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Abstract

Time sequence data relating to users, such as medical histories and mobility data, are

good candidates for data mining, but often contain highly sensitive information.

Different methods in privacy-preserving data publishing are utilised to release such

private data so that individual records in the released data cannot be re-linked to

specific users with a high degree of certainty. These methods provide theoretical

worst-case privacy risks as measures of the privacy protection that they offer. However,

often with many real-world data the worst-case scenario is too pessimistic and does

not provide a realistic view of the privacy risks: the real probability of re-identification is

often much lower than the theoretical worst-case risk. In this paper, we propose a

novel empirical risk model for privacy which, in relation to the cost of privacy attacks,

demonstrates better the practical risks associated with a privacy preserving data release.

We show detailed evaluation of the proposed risk model by using k-anonymised

real-world mobility data and then, we show how the empirical evaluation of the

privacy risk has a different trend in synthetic data describing randommovements.
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Introduction

The big data originating from the digital breadcrumbs of human activities, sensed as

a by-product of the ICT systems, record different dimensions of human social life.

These data describing human activities are valuable assets for data mining and big

data analytics and their availability enables a new generation of personalised intel-

ligent services. Most of these data are of sequential nature, such as time-stamped

transactions, users’ medical histories and trajectories. They describe sequences of

events or users’ actions where the timestamps make the temporal sequentiality of

the events powerful sources of information. Unfortunately, such information often

contain sensitive information that are protected under the legal frameworks for user

data protection. Thus, when such data has to be released to any third party for anal-

ysis, privacy-preserving mechanisms are utilised to de-link individual records from

their associated users. Privacy-preserving data publishing (PPDP) aims at preserving

statistical properties of the data while removing the details that can help the re-

identification of users. Any PPDP method provides a worst-case probabilistic risk of

user re-identification as a measure for how safe the anonymised data is. In this paper,

we focus mostly on a specific PPDP method – k-anonymity.

A well-known anonymisation model typically used for PPDP is the k-anonymity

model [1, 2]. It states that in the worst-case, where the attacker has knowledge of the
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full set of quasi-identifiers chosen at the time of data release, the attacker will find

either zero or at least k (and no less) users in a k-anonymised dataset with the same

values of the quasi-identifier attributes. Thus, the re-identification probability for any

single user, in the worst-case, is equal to 1/k. In general, a quasi-identifier is a piece

of information (e.g., age of a person), which by itself is not a unique identifier, but

can be combined with other quasi-identifiers to identify a unique entity. The higher

the value of k, the lower the probability of any attack succeeding. However, at the

same time the higher the value of k, the lower the utility of the data where the utility

relates how well the anonymised data represents the original one. This worst-case

scenario hardly gives us the view of the realistic re-identification probabilities, which

are often much lower than 1/k. We envisage that the worst-case guarantee, by itself,

is not sufficient to help the user understand the risks; and it is also not enough to

communicate in a legal language the risks associated with any of these anonymisation

methods.

In this paper, we propose an empirical risk model for privacy based on k-anonymous

data release. We also discuss the relation of risk to the cost of any attack on privacy

as well as the utility of the data. We validate our model against experimental car

trajectory data gathered in the Italian cities of Pisa and Florence. Our experiments

highlight that the empirical evaluation of the protection guaranteed by the algorithm

of anonymisation on real-world data is much higher than the theoretical protection.

This happens because in real life the user movements are influenced by a lot of exter-

nal constraints such as the existence of one or more streets, the direction of a specific

street, the traffic intensity, and so on. As an example, if in a specific area we have

only one street for going from the place A to the place B all people will cross the same

street and will produce similar trajectory data. This helps the result of the empiri-

cal privacy protection evaluation. To prove this fact we also generate some synthetic

movement data without using any of those constraints and as expected we found that

in this kind of data the empirical privacy protection is lower than that one on real

data and the data quality decreases. We also discuss how the empirical risk model

can be adapted to semantic trajectories anonymized by considering the privacy model

c-safety [3].

This paper is an extension of our earlier work presented at an international con-

ference in 2014, the proceedings of which were published by Springer. In particular,

this paper describes an extension of our risk model for k-anonymity applied to c-

safety, which is a framework for anonymisation of semantic trajectories. We have also

described the risk analysis on null models.

The rest of the paper is organised as follows. In Sections “From theoretical guar-

antees to an empirical risk model for k-anonymity”, “Data utility measures: cov-

erage and precision” and “Privacy-by-design for data-driven services”, we propose

our empirical risk model with a running example based on k-anonymous trajectory

data the inadequacy of worst-case risk evaluation. We describe an extension of this

risk model to c-safety in Section “An empirical risk model for c-safety”. We vali-

date our empirical model by tests on real world trajectory data and synthetic data

in Section “Experimental validation” followed by the state-of-the-art related to the

information privacy and its measurements in Section “The state-of-the-art” before

concluding the paper in Section “Conclusions”.
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From theoretical guarantees to an empirical risk model for k-anonymity

Preliminaries: trajectory data

A trajectory dataset is a collection of trajectories DT = {t1, t2, . . . , tm}. A trajectory

t = 〈x1, y1, ts1〉, . . . , 〈xn, yn, tsn〉, is a sequence of spatio-temporal points, i.e., triples

〈xi, yi, tsi〉, where (xi, yi) are points in R
2, i.e., spatial coordinates, and tsi (i = 1 . . . n)

denotes a timestamp such that ∀1 < i < n tsi < tsi+1. Intuitively, each triple

〈xi, yi, tsi〉 indicates that the object is in the position (xi, yi) at time tsi. A trajectory

t′ = 〈x′
1, y

′
1, ts

′
1〉, . . . , 〈x

′
m, y

′
m, ts

′
m〉 is a sub-trajectory of t (t′ � t) if there exist integers

1 < i1 < . . . < im ≤ n such that ∀1 ≤ j ≤ m 〈x′
j, y

′
j, ts

′
j〉 = 〈xij , yij , tsij〉. We refer to the

number of trajectories in DT containing a sub-trajectory t′ as support of t′ and denote

it by NDT (t′) =
∣

∣{t ∈ DT |t′ � t}
∣

∣.

The k-anonymity framework for trajectory data

A well known method for anonymisation of data before release is k-anonymity [2].

The k-anonymity model was also studied in the context of trajectory data [4–6].

Given an input dataset DT ⊆ T of trajectories, the objective of the data release is

to transform DT into some k-anonymised form D
′
T . Without this transformation, the

publication of the original data can put at risk the privacy of individuals represented

in the data. Indeed, an intruder who gains access to the anonymous dataset may

possess some background knowledge allowing him/her to conduct attacks that may

enable inferences on the dataset. We refer to any such intruders as an attacker. An

attacker may know a sub-trajectory of the trajectory of some specific person and could

use this information to infer the complete trajectory of the same person from the

released dataset. Given the attacker’s background knowledge of partial trajectories,

a k-anonymous version has to guarantee that the re-identification probability of the

whole trajectory within the released dataset has to be at most 1
k
. If we denote the

probability of re-identification of the trajectories as Pr(re_id|t′) based on the trajectory

t′ known to the attacker then the theoretical k-anonymity framework implies that

∀t′ ∈ T , Pr(re_id|t′) ≤ 1
k
. The parameter k is a given threshold that reflects the

expected level of privacy.

Note that, given a trajectory dataset DT and an anonymity threshold k > 1 we can

have trajectories with a support lower than k (NDT (t′) < k) and trajectories that are

frequent at least k times (NDT (t′) ≥ k). The first type of trajectories are called k-

harmful because their probabilities of re-identification are greater than 1
k
. In [6], the

authors show that if a k-anonymisation method returns a dataset D′
T by guaranteeing

that for each k-harmful trajectory t′ in the original dataset, t′ ∈ DT , either ND
′
T
(t′) = 0

or ND
′
T
(t′) ≥ k, then we have the property that for any trajectory t known by an

attacker (harmful or not), Pr(re_id|t′) ≤ 1
k
.

This fact is easy to verify. Indeed, given a k-anonymous version D
′
T of a trajectory

dataset DT that satisfies the above condition, and a trajectory t known by the attacker

two cases can arise:

- t is k-harmful in DT : in this case we can have either, ND
′
T
(t) = 0, which implies

Pr(re_id|t) = 0, or ND
′
T
(t′) ≥ k, which implies Pr(re_id|t) = 1

N
D

′
T

(t) ≤ 1
k
.

- t is not k-harmful in DT : in this case we have NDT (t) = F ≥ k and t can have an

arbitrary support in D
′
T . If ND′

T
(t) = 0 or ND′

T
(t) ≥ F, then the same reasoning as in
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the previous case applies. If 0 < ND′
T
(t) < F then the probability to re-identify a user

to the trajectory t is the probability that user is present in D
′
T times the probability

of picking that user in D
′
T , i.e.,

N
D′

T
(t)

F × 1
N
D′

T
(t) = 1

F ≤ 1
k
.

The aforementioned mathematical condition that any k-anonymous dataset has to

satisfy, is explained as follows. Given the attacker’s knowledge of partial trajectories

that are k-harmful, i.e., occurring only a few times in the dataset, they can enable

a few specific complete trajectories to be selected, and thus the probability that the

sequence linking attack succeeds is very high. Therefore, there must be at least k

trajectories in the anonymised dataset matching the attacker’s knowledge. Alterna-

tively, there can be no trajectories in the anonymised dataset matching the attacker’s

knowledge. If the attacker knows a sub-trajectory occurring many times (at least k

times) then this means that it is compatible with too many subjects and this reduces

the probability of a successful attack. If the partially observed trajectories lead to no

match then it is equivalent to saying that the partially observed trajectories could be

in any other dataset except from the one under attack, thus leading to an infinitely

large search space. This is, somewhat, equivalent to k → ∞. Thus, in this case,

limk→∞ Pr(re_id|t′) = 0.

This is the theoretical worst-case guarantee of the probability of re-identification of

a k-anonymised dataset. However, we shall see in the following sub-section that this

does not give us a complete picture of the probabilities of re-identification.

Why is the theoretical worst-case guarantee inadequate?

In order to explain the inadequacies of the theoretical worst-case guarantee, let us

consider a toy example of trajectories as shown in Fig. 1. Let DT be the exam-

ple dataset. We can choose, as an example, a value of k = 3 and obtain the

3-anonymous dataset D′
T , for which the theoretical worst-case guarantee is that ∀t′,

Pr(re_id|t′) ≤ 1
3
.

Figure 2 illustrates the probability that a given observed trajectory (i.e., attacker’s

knowledge) can be uniquely identified in the anonymised dataset, while Fig. 3

Fig. 1 ConvertingDT to k-anonymisedD′
T with k = 3. An example of k = 3 anonymisation



Basu et al. Journal of Trust Management  (2015) 2:9 Page 5 of 23

Fig. 2 Probability distribution of re-identification. The actual probabilities of re-identification and the

corresponding probability distribution

shows the cumulative distributions of probabilities with h denoting the num-

ber of observations in the attacker’s knowledge. We notice in Fig. 2 and Fig. 3

that the actual probability of re-identification is often much lower than the the-

oretical worst-case scenario, but this fact is not demonstrated by the theoretical

guarantee.

Fig. 3 Representative cumulative density distribution for attacks in the toy example. The cumulative

distribution corresponding to the probability distribution in Fig. 2
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Empirical risk model for anonymised trajectory data

In the last sub-section, we described that the theoretical worst-case guarantee does

not demonstrate the distribution of attack probabilities. The worst-case scenario also

does not illustrate the fact that a large majority of the attacks have far lower proba-

bilities of success than the worst-case guarantee. Thus, we propose an empirical risk

model for anonymised trajectory data. If t′ represents attacker’s knowledge; h = |t′|

denotes the number of observations in the attacker’s knowledge then the intent is

to approximate a probability density and a cumulative distribution of Pr(re_id|t′) for

each value of h. This can be achieved by iterating over every value of h = 1, . . . , M

where M is the length of the longest trajectory in DT . For each value of h, we con-

sider all the sub-trajectories t′ ∈ DT of length h and compute the probability of

re-identification Pr(re_id|t′) as described in Algorithm 1. In particular, for each value

of h a further iteration can be run over each value of t′ of length h, in which we

compute ND
′
T
(t′), NDT (t′) and the probability of re-identification by following the rea-

soning described in Section “The k-anonymity framework for trajectory data” for the

computation of this probability. Algorithm 1 presents the pseudocode of the attack

simulation.

Algorithm 1 Attack simulation

Require: The k-anonymised dataset D
′
T , the original dataset DT , the set of

trajectories for the attacks BKT and anonymity threshold k.

1: for h = 1, . . . , M where M is the length of the longest trajectory in DT do

2: for t′ of length h in BKT do

3: N(t′)DT ← |{t ∈ DT |t′ � t}|.

4: N(t′)D′
T

← |{t ∈ D
′
T |t′ � t}|.

5: if N(t′)DT ≥ k and N(t′)D′
T

≤ N(t′)DT then

6: Pr(re_id|t′) ← 1/N(t′)DT .

7: else

8: Pr(re_id|t′) ← 1/N(t′)D′
T
.

9: end if

10: end for

11: end for

12: return Cumulative Distribution of Pr(re_id|t′) for all h.

The advantages of this approach is that this model supports arguments such as:

(a) “98 % of the attacks have at most 10−5 probability of success”; and (b) “only

0.001 % of the attacks have a probability close to 1
k
”. The disadvantages of this model

are: (a) a separate distribution plot is necessary for each value of h; and (b) the

probability of re-identification increases with the increase in h. The illustration in

Fig. 3 demonstrates the aforementioned advantages and disadvantages of the risk

model.

For the simulation of the attack we need to select a set of trajectories BKT from

the original dataset of trajectories. The optimal solution would be to take the

all possible sub-trajectories in the original dataset and compute the probability of
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re-identification. Since the set of attack trajectories can be quite large, in order to

avoid a combinatorial explosion, two strategies can be adopted. First, we can extract

from the original dataset of trajectories a random subset of trajectories that we can

use as background knowledge for the attacks to estimate the distributions. In particu-

lar, for each each trajectory length value h we extract a random subset of trajectories

BKh
T and then, the union of all BKh

T represents the global background knowledge BKT

used in the attack simulation.

Secondly, we can use a prefix tree to represent in a compact way the original

dataset and then, by incrementally visiting the tree we can enumerate all the distinct

sequences for using them as an adversary’s background knowledge.

Risk versus cost

One of the most important open problems that makes the communication between

the experts in law and in computer science hard is how to evaluate whether an indi-

vidual is identifiable or not, i.e., the evaluation of privacy risks for an individual.

Usually, the main legal references to this problem suggests to measure the difficulty

in re-identifying the data subject in terms of “time and manpower”. This definition

is surely suitable for traditional computer security problems. As an example, we can

measure the difficulty to decrypt a message without the proper key in terms of how

much time we need to try all possible keys i.e., the time and resources required by

the so-called brute force attack. In the field of privacy the computer science literature

shows that the key factor affecting the difficulty to re-identify an anonymous data is

the background knowledge available to the adversary. Thus, we should consider the

difficulty to acquire the knowledge that enables the attack to infer some sensitive

information. If we are able to measure the cost of the acquisition of the background

knowledge then we can provide a single risk indicator that takes into consideration

both the probability of success of an attack and its cost. Combining the two factors

and providing one single value could help the communication of a specific privacy

risk in the legal language.

We propose three methods for measuring the cost of an attack and a way to combine

it with the probability of re-identification. We also propose to normalise the proba-

bility of re-identification Pr(re_id|t′) with the cost of gaining the knowledge of t′ by

the attacker. The longer the t′, the higher the cost to acquire such knowledge. Thus,

Pr(t′) = Pr(re_id|t′)/C(t′) where C(t′) is the cost function proportional to the length

of t′. We can then estimate the distribution of Pr(t′) over all t′ to obtain a unique

combined measurement of risk over all possible attacks.

The cost function C(t′) can be derived from various alternatives. (1) One option

would be to use a sub-linear cost function akin to that incurred in machine-operated

sensing. The initial costs of setting up the sensing equipment are high but subsequent

observations are cheaper and cheaper. Thus, C(t′) = 1 + log(|t′|) is a good approxi-

mation. (2) Another option is a linear cost where a spying service is paid a fixed fee

per observation, leading to C(t′) = α|t′|. (3) A third alternative is a super-linear cost

where the attacker directly invests time and resources to sensing, thus making the

cost function grow in some exponential fashion, such as C(t′) = e−β|t′|.

These cost models are not exhaustive. There can be other factors, beyond the scope

of this paper, that can have perceptible effects on the costs of attacks.
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An empirical risk model for c-safety

In this section we discuss how it is possible to adapt the empirical risk model, pre-

sented above, to semantic trajectories anonymized by considering the privacy model

c-safety introduced in [3].

Semantic trajectories

In the previous sections we considered a trajectory as the spatio-temporal evolution of

the position of a moving entity that is represented as a discrete sequence of points. An

interpolation function between two consecutive points approximates the movements

between two sample points. Recently, in [7] a new concept of trajectory has been

introduced for reasoning on trajectories from a semantic point of view, called semantic

trajectory, that based on the notion of stops and moves. Stops are the important parts

of a trajectory where the moving object has stayed for a minimal amount of time.

They correspond to the set of x, y, t points of a trajectory which are important from

an application point of view. Stops correspond to places and can be different types

of geographic locations as hotels, restaurants, museums, etc; or different instances of

geographic places, like Ibis Hotel, Louvre Museum, and so on. Moves are the sub-

trajectories describing the movements between two consecutive stops. Based on the

concept of stops and moves the user can enrich trajectories with semantic information

according to the application domain [8].

Semantic Trajectory Given a set of important places I, a semantic trajectory T =

p1, p2, . . . , pn with pi ∈ I is a temporally ordered sequence of important places, that

the moving object has visited.

Figure 4 (2) illustrates the concept of semantic trajectory for the trajectory shown

in Fig. 4 (1). In the semantic trajectory the moving object first was at home (stop

1), then he went to work (stop 2), later he went to a shopping center (stop 3), and

finally the moving object went to the gym (stop 4).

The important parts of the trajectories (stops) are application dependent, and are

not known a priori, therefore they have to be computed. Different methods have been

proposed for computing important parts of trajectories [9–11].

The C-safetymodel for semantic trajectories

In [3] authors provide a framework that, given a dataset of semantic trajectories,

generates an anonymous semantic trajectory dataset. This new dataset guarantees that

Fig. 4 An example trajectory and its semantic equivalence. Example of Semantic Trajectory
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it is not possible to infer the identity of a user and the visited sensitive places with a

probability greater than a fixed threshold, set by the data owner. The method is based

on the generalization, driven by a place taxonomy, of the places visited by a user.

A taxonomy of places of interest represents the semantic hierarchy of geographical

places of interest. The set of stop places obtained from the computation of semantic

trajectories are the leaves of taxonomy. In general, each concept in the taxonomy

describes the semantic categories of the geographical objects of interest for a given

application domain. For example, we have that Restaurant “Da Mario” is a kind of

Restaurant which is a kind of Entertainment. Figure 5 depicts an example of the

taxonomy of places of interest in a city. Here, all the places represented by red nodes

are sensitive locations. Indeed, to avoid the identification of sensitive places visited by

a user, the taxonomy specifies which places are sensitive and which are non-sensitive.

A place is considered sensitive when it allows to infer personal information about

the person who has stopped there. For example, a stop at an oncology clinic may indi-

cate that the user has some health problem. Other places (such as parks, restaurants,

cinemas, etc) are considered as quasi-identifiers. Note that, any non-sensitive place is

assumed to be a quasi-identifier. Given a dataset of semantic trajectories DT and the

privacy places taxonomy Ptax describing the categories of the geographical objects of

interest for an application domain, the goal of the data release is to transform DT in

its anonymous version D′
T by using a method based on the generalization of places

driven by the taxonomy.

An attacker may access the dataset D′
T and may know the privacy place taxonomy

Ptax, the quasi-identifier place sequence SQ visited by a specific person and could

use this information to infer the sensitive places visited by a that person. Given the

attacker’s background knowledge of quasi-identifier places SQ and c − safe version of

the semantic trajectories has to guarantee that for each set of sensitive places S the

Pr(S|SQ) ≤ c with c ∈ [0, 1]. Here, the parameter c is a given threshold that reflects

the expected level of privacy.

To guarantee c − safety the approach proposed in [3] generates by generalization

(driven by the taxonomy) groups of m trajectories having the same sequence of quasi-

identifier places and guaranteeing that for each sensitive place Pr(si|SQ) ≤ c.

Empirical risk model for c-safe semantic trajectories

As in the case of k-anonymity also in this case actual probability of inferring an exact

sensitive place is often much lower than the theoretical worst-case scenario. This

Fig. 5 An example taxonomy of places of interest. Example of Place Taxonomy
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is due to the fact that the attacker could knows only a subset of the user quasi-

identifier places and so, in the c-safe dataset he could find more than one group

with m trajectories matching the known quasi-identifier places. Since, each group

guarantees that for each sensitive place the probability of inference is at most c then

could happen that the protection becomes higher. In the following example we show

this point.

Suppose that the privacy transformation create the following two groups of seman-

tic trajectories generalized by the taxonomy in Fig. 5. The transformed dataset is

0.66-safe, that means that for each sensitive place the disclosure probability is at most

equal to 0.66. Computing the disclosure probability for different size and composition

of quasi-identifiers SQ we have that only the sensitive place C1 we have the worst-case

value 0.66, in fact assuming that the attacker knows SQ = Station,Restaurant,Park

Pr(C1|SQ) = 2
3

= 0.66. In the other cases the guarantees is greater that 0.66. In

particular, we can note that when we consider the background knowledge SQ =

Station,Restaurant the guarantee becomes higher. In fact, we decrease also Pr(C1|SQ)

that becomes 0.5.

We propose an empirical risk model also for c-safe datasets of semantic trajectories.

In this case, the intent of the attacker is to approximate the cumulative distribution

of the disclosure probability of sensitive places in a datasets Pr(s|SQ), knowing a

sequence of quasi-identifiers SQ with length h. This can be achieved by iterating over

every value of h = 1, . . . ,M where M is the length of the longest quasi-identifier

sequence in the background knowledge BKT . The idea is that for each h value, we

select the group of semantic trajectories in D′
T containing the sequence of quasi-

identifier places known by the attacker, called G. Then, for each sensitive place s in

the semantic trajectories in G we compute the disclosure probability Pr(s|S′
Q) and

compute the cumulative distribution (Algorithm 2).

Algorithm 2 Attack simulation for c-safe semantic trajectories

Require: c-safe dataset D′
T , the set of semantic trajectories for the attacks BKT (only

quasi-identifier places), the privacy threshold c.

1: for h = 1, . . . ,M where M is the length of the longest sequence of quasi-identifiers

in BKT . do

2: for S′
Q ≤ SQ s.t. SQ ∈ BKT and S′

Q has length h do

3: G ← {t ∈ D′
T |S′

Q � t}.

4: for sensitive place s in the group of trajectories G do

5: P ← Pr(s|S′
Q).

6: end for

7: end for

8: end for

9: return Cumulative Distribution of P for all h.

Data utility measures: coverage and precision

Alongside the risk versus cost estimations, it is also important to identify the usability

of the anonymised data and show the relation between usability and privacy risk.

In this context, we introduce two usability measures: coverage and precision. This is
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visually illustrated in Fig. 6. While a trajectory can consist of multiple hops, it can also

be seen as a chain of smaller trajectories, each of which just contains the start point

(the origin) and the end point (the destination). We call these smaller trajectories as

ODpairs (or, origin-destination pairs). Given a k-anonymisation function that maps

DT into D
′
T , we define coverage:

coverage = |ODpairs(DT ) ∩ ODpairs(D′
T )|/|ODpairs(DT )| (1)

and precision as:

precision = |ODpairs(DT ) ∩ ODpairs(D′
T )|/|ODpairs(D′

T )| (2)

The coverage versus risk for a given risk threshold can be estimated as follows.

Given an anonymised dataset D′
T and a specified probability threshold p where 0 ≤

p ≤ 1
k
, all trips t containing attack based on t′ with Pr(re_id|t′) > p can be retrieved

as:

RiskyTrips(p) = {t ∈ D
′
T |∃ t′ : Pr(re_id|t′) > p and t′ < t} (3)

Thus, the coverage of the dataset D′
T with respect to the risk threshold p is defined

as follows

coverage = |ODpairs(D′
T ) \ ODpairs(RiskyTrips(p))|/|ODpairs(D′

T )| (4)

The characteristics of the mobility data that are preserved with high fidelity if we

measure a high coverage rate are: (a) presence (of users in locations), (b) flows (i.e.,

the number of trips between any origin-destination pair), and (c) overall distance

travelled in all trips.

The characteristics that are not necessarily preserved include the properties of

sequences of individual trips, e.g., distribution of trip length and routine trips.

Privacy-by-design for data-driven services

The privacy-by-design model for privacy and data protection has been recognised in

legislation in the last few years years. Privacy-by-design is an approach to protect

privacy by inscribing it into the design specifications of information technologies,

accountable business practices, and networked infrastructures, from the very start.

It was developed by Ontario’s Information and Privacy Commissioner, Dr. Ann

Cavoukian, in the 1990s.

Fig. 6 Diagrammatic representation of coverage and precision. Coverage and precision illustrated
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Privacy officials in Europe and the United States are embracing this paradigm as

never before. In Europe, in the comprehensive reform of the data protection rules,

proposed on January 25, 2012 by the EC, the new data protection legal framework

introduces, with respect to the Directive 95/46/EC, the reference to data protection

by design and by default (Article 23 of the Proposal for a Regulation and Article 19

of the Proposal for a Directive). These articles compel the controller to “implement

appropriate technical and organizational measures and procedures in such a way that

the processing will meet the requirements of this Regulation and ensure the protection

of the rights of the data subject.” and to “implement mechanisms for ensuring that,

by default, only those personal data are processed which are necessary for each specific

purpose of the processing ...”.

In [12] Monreale et al. define a methodology for applying the privacy-by-design

principle in the context of data analytics. This work states that one of the most

important points to consider in technological frameworks that offer the by-design

privacy protection is the trade-off between privacy guarantees and the data quality.

The model presented in above sections provides a methodology for the evalua-

tion of this trade-off. Indeed, the availability of this model allows us to define a

methodology of risk evaluation of datasets that have to be used for specific services;

and this methodology allows us to establish a well-defined relation between the risks

of re-identification of any individual represented in the data and the usability of the

anonymous data for the specified services.

In Fig. 7 we depict this methodology that is composed of three phases: (a) data

preparation, (b) data anonymisation, and (c) risk evaluation.

The cycle, illustrated in Fig. 7 needs to be repeated with respect to the different

dimensions (e.g., spatial and temporal granularity, refresh window) obtaining a col-

lection of anonymised datasets D
′i
T with associated risks Ri. Given a class of services

that are to be facilitated by the published data, the anonymised dataset D
′i
T will

be chosen for which the associated risk Ri is minimal with acceptable utility of the

published data.

Fig. 7 Refining privacy and risk until the risk is minimal for a certain utility of the data. The privacy by design

paradigm
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Experimental validation

In this section we present a detailed evaluation of the proposed risk model by using

real-world mobility data. We used a large dataset of real GPS traces from vehicles, col-

lected during the period between May 1 and May 31, 2011. The dataset contains the

GPS traces collected in the geographical areas around Pisa and Florence, in central

Italy, for around 18,800 vehicles making up around 46,000 trips. For our simulations,

we extracted from the whole dataset the data on May 10, 2011 that contained 8,330

participating users and 15,345 trajectories shown in Fig. 8a.

To begin with, the privacy-sensitive locations captured through GPS readings were

obfuscated using Voronoi tessellation [13]. Each trajectory is then translated into

a sequence of locations represented by the centers of the Voronoi tessellation. In

Fig. 8b those locations are shown and a visual metaphor of the existing ODpairs in the

data is depicted representing the existing connection between the locations (almost

a complete graph). Moreover, the data was further subjected to k-anonymisation for

k = 3, k = 5, and k = 10 by using the method proposed in [6]. Before applying this

anonymisation, we subjected the trajectory data to two further steps: generalisation

of temporal information and transformation of trajectories. The first step – generali-

sation of the temporal information associated with each location visited by the user

– consisted of two levels of generalisations: one that contains sequences of Voronoi

areas where the time associated with each location is generalized at an hour-level

(hour-level data) and another one where the time is at a day-level (day-level data).

Figure 9 illustrates an example of a user trajectory observed at an hour-level and at

the day-level.

The second step consisted of the transformation of the generalised trajectories into

sequences of ODpairs; in particular, we divided the whole user sequence into smaller

sequences and for each small sequence we extracted its origin and its destination.

In our evaluation we performed two different analyses. First, we applied our risk

model showing the evaluation of the privacy risks obtained from the two anonymised

datasets described above, and then, we measured the data utility in terms of precision

and coverage described in Section “Data utility measures: coverage and precision”.

Risk analysis

In order to evaluate the privacy risks on the two anonymised trajectory datasets

we applied the methodology described in Section “Empirical risk model for

anonymised trajectory data”. Therefore, we estimated the cumulative distribution of

Fig. 8 User trajectory data in the different tessellated areas. An example of user trajectory through the

different tessellated areas observed at an hour-level and at a day-level
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Fig. 9 User trajectory illustrated. An illustration of user trajectory through the different tessellated areas

observed at an hour-level and at a day-level

the probability of re-identification for each value of h = |t′|, which denotes the num-

ber of observations in the attacker’s knowledge. We simulated a set of attacks by

randomly selecting from the original database a subset of trajectories and using them

as background knowledge. In particular, in our experiment for each h, we drew from

the original database, 10,000 sub-sequences with length h. We considered h = 1, . . . , 5

because the longest sequence in the original data has length 5. Figure 10 shows the

results obtained with this attack simulation. The first column of images contains the

plots related to the cumulative distributions related to the hour-level dataset while the

second column contains the results obtained from the day-level dataset.

Our analyses highlight that the empirical protection guaranteed by the algorithm

of anonymisation is much higher than the theoretical protection. Only few attacks

have a protection very close to 1
k
. We observe as an example that when the day-level

dataset is anonymised with k = 5 our empirical risk analysis shows that 90 % of the

attacks have at most a risk of re-identification of 1
10

. The findings are similar in the

other anonymised datasets. Moreover, we note that when the number of observations

increases too much the probability of re-identification becomes very low and often

zero because these sequences are infrequent in the original database. These long

sequences no longer exist in the published database since the process of anonymisa-

tion tends to eliminate the outliers (i.e., sequences with a very low frequency). This

effect is more evident in the case of the hour-level data.

We also estimated the cumulative distribution of the re-identification prob-

ability normalised with the cost of obtaining the background knowledge (see

Section “Empirical risk model for anonymised trajectory data”). Figure 11 depicts the

cumulative distribution of our single risk indicator obtained considering a sub-linear

cost for the acquisition of the attacker’s knowledge. We observe that if we assign a

cost to the attack then the protection guaranteed is higher; thus allowing us to express

in a very simple way the risk to the individuals if the whole dataset is published.

Indeed, as an example Fig. 11b shows that when the day-level dataset is anonymised

with k = 5 the probability of re-identification considering also the attack cost is at

most about 0.025
(

1
20

)

for 90 % of the attacks.

Data quality evaluation

In our experiment we also evaluated the data quality by measuring the precision

and the coverage defined above. Table 1(a) shows these two measures for the
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Fig. 10 Cumulative distribution of the re-identification probability

Fig. 11 Risk analysis with background knowledge cost
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Table 1 Precision versus coverage of the k-anonymised experimental data

k Precision Coverage

(a) Time: hour-level

3 1.00 0.27

5 1.00 0.15

10 1.00 0.04

(b) Time: day-level

3 0.98 0.87

5 0.97 0.83

10 0.96 0.72

k-anonymous versions of the hour-level dataset while Table 1(b) shows the same

information for the day-level dataset.

As expected the anonymisation preserves very well the precision of the ODpairs;

this means that the data transformation does not introduce noise, while it tends to

suppress some ODpairs and this affects the data coverage. This behaviour is more

evident in the hour-level dataset. Lastly, we also analysed how the coverage changes

by varying the risk in the dataset. Figure 12 outlines the results. In line with our

expectations, the coverage increases with the privacy risk. However, we observe that

with a risk of re-identification of 0.1 we can have a coverage of about 90 % in the

hour-level dataset anonymized with k = 5. The situation improves a lot in the day-

level dataset. Thus, this is a good tool for managing the trade-off between privacy and

data utility.

Another way to evaluate the real effect of the data quality is a visual representation

of the ODpairs graph. Figure 13 shows how the graphs degrade increasing the k

parameter considering the hour-level and day-level aggregations.

Here, green locations represent vertices of the graph having both in- and out-going

edges, on the contrary blue and orange locations represent respectively vertices with

only out-going and in-going edges. In the original data all the locations are green and

Fig. 12 Coverage with respect to privacy risk
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Fig. 13 ODpairs graph

the ODpairs graph is almost complete (see Fig. 8b) but in the case of hour-level even

with k = 3 some of the nodes lose their connections becoming blue and orange and

the relative graph becomes less dense. Using k = 10 the data is completely destroyed.

At day-level the situation changes completely and with all the values of k the data

remains similar to the original one: the locations do not disappear and the graph

remain almost complete.

Risk analysis on null model

The risk analysis results shown above highlight that the empirical protection guar-

anteed by the algorithm of anonymisation is much higher than the theoretical

protection. Our claim is that this happens because real human data such as move-

ment data, describe the behavior of users who during the daily activity have to respect

specific constraints that depend on different factors and this can bring to generate

data describing similar behavior. Example of constraints are streets network topology

or traffic during rush hours. All these factors constraint people movements gener-

ating trajectories which are similar and then with an high frequency. To prove this

we generated a set of random null models starting from hypothetical locations and

users moving without any constraint. Applying the empirical risk model to these null

models we should have two main effects: first, the empirical protection guaranteed

by the algorithm of anonymisation should not be so high like in the real-data and,

second, the data quality after the anonymisation should decay because the algorithm

hide more information to guaranteed the same level of privacy. The null models used

consist in a set of randomly generated trajectories over a set of pseudo locations in

a way that the number of users, the number of locations and the distribution of tra-

jectories length (in terms of number of locations traversed) are equal to the original

data. After the application of the anonymisation process over this synthetic data we

measured the coverage and precision obtaining the values shown in Table 2. As pre-

dicted the hour-level values are significantly lower (by order of magnitudes) than the
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Table 2 Precision versus coverage of the k-anonymised synthetic data

k Precision Coverage

(a) Time: hour-level

3 1.00 0.14

5 1.00 0.058

10 1.00 0.005

(b) Time: day-level

3 1 1

5 1 1

10 1 1

ones computed using the original data. The same does not happen for the day-level

due to the fact that (i) at this level the number of possible ODpairs is lower because

by generalised the time the data becomes denser, and (ii) the synthetic trajectories

are generated with an uniform distribution over the locations, e.g. as said before they

do not have any constraint to be followed. Therefore, the generated dataset is very

dense with an uniform frequency distribution. In the case of ODpairs this frequency

values are greater than 10, therefore all with the attack simulation we find everything

safe.

In Fig. 14 show the empirical evaluation of the privacy guarantees over the null

models. The first column of images contains the plots with the cumulative distribu-

tions of the re-identification probability related to the hour-level dataset while, the

second column contains the results obtained from the day-level dataset. We observe

that in the hour-level dataset (left images), when the number of attacker’s observa-

tions is greater than 2 almost 100 % of attacks has a probability of success equal

to 0 %, especially for k = 5 and k = 10. This means that the anonymisation algo-

rithm tends to suppress a lot of information to provide good privacy levels. The curve

representing a number of observations equal to 2 (green curve) describes a lower

guarantee with respect to the same case in the real-world data (Fig. 10). On the other

side, at day-level we can notice how the uniform distribution of the locations frequen-

cies is evident: considering an attacker knowledge equal to 1 observation the dataset

is practically safe. Moving towards a richer knowledge of the attacker, i.e. from 2 to 5

observations, the results change dramatically following the same trends seen for the

hour-level. This happens because the frequency of a sequences is clearly lower than

a single location, therefore when the frequencies become less than k the data will be

destroyed by the algorithm.

To better understand this effect of and to prove that the results shown before

are due to the density of the generated data, we modified the null model def-

inition varying the number of locations used. The objective is to reduce the

density of the ODpairs by means of having more combinations and maintaining

the same number of users. The results shown in Fig. 15 confirm our hypoth-

esis, in fact at both levels and for each k when the density reaches a critical

value the coverage of the anonymized data decreases drastically destroying com-

pletely the data. Here the number of locations are: 64, 144, 256, 400, 576, 784

and 1024.
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Fig. 14 Comparison with the null model. Cumulative distribution of the re-identification probability on data

generated by the null model

Fig. 15 Coverage by varying the grid size
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The state-of-the-art

Research in information privacy consists of a vast corpus of multi-disciplinary work

combining results from the fields of psychology, law, computer science amongst

others. Privacy in information systems has been often governed by a set of fair prac-

tices that help organisations manage users’ information in responsible manners [14].

There often exists a disconnection between the interpretation of privacy needs from

the perspective of the user and the prescribed privacy preserving mechanisms offered

by devices and systems. Hong et al. [15] presented privacy risk models for ubiqui-

tous systems in order to convert privacy from an abstract concept into specific issues

relating to concrete applications. Kosa et al. [16], in an attempt to represent and mea-

sure privacy, presented an interesting finite state machine based representation of at

most nine privacy states for any individual in a computer system. A recent work by

Kiyomoto et al. [17] proposes a privacy policy management mechanism whereby a

match is made between user’s personal privacy requirements and organisational pri-

vacy policies. PrivAware [18] was presented as a tool to detect and report unintended

loss of privacy in a social network. Krishnamurthy et al. [19] measured the loss of pri-

vacy and the impact of privacy protection in web browsing both at a browser level as

well as a HTTP proxy level. Yu et al. [20] put forward a model for quality of service

(QoS) for web services that quantified users’ privacy risks in order to make the service

selection process manageable. Banescu et al. [21] came up with a privacy compliance

technique for detecting and measuring the severity of privacy infringements.

With richer user data available for data mining, work in privacy preserving data

mining and privacy preserving data publishing have gained momentum in the recent

years. Techniques such as adding random noise and perturbing outputs while pre-

serving certain statistical aggregates are often used [22–25]. Some notable data

anonymisation work include k-anonymity [2], l-diversity [26], t-closeness [27],

p-sensitive k-anonymity [28], (α, k)-anonymity [29] and ǫ-differential privacy [30].

The k-anonymity model has been also studied and adapted in the context of move-

ments data in different works: [4] exploits the inherent uncertainty of the moving

object’s whereabouts; [5] proposes a technique based on suppression of the dangerous

observations from each trajectory; and [6] proposes a data-driven spatial general-

ization approach to achieve k-anonymity. A critique by Domingo-Ferrer and Torra

[31] analyses the drawbacks of some of those anonymisation methods. The trade-off

between the privacy guarantees of anonymisation models and the data mining util-

ity have been considered by authors in [32, 33]. Sramka et al. [34] compared data

utility versus privacy based on two well known privacy models – k-anonymity and

ǫ-differential privacy.

Our proposed empirical risk model draws inspirations from the existing research in

the privacy preserving data publishing domain. We envision that our model provides

a clear understanding of privacy (or the lack of it) in released but anonymised data

with relation to risk, privacy, cost of attacks and data utility.

Conclusions

In this paper we have proposed an empirical risk model that provides a complete and

realistic view on the privacy risks, which can be derived from the release of trajectory

data. Our model is able to empirically evaluate the real risks of re-identification taking
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into account also the cost of any attack on privacy as well as the relation between

the risk and the utility of the data. With legislature becoming increasingly detailed

about data protection, it is essential to be able to communicate well how privacy, risk

and cost of attacks are associated when applying mathematical models for privacy

preserving data release. We have presented promising evaluations of our model for

the well-known k-anonymisation applied to real trajectory data from the Italian cities

of Pisa and Florence. We also evaluate the model on synthetic data we have used as a

null model to prove that the empirical evaluation of privacy protection is much better

in real-world data because these data describe the behavior of users that during their

activity must respect specific (external) constraints that influence the generated data.

In the future, we plan to evaluate our model with different types of real data of

sequential nature. Furthermore, we intend to investigate risk models suitable for

other types of data.
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