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Summary

Weed competition can decrease crop yield and profit.

Herbicides are applied to reduce weed populations,

minimize crop loss and maximize profit. Traditional

practice is to apply herbicides at a uniform rate over an

entire field. Complete knowledge of the weed distribu-

tion and appropriate instrumentation on the spraying

equipment would allow the farm manager to apply the

�correct� locally varying herbicide application rate. The

locally variable rate would be greater in areas of high

weed density and less where there are few weeds. A

locally varying treatment would have both economic

and environmental advantages. A major challenge facing

farm managers is the unavoidable uncertainty in the

spatial distribution of weeds in any particular field. This

uncertainty in weed distribution influences the optimal

locally varying herbicide rate. A mathematical model is

presented to calculate the optimal herbicide application

rate using geostatistical models of uncertainty in weed

density combined with principles from decision making.

Weed data from a 34-ha field near Saskatoon, Saskat-

chewan, Canada, illustrate the application of these tools.

Weed control was achieved with a significant reduction

in total herbicide use.

Keywords: weed density, uncertainty, variogram, geostatis-
tics.

Introduction

Weeds reduce crop yield and profit (Thomas et al.,

1998). Herbicides are important in controlling weeds

and increasing yield. In western Canada, herbicides

represent up to 30% of the cost of crop production and

are applied to more than 60% of the cropped area.

Herbicides control weeds but are expensive and can also

adversely affect the environment. Spatially selective

application of herbicides would increase profitability

and reduce environmental impact.

The prospect of increased profit and reduced envi-

ronmental impact has sparked interest in precision

farming techniques. Advances in technologies such as

global positioning systems (GPS), computer-integrated

farm equipment and numerical modelling, including

geostatistics, offer the potential for site-specific and

locally varying weed management. The work presented

here illustrates a method for risk-qualified and optimal

locally varying herbicide application rates. The pro-

posed method has the following steps: (1) sample the

field for weed density; (2) create maps of weed density

and related uncertainty over the entire field; (3) generate

optimal application rate maps; and (4) download the

optimal application rate maps to computer-integrated

farm equipment. The computer-integrated farm equip-

ment would apply the optimal herbicide rate throughout

the field using GPS.

Weeds do not have a homogeneous spatial distribu-

tion; they are often said to be �patchy� (Mortensen et al.,

1993, 1998; Dieleman & Mortensen, 1998; Clay et al.,

1999) and are thus amenable to site-specific and locally

varying herbicide application rates.

Many farm managers apply herbicides at a �uniform�
rate over an entire field; locations with low weed density

receive the same amount of herbicide as those with high

weed density. A uniform application rate is often based

on a visual assessment of weed density before applica-

tion, but there is no procedure to balance the risks

associated with under- and overspraying. The result is a

subjective assessment of weed density and uncertainty in

both weed density and optimal application rate.
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Crop yield losses increase with increasing weed den-

sity (Carlson et al., 1981; Cousens, 1985; O’Donovan

et al., 1985; Cousens et al., 1987; Cousens & Mortimer,

1995). Examples are common in the literature describing

how the competitive effects of weeds increase with

increasing density. This response tends to be hyper-

bolic in shape, as discussed by Cousens (1985), with an

initial steep slope for increasing weed density that

declines as the yield loss reaches an asymptotic

maximum yield loss. The parameters, I and A, from

the yield loss response represent initial slope and

asymptote respectively. For low weed densities, the

response is linear, whereas at higher densities, weeds

compete intraspecifically, and yield loss approaches an

asymptote.

Herbicide application rate can be adjusted to account

for variations in the spatial distribution of weed density.

This assumes that weed control is complete, no crop

damage occurs and weed density is a satisfactory

measure of weed competition (Auld et al., 1987). A

critical assumption in this research is that the optimal

application rate is proportional to weed density, that is

areas with high weed density should receive more

herbicide and areas with low weed density should

receive less herbicide for effective control (Holm et al.,

2000; Zhang et al., 2000).

The herbicide dose per plant is directly proportional

to the application rate. Two rates of barban, recom-

mended and 50% of recommended, and difenzoquat at

recommended and 33% of recommended were applied

in spring barley (Hordeum vulgare L.) to control Avena

fatua L. (wild-oat) (Cussans & Taylor, 1976). Both

rates resulted in an 80% or higher reduction in A. fatua

seed, suggesting that low doses of herbicide can provide

adequate control. Number of spray drops cm)2 was

calculated for these two rates of herbicide. The rate did

not affect A. fatua control, indicating that a sufficient

number of drops contacted A. fatua leaves at both

doses.

The application rate can be reduced for low weed

densities; however, a higher herbicide dose is required

for a high-density patch. The crop’s competitive posi-

tion relative to the weeds must be enhanced. A larger

crop loss is anticipated with a high initial weed density.

For example, a low weed density may reduce crop yield

to 75% of the weed-free yield, whereas a high weed

density may result in the production of only 5% of the

weed-free yield. When herbicide is applied, weed

density is reduced as a result of weed kill causing an

increase in crop yield. This increase will be greater at

high weed densities. The economic benefit of this

change in crop yield will be small at low weed densities

and may not exceed the costs of herbicide and

application. However, at high weed density, the change

in crop yield will be substantial, and it will probably be

economically beneficial to apply herbicide. The crop

yield response will dictate the herbicide rate that is

economically beneficial to apply and, in areas of high

weed density, high rates of herbicide will ensure that

the crop is competitive and has the potential to yield

more.

Varying the herbicide application rate from the

recommended rate is not supported by manufacturers

because there is a guaranteed response only at the

label rate. Herbicide performance testing is conducted

on a range of crop cultivars, weed densities and species,

soil types and weather conditions. The recommended

application rate is established for a wide range of con-

ditions. A central premise to our work is that devia-

tions from the recommended rate could be optimal

for local conditions. The optimal application rate

strikes a balance between cost, control and crop yield

loss.

The local optimal herbicide application rate scheme

requires that the weed density is known before applica-

tion. It is unrealistic to sample a field exhaustively to

establish the unique true weed density over the entire

field. A more efficient method is to sample the field

strategically and construct numerical models of weed

density that are based on the sample data and reflect

significant physical and biological features of the weed

species. Strategic sampling needs to account for scale

and provide a complete picture of the spatial and

biological relationships of weeds. Then, a model of

uncertainty in weed density addresses the limitations of

sparse sampling. Thus, a numerical model’s predictive

ability is significantly enhanced.

Geostatistics, a branch of applied statistics, has tools

for mapping an attribute value and characterizing the

uncertainty in weed density at unsampled locations.

These techniques are applied systematically in other

disciplines, such as petroleum reservoirs (Deutsch &

Journel, 1998), mining (Journel & Huijbregts, 1978;

Isaaks & Srivastava, 1989) and natural resources

(Goovaerts, 1997). Major decisions are made in the

presence of unavoidable uncertainty in these related

disciplines. Deciding on locally varying herbicide appli-

cation rate can be done in the light of uncertainty in

spatial weed density.

The objective of this paper was to develop a method

for mapping locally varying herbicide application rate in

the presence of uncertainty in weed density. An

increased rate will be recommended in areas of high

weed density to achieve optimal control and increased

yield; a decreased rate will be recommended in areas of

low weed density. The optimal locally varying herbicide

rate can be determined mathematically with a satisfac-

tory model.

Locally variable herbicide application 477
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Details of model

The optimal locally varying herbicide application rate is

the rate that leads to maximum profit. The following

development assumes knowledge of: (1) herbicide effic-

acy at a given application rate; (2) the competitive

relationship between weeds and crops; and (3) the cost

of applying herbicide. The notion of optimal locally

varying herbicide rates will be derived for known weed

density, and then uncertainty in weed density will be

introduced. Finally, the optimal risk-qualified rate is

calculated in the presence of uncertainty in weed density.

A risk-qualified approach requires multiple realizations

of weed density in order to define a space of uncertainty.

This uncertainty allows an assessment of risk for

decision-making.

Optimal rate with deterministic parameters

To begin, geographic location is denoted by the vector

variable u that consists of east and north co-ordinates.

The herbicide application rate for location u is denoted

by a(u), which is measured in L ha)1. The optimal local

herbicide application rate for location u is denoted

aopt(u).

Weed density w(u) is defined as the number of

weeds m)2 at location u. This variable is nominally

categorical, taking values from 0 to some maximum

number of weeds that could grow simultaneously in a

square metre. In general, there are numerous weed

species present in a field, but each set of calculations

only considers the critical species that are responsible for

the weed application decision.

The farm manager cannot spray a different rate on

each square metre of the field. We must consider a

selective spraying area (SSA) denoted v. This area is

probably 20–35 m wide (depending on spray boom

length and electronic controls built into the sprayer) and

1–2 m deep because of the potential drift of herbicide.

The SSA can be customized for site-specific conditions

given the fact that sprayer boom sections are being

developed that apply herbicide over smaller SSAs. The

weed density must be averaged from the sampling area,

m)2, to the SSA:

wvðuÞ ¼
1

vðuÞ

Z
v
wðu0Þdu0 ð1Þ

Weed density is informed by: (1) samples of weed

density, perhaps over a small area with relatively great

spatial detail; and (2) scouting or remotely sensed data,

probably over a large area with less spatial detail. The

numerical tools of geostatistics are used to model the

weed density at the correct SSA areal size (Journel &

Huijbregts, 1978; Isaaks & Srivastava, 1989; Goovaerts,

1997; Deutsch & Journel, 1998). Next, weed density is

averaged from a sampling area to correspond to an SSA

that is relevant to the limitations of the application

equipment.

The first required input is the maximum attainable

weed-free yield or y0(u). This maximum attainable yield

y0(u) is in units of tonnes ha)1, and y0(u) depends on

location u in the field. Historical information and recent

environmental and weather conditions will provide an

approximation of y0(u) over the entire field.

The second required input is the fractional yield loss

resulting from non-zero weed density or L(w). This

fractional yield loss is a function of weed density. When

weed density is high, high yield loss can be expected,

whereas low yield loss is expected when weed density is

low. Yield loss starts at zero, that is L(w) ¼ 0 at w ¼ 0,

and may increase to its maximum value, 100%, depend-

ing on the competitive ability of the weed as its density

increases. Experimental data are required to establish

this function. Yield loss values resulting from different

weed densities were fitted from values provided in the

literature (Carlson et al., 1981; Cousens, 1985; Cousens

et al., 1987). A family of fitted curves from a look-up

table of a hyperbolic type is used to model L(w).

The curves represent fractional yield losses due to weeds

under different cropping, weed and environmental

conditions.

The third critical piece of information is the frac-

tional weed control as a function of the herbicide appli-

cation rate or Wc(a), where a is the herbicide application

rate in litres or kg ha)1. Herbicide manufacturers

probably have data on this function Wc(a); however,

these data may not be publicly available. Model

parameters and bounds of this function were based on

values from the literature (Cousens, 1985; Cousens &

Mortimer, 1995; Anonymous, 1998). Where these were

unavailable, parameters were hypothesized from our

understanding of weed control. Nevertheless, much is

known about this function: (1) it is bounded between 0

and 100%; (2) there is zero weed control at zero

application rate; (3) there will be 80% or more control at

the recommended application rate (Anonymous, 1998);

and (4) full control, Wc ¼ 100%, will be reached

asymptotically as a increases (Cousens, 1985; Cousens

& Mortimer, 1995). Experimental data or a fitted

hyperbolic or exponential-type function could be used

to model Wc(a) (Cousens & Mortimer, 1995; Swanton

et al., 1999). There may be a different Wc(a) curve

for herbicides with different formulations, as illustrated

by weed response for parallel dose–response curves

(Streibig, 1984, 1988).

Other price and cost inputs are required. The net

price or net value of the crop, np, in financial units such
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as dollars tonne)1, must be known. The cost of the

herbicide, c, in for example dollars L)1, must also be

known.

Using the input variables described above, it is

possible to calculate the incremental revenue for a

specific application rate, a:

rða; uÞ ¼< L½WvðuÞ� � LfWvðuÞ 	 ½1�WCðaÞ�g > y0ðuÞ 	 np
ð2Þ

where the units of r(a) are in financial units (e.g.

dollars ha)1). The variable r(a; u) represents a non-

decreasing function of the herbicide application rate a at

location u; see the top figure in Fig. 1. Of course, the

cost of applying herbicide must also be included.

Yield loss and herbicide application each have asso-

ciated costs. Increasing herbicide application rate costs

money because of increased product consumption.

Decreasing herbicide application decreases this con-

sumption but increases yield loss. This is shown in the

bottom figure of Fig. 1 where the three curves represent

the sum of the cost of applying herbicide and the cost of

crop loss.

There are fixed costs for equipment ownership,

depreciation, interest, insurance and so on. These

fixed costs are not considered in the equation below,

as it is assumed that it is economical to spray; the

goal is to determine the optimal application rate.

Clearly, there are cases of low weed densities where

the fixed costs exceed the total revenues and the

correct decision is not to spray at all. Given that

spraying will occur, the cost of applying herbicide at

rate a is given by:

cðaÞ ¼ �c 	 a ð3Þ

where c(a) is in financial units (e.g. dollars ha)1). A

typical approach for optimal application rate is to

determine a value function for each decision, then

choose the maximum. For a loss function, the idea is to

determine the optimal application rate in the presence of

uncertainty for which the loss is minimized (Goovaerts,

1997). This is the reason for the negative c. The

incremental profit of spraying at rate a is simply the

sum of r(a) and c(a):

pða; uÞ ¼ rða; uÞ þ cðaÞ ð4Þ

The optimal rate aopt(u) maximizes this incremental

profit.

The optimal application rate and profit for a given

location, u, will be affected by several factors. Areas with

low weed density will have a low optimal herbicide

application rate, whereas areas with high weed density

will have high application rates (see Fig. 1). Thus, fields

with a patchy weed distribution will be the most

amenable to locally varying herbicide application rates.

Two additional comments need to be made on p(a; u)

and the determination of the optimal rate aopt(u):

• The incremental revenue r(a;u) curve flattens as a

increases because the weed control, Wc(a), and

fractional yield loss response, L(w), curves flatten

off. The cost of herbicide c(a), on the other hand,

continues to decrease linearly because a constant per

litre cost is used and, as herbicide rate increases, so

does its cost. Thus, the optimal application rate

aopt(u) is always finite.

• The optimal rate will be zero if the herbicide is

very expensive (c large), there are few weeds [wv(u)

low] and the weeds are poor competitors, and there

is moderate response to the herbicide [Wc(a) rises

slowly].

The function p(a; u) may be maximized by any

classical technique. The p(a; u) function is well behaved,

Fig. 1 Examples of the economic consequences of changing

herbicide application rate (expressed as a percentage of the

manufacturer’s recommended rate). (A) Response of herbicide cost

and crop yield loss. (B) Effects of three weed densities on the costs

of crop yield loss, identifying optimal application rates.
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and evaluation of p(a; u) is extremely fast; therefore,

almost any optimization technique can be considered.

For example, simple Newton iterations, which is a well-

known method of optimizing a non-linear function, are

suitable (Householder, 1970).

There are two parameters that depend on location:

the weed density wv(u) and the maximum attainable

weed-free yield y0(u). Knowledge of these two param-

eters permits calculation of the optimal rate for each

location.

An important feature of field-scale weed treatment is

that the weed density is not known precisely at each

location. There is uncertainty in the weed density for

each SSA to be sprayed (see Fig. 2). The optimal

herbicide application rate must account for this

uncertainty.

Accounting for uncertainty

The consequence of uncertainty is that we have to

calculate an expected profit instead of the actual profit.

In the presence of uncertainty, we must calculate the

expected profit:

pða; uÞ ¼ Ef½LðwvðuÞÞ � LðwvðuÞ 	 ð1� WCðaÞÞÞ�
� y0ðuÞ 	 np � c 	 ag ð5Þ

The optimal rate, aopt(u), maximizes the expected

incremental profit at location u, that is max{p(a;u)}. The

expected value operator is a probability weighted

average �pp ¼
R1
�1 pf ðpÞdp. In practice, this continuous

integral is solved by creating a large number, N, of equal

probability values. In the context of expected profit,

there are N pairs for weed density and maximum weed-

free yield fwðiÞ
v ðuÞ; y0ðuÞðiÞ; i ¼ 1; . . . ;Ng and fLðwðiÞ

v ðuÞÞg
respectively. The expected value is then approximated

as:

pða; uÞ � 1

N

XN
i¼1

nh
LðwvðuÞðiÞÞ � LðwvðuÞðiÞ 	 ð1� WCðaÞÞÞ

i

� y0ðuÞðiÞ 	 np � c 	 ag ð6Þ

The amount of computer work for this added

calculation is reasonable. The result is the same: a map

of optimal locally varying herbicide application rate for

use in computer integrated, GPS-guided, herbicide

application equipment.

Model validation

Weed density data used in this research are taken from a

34-ha field near Saskatoon, Saskatchewan, Canada,

which was seeded to spring wheat (Triticum aestivum L.)

in 1995 and oilseed rape (Brassica napus L.) in 1996. All

weed species were identified and counted at the three- to

four-leaf stage in both years with a 50-m by 50-m grid.

In 1996, two 100-point sampling grids with a 10-m by

10-m spacing were established in areas of high weed

density. Weeds were counted by species in four (1995)

and nine (1996) 50-cm by 50-cm quadrats at each

sampling point in the fields before post-emergence

herbicide application. The various weed species were

categorized as either broad-leaved or grass weeds.

Fourteen broad-leaved species were recorded in 1995,

and 15 were identified in 1996. The frequency of

occurrence, which represents the percentage of total

sampling points for which a species appeared for the

three most abundant weeds, was 51–99% for Fallopia

convolvulus (L.) A. Löve (black bindweed), 54–91% for

A. fatua and 99–100% for Thlapsi arvense L. (field

penny-cress). Other weed species identified at this site

with a frequency of occurrence of >25% included

Cirsium arvense (L.) Scop. (creeping thistle) and

Taraxacum officinale Weber (dandelion). The results

analysed here are for broad-leaved weeds only, which

were present at 100% and 93% of the sampling sites in

1995 and 1996 respectively. A histogram for the 137

sample locations in 1995 indicated a broad-leaved weed

density of 1–408 broad-leaved weeds m)2 with a mean of

70.8 m)2 (Fig. 3).

Fig. 2 Weed density variation in a 34-ha field sampled on a

50-m · 50-m grid. The distribution of weed densities (and the

uncertainty in the mean density) in a sampled selective spraying

area (2 m · 35 m) is shown in the lower histogram.
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A map showing the sampling points for the weed data

in 1995 and 1996 is displayed in Fig. 3. Increasing grey-

scale indicates increasing weed density, so white is no

weeds present whereas black represents over 250 broad-

leaved weeds m)2. Note the significant variability in

weed density throughout the field.

The directional, spherical variograms shown in

Fig. 4 quantify semi-variance vs. distance for the 1995

broad-leaved data in Fig. 3. The dashed lines show the

experimental variogram calculated from normal score-

transformed data, whereas the solid lines are the

spherical model fitted to the experimental variogram.

The total variability explained by these spherical

models was calculated with GSLIB software (Deutsch

& Journel, 1998) using the nugget and three-nested

structures for 1995 and 1996 data. The top experi-

mental variogram and model are for the north–south

direction (N 0� E), whereas the bottom variogram and

model are for the east–west direction (N 90� E).

Owing to limited short-scale data from 1995, short-

scale data from 1996 were used to infer the nugget

effect. This assumes that weed density does not change

over time at the short scale. This indicates that the

variogram is applicable over the entire experimental

field over which it has been calculated. The model

variogram has a moderate nugget effect of 0.05 and a

range of 275 m in the direction of maximal continuity

(N 90� E) and 160 m in the direction of minimal

continuity (N 0� E). A waterway crosses the (S 45� E)

corner of the field (see bottom right corner of the

sampling point map in Fig. 3), and it may have

influenced the anisotropy of the broad-leaved weed

distribution.

The variogram shown in Fig. 4 was used for kriging a

1 by 1-m)2 grid. Kriging is a classical geostatistical

technique for estimation at unsampled locations (Jour-

nel & Huijbregts, 1978; Isaaks & Srivastava, 1989;

Goovaerts, 1997; Deutsch & Journel, 1998). A known

limitation of kriging is �smoothing�; low values are

typically overestimated, and high values are typically

Fig. 3 Measurement of weed distribution in the 34-ha field. (A)

Location and mean weed densities in each of the 137 sampling

points. (B) Histogram of the distribution of broad-leaved weed

densities in the field in 1995.

Fig. 4 A semi-variogram using the 1995 broad-leaved weed density

data from the 34-ha experimental field. The dashed lines represent

the experimental variograms, whereas the solid lines are the

modelled variograms. The top experimental and model variogram

are for the(N 0� E) direction, whereas the bottom variogram and

model are for the (N 90� E) direction.

Fig. 5 A kriged map of weed density, plants m)2, from the 34-ha

experimental field.
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underestimated. A kriged map of weed density data is

shown in Fig. 5.

Conditional simulation was initially developed to

correct the smoothing effect of kriging by creating maps

that reproduce the histogram and variogram. It involves

creating multiple, equally probable realizations that are

conditional if the realization represents the data at their

location. Each realization should reproduce the local

data at correct scale, the global histogram and vario-

gram. Many techniques can be used to draw these

realizations; however, sequential Gaussian simulation

has gained widespread popularity because of its simpli-

city and flexibility (Journel & Huijbregts, 1978; Deutsch

& Journel, 1998).

Multiple simulated realizations are used to quantify

uncertainty in this data using GSLIB software (Deutsch

& Journel, 1998). One hundred and one realizations

were created using sequential Gaussian simulation.

Three realizations and the average map of all 101 reali-

zations are shown in Fig. 6. Note that the three

realizations are �noisier� than the kriged map. This is

a reflection of the true variability in the weed distri-

bution at small scale using the 1996 small-grid data.

Despite the variation, the simulated maps reflect the

histogram and variogram. Also note that the average

map of all 101 realizations is nearly identical to the

kriged map in Fig. 5.

Fractional yield loss as a function of weed density

was derived from fitted curves of a hyperbolic or expo-

nential type for L(w) such as:

Y ðlÞðuÞ ¼ L 	 wðuÞ 	 W ðlÞðuÞ
1þ L	wðuÞ	W ðlÞðuÞ

A

ð7Þ

where Y(l) is the yield loss as a percentage for realization

l at location u, L is the percentage yield loss per unit

weed density as density approaches zero, w is the weed

density at location u, W(l) is the fraction of weeds

controlled by herbicide at location u, and A is the

maximum crop loss due to weed competition as weed

density approaches infinity. Crop yield loss in a mixed

stand of weeds can be represented by a family of curves.

The experimental field had broad-leaved weeds in which

two species were dominant in each year. Fractional yield

loss was determined for each realization and averaged to

the SSA over the 101 realizations at a location, whereas

the kriged fractional yield loss map was averaged to the

SSA for one map. This relationship is an example from

the literature (Cousens, 1985).

Other assumptions were made when preparing a map

of optimal locally varying herbicide application rates:

• y0(u) grain yield ¼ 3.0 t ha)1,

• (np) net selling price of grain ¼ $100 t)1

Fig. 6 Three individual simulated maps of weed density and a map of the average for 101 simulated maps of weed density (plants m)2).
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• Wc(a) herbicide costs $50 ha)1, which includes her-

bicide product at $40 ha)1 and $10 ha)1 for applica-

tion cost at the recommended application rate,

• A maximum crop yield loss ¼ 40%, and

• maximum permissible application rate is 200% of

the manufacturer’s recommended herbicide applica-

tion rate. The maximum permissible application rate

exceeds the manufacturer’s recommended rate, which

is illegal. However, it was allowed in the model to

determine whether there are areas in the field where

the weed density warrants additional control meas-

ures at a future time.

Environmental and soil variability influence weeds,

and this variability is characterized by the uncertainty of

weed density at each location. A map of optimal locally

varying herbicide application rates is shown in Fig. 7.

Increasing grey-scale indicates increasing herbicide

application rate. The distribution of optimal application

rates is shown in the bottom figure of Fig. 7. We predict

more than 100% of the manufacturer’s recommended

application rate at some locations, whereas at other

locations, the optimal application rate is predicted to be

zero. The average optimal rate is 50.4% per SSA of the

recommended rate, with a minimum and maximum rate

of 0% and 116% respectively. In this case, the overall

optimal rate is not the manufacturer’s recommended

application rate, and some areas (< 1%) will need extra

control treatments. The herbicide cost for this optimal

application rate is $793 for the whole field. A uniform

application at the manufacturer’s recommended rate

would cost $1575.

A map of the expected cost of crop yield loss using

our calculated optimal locally varying herbicide appli-

cation rate is compared with the expected cost when a

uniform herbicide application rate of 50% is applied to

the experimental field in Fig. 8. As the average optimal

herbicide rate was 50.4%, a uniform rate of 50% was

chosen for comparison. The cost histogram for the 50%

application rate illustrates a wider, flatter distribution of

costs compared with the optimal cost histogram. Cost of

herbicide consumption is the same for either application

rate; however, some areas receive too much and others

too little with the 50% rate. Expected cost of the yield

loss is more than 4% greater with a uniform application

rate compared with the optimal herbicide application

rate.

Conclusions

We have described a method for establishing optimal

locally varying herbicide application rates. The method

requires geostatistical models of uncertainty in weed

density and a model of weed response for different

application rates. This method has the potential to

reduce weed control costs. Practical application requires

calibration to a particular crop, weed and herbicide.

Our example considered studies published in the

literature for the required weed response to herbicide

rate. This must be verified under specific environmental

and cropping conditions. Such variable rate information

is limited.

Spatial statistics are useful to characterize the het-

erogeneity of weed distributions as well as to quantify

the uncertainty caused by incomplete data. The pro-

posed methodology accounts for risk along with uncer-

tainty in the spatial distribution of weeds. Such local

precision and optimality is a worthy goal in view of

economic and environmental concerns related to

herbicide application.

The spatial distribution and uncertainty in weed

density can be characterized using geostatistics and weed

density data. Additional data will reduce uncertainty,

but at increased cost. The optimal sample spacing

balances the additional sampling costs with the benefits

of improved decisions. Supplementary data could

come from weed surveying using an all-terrain vehicle.

Fig. 7 Locally varying optimal herbicide application rate map

compared with manufacturer’s recommended application rate at

100% with a histogram of the locally varying optimal herbicide

application rates. The locally optimal herbicide rate mean is 50.4%.
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A visual rating of weed numbers using an all-terrain

vehicle provides a qualitative description for analysis

(Hall & Faechner, 1999). Digital elevation maps may

also improve weed density mapping because weeds

favour specific regions (Faechner et al., 2000). A review

of sampling strategies for arable crops highlights some

of the challenges facing weed scientists in site-specific

weed management (Rew & Cousens, 2001).

The sample data are scaled up to a selective spraying

area (SSA). These areas will decrease as spraying equip-

ment becomes more advanced. This will result in further

optimization of herbicide application. Wallinga et al.

(1998) found that herbicide use could be reduced

by 26% when changing spatial resolution from 4 m

to 2 m.

The effects of a mixed weed species infestation on

crop yield must be incorporated into crop yield loss

equations. Two species models have been developed

(Doyle, 1991). A competitive index has been established

for multiple weed types in soyabean (Wilkerson et al.,

1991). Additional research is required to generalize such

models to practice.

Dose–response curves that quantify a herbicide’s

effect on weeds and crop have been described by Streibig

(1988). Optimizing herbicide doses depends on know-

ledge of these response curves. There are few studies

from the literature that provide data for grass and

broad-leaved herbicides. Additional research is required

to increase our understanding of how weeds react to

different herbicide rates.
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Appendix

Definition of symbols

wv(u) ¼ number of weeds or weed density at location u,

plants m)2

a(u) ¼ herbicide application rate, L ha)1

aopt(u) ¼ optimal local herbicide application rate at

location u

y0(u) ¼ maximum attainable weed-free yield in tonnes

ha)1 at location u

SSA ¼ selective spraying area denoted as v, m)3

L(w) ¼ fractional yield loss resulting from non-zero

weed density, %

Wc(a) ¼ fractional weed control as a function of the

herbicide application rate, %

np ¼ net price of grain yield, dollars tonne)1

c ¼ cost of the herbicide, dollars L)1

r(a; u) ¼ revenue, dollars ha)1, for a herbicide applica-

tion rate a at location u

c(a) ¼ cost of application for a herbicide rate, dollars

ha)1

p(a; u) ¼ incremental profit, dollars ha)1

p(a; u) ¼ expected profit, dollars ha)1

NB. All costs calculated in Canadian dollars.

Variogram parameters

Variance

contribution

Variogram

model

Maximum

continuity,

m (N 90� E)

Minimum

continuity,

m (N 0� E)

0.05 Nugget

0.35 Spherical 16 15

0.35 Spherical 170 130

0.25 Spherical 275 160
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