approxi-
mately one-tenth that of the annual SEER ( 29 ) age-specifi c lung 
cancer incidence rate for white men (0.0028% versus 0.025%, 
respectively).  

  Ordinal Risk Index 

 The clinical utility of a risk prediction tool lies in its value for deci-
sion making and ease of use at the individual level. Therefore, to 
facilitate the use of the model, we developed a way to compute 
ordinal risk indices from odds ratios derived from the multivariable 
regression analyses for the statistically significant risk factors from 
each model ( Table 3 ). In the absence of a particular risk factor, a 
baseline integer of 1 is assigned to the score. For ordinal variables 
(pack-years, years since cessation), the lowest category is assigned 
an integer of 1. We evaluated both additive and multiplicative 
scoring approaches; the results were nearly identical, and we pres-
ent only the additive model for simplicity ( Table 5 ). Based on 
CART analysis, we established three levels of risk for each smoking 

 Table 4  .    Model validation statistics *   

  Smoking category

 P  from Hosmer – Lemeshow 

goodness of fit  †  AUC  †   (95% CI) Concordance statistic  ‡   (95% CI)  

  Never smokers .777 0.57 (0.47 to 0.66) 0.59 (0.51 to 0.67) 
 Former smokers .712 0.63 (0.58 to 0.69) 0.63 (0.58 to 0.67) 
 Current smokers .688 0.58 (0.52 to 0.64) 0.65 (0.60 to 0.69)  

  *   AUC = area under the curve; CI = confidence interval.  

   †    Derived from validation set.  

   ‡    Derived from threefold cross-validation for combined dataset.   
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category. Because of the small number of never smokers in the 
validation set, the results in  Table 5  are presented for former and 
current smokers only in both the test and validation sets and for the 
combined datasets. The percentage of control subjects in the high-
risk category for the combined dataset was 9.4% for former smokers 
and 12.9% for current smokers ( Table 5 ). Among former smokers, 
the true-negative rates for the lowest risk subgroup designation were 
66% (95% CI = 59% to 72%) for the validation set and 66% (95% 
CI = 62% to 70%) in the combined analysis. For current smokers, 
the true- negative rates in the low-risk categories were 65% (95% 
CI = 55% to 75%) and 68% (95% CI = 63% to 72%) for the valida-
tion and combined sets, respectively. The true-positive rates for the 
high-risk group were 73% (95% CI = 60% to 84%) and 70% (95% 
CI = 65% to 76%) for former smokers in the validation and com-
bined sets, respectively. Among current smokers, the true-positive 
rates were 68% (95% CI = 52% to 82%) and 69% (95% CI = 63% 
to 74%) in the validation and combined sets, respectively. We also 
compared the true-positive and true-negative rates for the training, 
validation, and combined datasets; in all instances, the 95% confi-
dence intervals were overlapping, indicating concordance in the 
results among the different sets (data not shown).     

 We used the risk scenarios cited above to illustrate the useful-
ness of the easy-to-compute risk indices in  Table 5  to classify sub-
jects into three risk groups (low, intermediate, or high) for each 
smoking stratum – specifi c model. From the fi rst example above, 
the current smoker’s risk score of 8.96 (=1.85 + 2.13 + 1.47 + 1.51 + 
1 + 1) would place him in the high-risk group for current smokers. 
In the second example, the former smoker’s risk score of 6.54 
(=1.50 + 1.59 + 1.45 + 1 + 1) would classify her in the intermediate 
risk group of former smokers.   

  Discussion 
 We used existing data from a large, ongoing lung cancer case –
  control study to develop and internally validate separate risk 
prediction models for never, former, and current smokers. The 
models are derived from a large case – control study, and, in addi-
tion to smoking variables, they also incorporate other epidemio-
logic and clinical risk factors. Moreover, we constructed 
independent training and validation sets to avoid any potential for 
overfitting of the models. For never smokers, the best model 
included exposure on a regular basis to ETS and family history of 

cancer in two or more first-degree relatives. For former smokers, 
the best model included emphysema, no prior hay fever, dust 
exposure, and family history of cancer in two or more first-degree 
relatives. For current smokers, the best model also included asbes-
tos exposure, and the family history variable was limited to one 
or more first-degree relatives with a smoking-related cancer. We 
computed absolute risks of lung cancer and presented calculations 
for varying risk profiles, demonstrating that a currently smoking 
man with an estimated relative risk close to 9 had an 8.68% 1-year 
absolute risk of lung cancer, compared with a 0.56% annual inci-
dence rate for his age group. Such a degree of risk would justify 
more intensive surveillance and counseling. A similar approach 
could be used to compute 5- and 10-year absolute risks. Finally, we 
have presented a simplified numerical score that can be easily used 
in the clinical setting. 

 Bach et al. ( 33 ) demonstrated that their model ( 4 ) performed 
very well in the validation analysis of three different cohorts. Their 
model incorporates smoking intensity (number of years smoked, 
number of cigarettes smoked per day, years since quitting), sex, and 
asbestos exposure. However, they also cautioned that their model 
is based on a cohort that was assembled and enrolled in the late 
1980s and that it has not been suffi ciently validated in women. 

 All the variables in our models have strong, biologically plausi-
ble etiologic roles in lung cancer that are supported by published 
fi ndings from our own and numerous other case – control and 
cohort studies of lung cancer. Several dusts and fi bers are classifi ed 
by the International Agency for Research on Cancer (IARC) as 
human carcinogens ( 34 ), and we have previously reported that dust 
exposure is statistically signifi cantly associated with lung cancer 
risk in a subset of the population analyzed in the current study ( 35 ). 
Inhalation of particulate irritants such as cigarette smoking or dust 
causes lung infl ammation, which is characterized by tissue destruc-
tion, altered vasculature, airway remodeling, and impaired wound 
healing ( 36 ). An infl ammatory microenvironment, with a continual 
cycle of injury and repair and generation of both reactive oxygen 
and nitrogen species, promotes genotypic and phenotypic changes 
that lead to malignancy ( 37 ). Previous studies ( 38  –  41 ), including 
our own ( 42 ), have reported increased lung cancer risks associated 
with a prior diagnosis of emphysema, although not all studies 
found statistically signifi cant associations. Prospective studies have 
also shown that lung function tests predict future lung cancer risk 
(reviewed in 43). 

 Table 5  .    Assignment of case patients and control subjects to risk score categories  

  Training set Validation set Combined 

 Score * Case patients Control subjects Case patients Control subjects Case patients Control subjects  

  Former smoker, n (%)  
     <5.9 (low) 78 (13.8) 186 (28.1) 74 (38.5) 144 (65.5) 188 (24.9) 368 (41.8) 
     5.9 – 6.9 (medium) 289 (51.2) 372 (56.3) 75 (39.1) 60 (27.3) 372 (49.2) 430 (48.8) 
      ≥ 7 (high) 197 (34.9) 103 (15.6) 43 (22.4) 16 (7.3) 196 (25.9) 83 (9.4) 
 Current smoker, n (%)  
     <6.9 (low) 101 (18.9) 233 (42.3) 35 (19.4) 66 (35.9) 136 (19.0) 286 (38.9) 
     6.9 – 7.9 (medium) 235 (43.9) 241 (43.7) 117 (65.0) 105 (57.1) 371 (51.9) 354 (48.2) 
      ≥ 8 (high) 199 (37.2) 77 (14.0) 28 (15.6) 13 (7.1) 208 (29.1) 95 (12.9)  

  *   Risk scores are calculated by summing the odds ratios from the multivariable model in  Table 3  for any reported risk factor. The cut points for three categories of 
risk for each smoking status category were defined by classification and regression tree analysis.   
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 Another risk factor that was identifi ed in this analysis was no 
prior history of hay fever. We previously reported the existence of 
an inverse association between prior history of hay fever and lung 
cancer risk ( 42 ). However, the association between hay fever and 
lung cancer is still considered controversial, and there are two dis-
tinct and contradictory hypotheses for the association ( 44 ). Studies 
demonstrating an inverse association suggest that the enhanced 
immune surveillance that characterizes hay fever results in stimu-
lated immune systems that are better at detecting and destroy-
ing malignant cells ( 44  –  48 ). Conversely, other studies suggest 
that chronic immune stimulation leads to random pro-oncogenic 
mutations in actively dividing stem cells and an increased risk of 
cancer ( 44 , 49 ). A review of the literature on atopy and cancer risk 
( 50 ) suggests that more studies (n = 11) have reported inverse asso-
ciations than have reported no association (n = 3) or increased risk 
(n = 2). Inverse associations between eczema and other allergic skin 
conditions and lung cancer risk have also been noted ( 46 , 47 , 51 , 52 ). 
Even though the weight of evidence is in favor of an inverse asso-
ciation, we reran our analyses excluding hay fever and noted a 
lower AUC in the model without hay fever compared to the model 
we presented with hay fever. Therefore, although the inclusion of 
hay fever may be controversial, we fi nd it to be useful in lung can-
cer risk prediction. 

 A family history of cancer or lung cancer was also a statistically 
signifi cant predictor of lung cancer risk in this study. A number of 
other studies ( 53  –  63 ) have shown that a fi rst-degree family history 
of lung cancer is associated with lung cancer risk. This association 
could be explained by shared genes, shared smoking patterns, or 
both. In a previous analysis of data from the same population as 
analyzed here, we reported an increased risk of lung and other 
smoking-related cancers among fi rst-degree relatives of lung 
cancer patients after adjustment for smoking behaviors in both 
patients and relatives ( 64 ), thereby providing evidence for the con-
tribution of both exposure and genetic susceptibility to risk. 

 All variables included in these predictive models are easily 
ascertained by a health care provider. Risk prediction models have 
two applications: to help design prevention trials and to discrimi-
nate among individuals of different risks. For example, a preven-
tion trial that enrolls only high-risk smokers or former smokers 
could achieve statistical power equivalent to a trial that enrolls 
all smokers or former smokers, but requiring a larger trial size or 
longer duration. As far as individual risk prediction goes, for any 
smoker or former smoker, there is substantial interindividual vari-
ability in susceptibility to tobacco carcinogenesis. In this context, 
the discriminatory ability of a risk prediction model (as quantifi ed 
by calculating the concordance statistic) is most important for 
clinical decision making ( 65 ). Our concordance statistics were 
modest, in the upper 0.6 range, although they are in line with those 
of other prediction models. For example, Cronin et al. ( 66 ) 
assessed the validity of the Bach et al. (4) model using the placebo 
arm of another chemoprevention trial with different entry criteria 
and surveillance regimen and found that the overall concordance 
index was 0.69, with age-specifi c concordance indices ranging 
from 0.57 to 0.77. Likewise, validation of the Gail model showed 
similarly modest predictive accuracy, with a concordance index of 
0.67, 95% CI = 0.65 to 0.68 ( 13 ). Chen et al. ( 67 ) reported an age-
specifi c concordance for the Gail model of only 0.596, compared 

with 0.643 with addition of mammographic density to improve the 
discriminatory power of the model. Another recent breast valida-
tion study reported concordance statistics of 0.631 and 0.624 for 
premenopausal and postmenopausal women, respectively (68). 
The discriminatory accuracy for models to predict melanoma has 
ranged from 0.62 ( 17 ) to 0.70 for women 50 years and older to 0.80 
for men aged 20 – 49 years ( 18 ). An ovarian cancer risk model had a 
concordance statistic of 0.60 ( 19 ). As Cronin et al. ( 66 ) point out, 
the relatively low discriminatory ability of these models refl ects the 
inherent challenges in predicting risk, even when there are well-
established and quantifi able risk factors such as with lung cancer. 

 This study has several limitations. Our prediction tool is based 
on relative risk estimates that were derived from a single, albeit 
large, case – control study, in which the case patients were recruited 
from a single tertiary cancer center and the control group was not 
population based. We were restricted to this design because our 
case – control study mandates enrollment of patients before therapy 
is initiated. Likewise, we acknowledge the tradeoff we have made 
between classical epidemiologic rigor and feasibility in the selec-
tion of control subjects. Nevertheless, because M. D. Anderson 
Cancer Center serves as a referral center for many cancer patients 
from the Kelsey – Seybold system, the case patients are likely to 
come from a population base similar to that of the control subjects, 
especially because all participants had to be residents of Texas. 
Another limitation is the fact that we only used data from non-
Hispanic whites to construct the models. Therefore, the models 
may not be applicable to other ethnic groups. 

 Other potential limitations include recall and reporting bias, 
especially of prior medical conditions. Any misclassifi cation of 
self-reported physician-diagnosed conditions could be a concern 
because we did not validate the medical conditions. However, 
some of the important risk factors for lung cancer, such as infl am-
matory processes, are not well known, and thus, differential recall 
between patients and control subjects is unlikely. Furthermore, 
our prevalence data for hay fever in control subjects are consistent 
with national statistics. Selection bias is a possibility; it could be 
argued that participants who declined to participate had different 
prevalence rates of lung diseases. 

 Finally, our study population was matched on age and smoking 
status, and so the overwhelming contribution of age and smoking 
to lung cancer risk were somewhat masked. However, we have 
attempted to incorporate smoking status into our absolute risk 
estimates by adjusting baseline incidence rates to account for 
smoking status. External validation of our models in independent 
populations remains an important next step. 

 The purpose of this analysis was to create a parsimonious model 
for assessing lung cancer risk with a minimal number of risk pre-
dictors that is realistic to use in clinical practice and to validate the 
model in an independent sample from the same population. In our 
experience, patients are agreeable to completing health question-
naires, either self-administered or administered by personal inter-
view. We plan next to incorporate pathway-based gene variation 
data in the model to acknowledge the important contribution of 
genetic susceptibility to lung cancer risk. Adding such data is likely 
to further improve the sensitivity and specifi city of the models, 
although incorporating genetic data may not be practicable for 
community-based settings.     
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