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Key Points:  

• We quantify biospheric flux, fossil fuel emission, atmospheric transport, and boundary 

inflow uncertainties in modeled atmospheric CO2.  

• Biospheric fluxes and fossil fuel emissions are the largest contributors to atmospheric 

CO2 uncertainty over North America.  
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• Transport uncertainties can be approximated by random errors, while boundary inflow 

uncertainties are persistent and can be sizeable.    

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters! 

 

 3 

Abstract  

Atmospheric inversions allow us to estimate the terrestrial carbon sink by combining 

atmospheric observations with atmospheric transport models.  However, these inverse estimates 

remain highly uncertain. Here we quantify uncertainties in simulations of North American 

atmospheric CO2 concentrations using a probabilistic approach. We demonstrate that uncertainty 

in fossil fuel emissions is a key factor in the uncertainty surrounding biospheric flux estimates. 

We show that atmospheric transport uncertainties in state-of-the-art numerical weather models 

diminish when averaged over time, while uncertainties in large-scale CO2 boundary inflow 

considerably impair our ability to quantify regional fluxes. Current estimates of the North 

America land sink which neglect the uncertainties in CO2 boundary inflow and fossil fuel 

emissions are likely overconfident. Our findings suggest that targeted use of new atmospheric 

observations and improved quantification of uncertainty components are a promising avenue to 

improve atmospheric inversions with the goal to refine estimates of biospheric CO2 fluxes on 

regional and continental scales. 

 

Plain Language Summary 

The uncertainty in biospheric carbon dioxide (CO2) flux estimates drives divergent 

projections of future climate and uncertainty in prescriptions for climate mitigation. The 

terrestrial carbon sink can be inferred from atmospheric CO2 observations with transport models 

via inversion methods. Regional CO2 flux estimates remain uncertain due to the mixture of 

uncertainties caused by transport models, prior estimates of biospheric fluxes, large-scale CO2 

boundary inflow, the assumptions in the inversion process, and the limited density of 

atmospheric CO2 observations. Understanding the characteristics of these uncertainties in space 

and time is essential for accurate biospheric CO2 flux estimates. Here we identify the terms that 

most confound biospheric flux estimates. Our results show that, over North America, (i) 

biospheric fluxes dominate the model uncertainty over all timescales. (ii) Contrary to 

expectation, fossil fuel emissions are the second largest source of uncertainty at all timescales.  

(iii) Transport uncertainties are large at short timescales, but act like random errors decreasing 

with time averaging. (ix) Continental boundary inflow uncertainties are large near the boundaries 

and become significant at seasonal to annual timescales. We propose sampling and analysis 

strategies that can better quantify and reduce uncertainties in both fossil fuel emission and 

biospheric flux estimates. 
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1 Introduction 

The terrestrial biosphere is a vast sink for anthropogenic carbon dioxide (CO2) emissions. 

On average it removes roughly 2.6 ± 1.2 Pg C per year [Ballantyne et al., 2012; Ciais et al., 

2013; IPCC, 2014; Keenan et al., 2016]. Understanding how this sink responds to climate 

change is crucial to inform climate projections and the design of climate risk management 

strategies [Friedlingstein et al., 2014; Reichstein et al., 2013; Stocker et al., 2013]. Terrestrial 

ecosystem models that simulate terrestrial CO2 fluxes (sources and sinks) generally exhibit large 

regional differences in land CO2 uptake (Fig. S6). Atmospheric inversions, on the other hand, 

quantify biospheric CO2 fluxes by combining terrestrial ecosystem models, fossil fuel emission 

inventories and atmospheric transport models with atmospheric CO2 concentration 

measurements [e.g., Bousquet et al., 2000; Ciais et al., 2005]. Both approaches offer invaluable 

insights into the global extent and latitudinal distribution of terrestrial carbon sinks [IPCC, 

2014]. However, considerable uncertainties remain with regard to (i) the magnitude of biospheric 

carbon fluxes on continental and regional scales [Peylin et al., 2013; Sarmiento et al., 2010], and 

(ii) the distribution of fluxes across continents [Stephens et al., 2007]. Furthermore, the 

mechanisms driving long-term trends and climate change remain unclear, causing considerable 

uncertainty in climate projections [Bonan and Doney, 2018]. The uncertainties in our ability to 

estimate regional-scale CO2 fluxes by atmospheric inversions stem from the multiple 

components of inversion systems, including atmospheric transport models, prior estimates of 

biospheric fluxes, large-scale CO2 boundary inflow, and the assumptions in the inversion process 

along with the atmospheric CO2 observations [Schuh et al., 2013]. While the CO2 observation 

network over North America has been rapidly expanded in the last decade [Andrews et al., 

2014], researchers still commonly prescribe uncertainties arising from these components in a 

statistically-consistent way but prone to under- or over-estimation as only the total uncertainty is 

verifiable. Most inverse studies assume that atmospheric transport uncertainty has the greatest 

impact on the inversion models’ accuracy [Baker et al., 2006; Gurney et al., 2002; Stephens et 

al., 2007]. Inverse studies typically prescribe terrestrial biospheric CO2 flux uncertainty and are 

thus silent on the effects of the complex spatiotemporal error structures (Fig. S6). Most 

importantly, inversion studies generally assume perfect knowledge of fossil fuel emissions [e.g., 

Gurney et al., 2002; Liu et al., 2017]. However, the uncertainty in inventories of national, annual 

bottom-up fossil fuel emissions ranges from 4% to 20% across countries, depending on data 

collection and management [Andres et al., 2014]. While annual estimates agree within 4% over 

the whole of North America [Oda et al., 2018], the uncertainties in spatially explicit fossil fuel 

emissions at the city scale can increase to 30- 200% [Andres et al., 2014; Asefi-Najafabady et al., 

2014]. Finally, few studies have assigned and documented boundary inflow uncertainty in ways 

that represent errors in large-scale CO2 inflow advected over the simulation domain [e.g., Alden 

et al., 2016; Göckede et al., 2010; He et al., 2018]. Overconfident treatment of fossil fuel 

emissions, under-confident treatment of transport, and hesitation to proceed with a regional high-

resolution model because of the difficulty of including boundary inflow uncertainties result in 

incomplete uncertainty assessments. Poor uncertainty estimates can bias inverse estimates. The 
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often-prohibitive computational demands of uncertainty assessment are frequently addressed by 

prescribing uncertainties from expert judgment. And while expert judgment can provide useful 

insights, the complexity of those uncertainties poses considerable challenges [O'Hagan and 

Oakley, 2004; Werner et al., 2017].  Here, we present comprehensive assessments of the 

different sources of model uncertainty at the continental scale in order to better inform the 

development of regional inversion models. We address this problem by creating the first 

ensemble-based modeling system able to explicitly quantify uncertainties from a variety of 

sources in atmospheric CO2 simulations. Uncertainties in atmospheric CO2 mole fractions are 

directly related to the potential of an inversion to inform about surface fluxes and boundary 

inflow. The forward modeling approach used here allows us to circumvent the use of a 

deterministic system, which is inherently influenced by subjective choices of a priori 

information, by using a well-calibrated, high-resolution, ensemble-based, forward modeling 

system to quantify the various uncertainty terms (Fig. S1; see SI for full description of the model 

evaluation and calibration). Note that the uncertainties in atmospheric boundary layer CO2 mole 

fractions that are calculated here may be directly related to the uncertainties in surface CO2 

fluxes that inversions calculate through the spread of the ensemble: the spread in surface flux 

across the ensemble is transformed, through use of the transport model, into a spread in 

atmospheric boundary layer CO2 mole fractions across the domain; the spread of the whole 

ensemble, and the uncertainties calculated from it, may be scaled up or down to match what the 

best estimate of uncertainty actually should be. This is assured by the calibration process of the 

ensemble spread based upon the observations. Thus, while this study does not directly calculate 

surface flux uncertainties, it provides a means for estimating those through examination of 

atmospheric boundary layer CO2 mole fraction uncertainties.  

2 Data and Methods 

We quantify the uncertainty in the simulated atmospheric CO2 concentrations using the 

root-mean-square difference (RMSD) between the ensemble members and the observations or 

the ensemble mean (see SI for a full description). In this work, we focus on the midday 

atmospheric boundary layer CO2 concentrations over North America, similar to the data 

assimilated in current regional inversions. The domain of interest includes the majority of North 

America land and the surrounding ocean (see color-shaded area in Figure 2). For simplicity, the 

modeled CO2 concentrations at Level 5 in our transport model WRF-Chem, ~550 m above 

ground level, and at 20 UTC are used to represent the well-mixed midday atmospheric boundary 

layer atmospheric boundary layer conditions. Our modeling system samples four sources of 

uncertainty in an atmospheric inversion: (i) atmospheric transport, (ii) biospheric fluxes, (iii) 

fossil fuel emissions, and (iv) large-scale CO2 boundary inflow. We construct an ensemble suite 

for each component and calculate the associated uncertainty in the simulation accordingly. A 

summary of the members of ensemble suites and the associated uncertainty quantifications can 

be found in Table S1.  
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For the transport ensemble suite, we generate the ensemble by perturbing the model 

physics and initial and boundary conditions using the multiple physics and Stochastic Kinetic 

Energy Backscattering scheme (SKEBS) [e.g., Rayner et al., 2010], ten members in total. For the 

boundary inflow suite, we use the global modeled posterior CO2 concentrations from CT2016 

[Peters et al., 2007], NASA Carbon Monitoring System [Liu et al., 2014], TM5 [Basu et al., 

2016], and GEOS-Chem [Schuh et al., 2015] taking into full consideration the conservation of 

mass along the boundaries of our regional model domain, four in total; for the biospheric flux 

suite, we include the simulated net ecosystem exchanges (NEE) from 15 terrestrial vegetation 

models and their mean [Fisher et al., 2016; Huntzinger et al., 2013], SiB3 [Baker et al., 2010; 

Baker et al., 2008], and the posterior biospheric fluxes from CarbonTracker CT2016 [Peters et 

al., 2007], 18 in total. All of the CO2 boundary inflow and biospheric fluxes members are 

coupled with every WRF-Chem transport simulation at 27 km × 27 km with 51 vertical levels 

for the time period of 2010. Details about transport model setup can be found in Section 2.3 of 

SI.  

For fossil fuel emissions, we use two methods to estimate the associated uncertainty for 

the simulations: an ensemble approach and an error propagation from national to tower-footprint 

resolutions. Our final estimate simply corresponds to the mean of the results from these two 

estimates to avoid over- or under-estimation of fossil fuel uncertainties. A full description of the 

fossil fuel CO2 uncertainty estimates can be found in SI. Briefly, the ensemble approach is based 

on 25 perturbations of annual fossil fuel emission realizations from the Fossil Fuel Data 

Assimilation System (FFDAS) [Asefi-Najafabady et al., 2014; Rayner et al., 2010] with various 

parameters and input fields. Because the FFDAS perturbation artificially generates a few 

negative emission values (<10%) from small sources, we zero out the negative values in the 

ensemble suite. As a result, we use standard statistics for non-Gaussian distributions, i.e., half of 

the interquartile range of the fossil fuel CO2 concentrations are used to represent the annual fossil 

fuel uncertainty. We introduce constant emissions (without any diurnal and seasonal variations) 

into the transport simulations, which allows us to propagate annual uncertainties of fossil fuel 

emissions into atmospheric CO2 concentrations.   

The second method relies on an error propagation approach. Since the errors propagate 

linearly from surface emissions/fluxes to atmospheric CO2 concentrations, the ratio of the 

uncertainty to the mean in emissions remains the same in concentration space.  Annual 

uncertainty estimates from four different gridded fossil fuel emission products at 3゜× 3゜
resolution is about 30%, defined as the upper bound [Andres et al., 1996; Andres et al., 2011]. 

We account for potential spatial error correlations and decrease the errors by half (from 30% 

down to 14%) due to emission factors, disaggregation biases, etc., to define the lower bound of 

fossil fuel uncertainties. Based on the linear relationship between the flux and concentration 

spaces, we translate the range of flux-based uncertainty estimates into the atmospheric CO2 

concentration (in ppm) using these ratios.   
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Because none of the fossil emission uncertainty estimates are available at the daily 

timescale, we use existing studies of whole-city aircraft mass balance, bottom-up emissions 

comparisons, and inversion approaches to define the range of daily uncertainties at 100% and 

50% for the upper and lower bounds, respectively [Gurney et al., 2019; Oda et al., 2019; 

Turnbull et al., 2011].  This range takes the consideration of daily and seasonal variations of the 

fossil fuel CO2 uncertainty. In the error propagation approach, we determine the upper and lower 

bounds of the fossil fuel CO2 uncertainty estimates at the daily timescale by scaling the mean of 

simulated CO2 mole fractions 100% and 50%, respectively. In the ensemble-based (FFDAS) 

approach, we scale the median 100% to determine at the daily fossil fuel CO2 uncertainty. 

Considering that differences among different emission products were estimated at 20% annually 

over large cities [Gurney et al., 2019], our daily estimates are higher due to additional errors in 

prescribed day-to-day variations (e.g. weekly climatology, absence of weather-related 

variability).  

We interpolate uncertainty estimates between daily and annual timescales with an 

exponentially decaying function of time to produce consistent uncertainty estimates, with the 

following justification. There are no robust estimates of temporal error correlations available at 

sub-annual scales for fossil fuel emissions. At short timescales within a week, fossil fuel 

emission uncertainties decrease rapidly by removing day-to-day variations caused by weather 

events and economic activities. Between weekly to monthly time scales, the errors remain 

similar with no additional information used by bottom-up products. We only expect a faster 

decrease once aggregating the uncertainties at seasonal to annual time scales. We acknowledge 

that this function is a simple interpolation for two estimates because there is not any better 

information. We justify the shape by considering the level of information available in bottom-up 

products.  

The ensemble modeling system consists of 18,720 members (10-transport×4-boundary 

condition×18-biospheric fluxes×26-fossil fuel emissions). We apply a series of evaluation and 

calibration procedures, i.e. Taylor diagrams and rank histograms, to ensure the reliability of the 

ensemble system. We begin by examining the simulated transport with NOAA rawinsonde data 

(http://www.esrl.noaa.gov/raobs/fsl-format-new.cgi) to ensure that we have accurately calibrated 

uncertainty bounds in boundary layer wind fields and heights.  We next evaluate the CO2 

boundary inflow from global models with high-altitude NOAA aircraft data (>3km above sea 

level) [Sweeney et al., 2015].   We calibrate the ensemble system using NOAA tall tower CO2 

data [Andrews et al., 2014]. The full description of our evaluation and calibration of the 

ensemble system is provided in the supplementary information.  
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3 Results 

3.1 Timescale dependence of modeled CO2 uncertainties  

Atmospheric CO2 concentrations are driven by an intricate interplay of atmospheric, 

biospheric, and anthropogenic processes. As a result, simulated concentrations have complex 

temporal and spatial structures on daily to yearly and local to continental scales (Fig. 1a/2/3). 

Note that, to reflect the estimates from the current inversions, we display the CO2 uncertainty 

estimates at the locations of the NOAA in-situ tower measurement. While independent random 

errors would lead to a simple decrease in errors as the time window grows, our results (Fig. 1a) 

reveal more complex processes. The biospheric flux uncertainty dominates from daily to 

seasonal averaging windows, representing, as is commonly assumed in atmospheric inversions 

[Peters et al., 2007], 50% or more of the model variance (fig. 1c). The contribution of biospheric 

flux uncertainty decreases from seasonal to annual time frames (44% of variance annually). 

Summertime ecosystem net productivity and wintertime net respiration are nearly balanced over 

a year (-0.75 ±0.25 Pg C/year over North America [Crowell et al., 2019]), hence reducing the 

absolute uncertainty of the net ecosystem exchange over a full year. The fossil fuel emission 

uncertainty, which is ranked second in importance on short timescales, becomes nearly equal to 

the biospheric flux uncertainty on the annual timescale.  Meanwhile, the downscaling of national 

estimates increases fossil fuel emission uncertainties considerably (cf. SI). Boundary inflow 

uncertainty, representing large-scale CO2 conditions in regional simulations, comprises 10% to 

15% of the model variance in daily to half-year timescales but declines to 5% annually because, 

in global inversions, the annual atmospheric growth rate is constrained by observations rather 

than simulations. The transport uncertainty closely resembles a series of random errors when 

aggregated over time; the associated model variance decreases rapidly from 20% to 5% beyond 

the synoptic scale (i.e. a few days to a week). As a result, in our high-resolution, regional 

modeling system, it appears to be the least important factor on seasonal to annual timescales, less 

influential than is typically assumed in global inversions [Baker et al., 2006; Basu et al., 2016; 

Gurney et al., 2002]. Atmospheric transport models perform quite well over North America, 

perhaps in part because of the relatively dense network of operational weather observations 

which are fed into state-of-the-art reanalysis products. Others such as higher spatial resolutions 

likely having a better representation of the transport and a domain-limited setup largely avoiding 

error growth could also lead smaller transport uncertainty in the regional modeling than the 

global modeling.  

3.2 Implications for the interpretation and design of atmospheric inversion studies  

The accuracy of atmospheric inversion results relies on accurately estimating uncertainty 

for each component of the system [Tarantola, 2005] (see also description in SI). Atmospheric 

inversion studies have typically relied on simplifying assumptions to produce these uncertainty 

estimates. As mentioned above, continental and global fossil fuel emissions are often assumed to 

be perfectly known [e.g., Gurney et al., 2002; Liu et al., 2017]. We re-examine this assumption 
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by quantifying the ratio of the biospheric CO2 flux uncertainty to the sum of the remaining 

uncertainty components both with and without the fossil fuel emission uncertainty (Fig. 1b). 

Consider the common – though unrealistic – assumption of perfectly known fossil fuel 

emissions. In this case, the ratio of biospheric flux uncertainty to the sum of the remaining 

uncertainty source components reveals a complex pattern. It increases as the averaging time 

window grows up to monthly-to-seasonal timescales, drops abruptly at the half-year point, and 

increases again to reach its maximum at the annual timescale (Fig. 1b). On monthly-to-seasonal 

timescales, the biospheric uncertainty is more than twice the sum of other uncertainty terms.  

This unrealistic assumption would suggest that the monthly-to-seasonal periods are an optimal 

temporal window for improving biospheric CO2 flux estimates and confronting divergent 

terrestrial biospheric CO2 flux models with atmospheric inverse flux estimates.   

Adopting a more realistic approach to the uncertainty of fossil fuel emissions changes the 

results drastically (Fig. 1b). The contribution of biospheric flux uncertainty is significantly 

decreased.  Furthermore, the monthly-to-seasonal maximum in the biospheric flux share 

disappears almost entirely. Fossil fuel emissions now account for 20% or more of the total 

variance across all timescales (Fig. 1c). Fossil fuel emission uncertainty therefore plays a key 

role in biospheric CO2 flux estimation and must certainly be included in continental-scale 

inversion studies. Without it, regional uncertainties in fossil fuel emission inventories may render 

accurate determination of biospheric CO2 fluxes impossible. 

3.3 Improving sampling strategies to reduce inversion uncertainties  

Quantifying the individual components of the uncertainty in CO2 fluxes and emissions is 

critical for regional inversion studies. We next analyze the relative contribution of each 

component of CO2 flux variance to the total uncertainty across space and time to inform the 

design of optimal atmospheric CO2 sampling strategies (Fig. 2). Spatially, the biospheric 

uncertainty dominates the total annual uncertainty across North America, excepting only the very 

edges of our domain. A few regions, namely the Canadian and Mexican West Coast, the Pacific 

Northwest, the Corn Belt, Florida, and the Canadian East Coast, show the variance of a 

biospheric flux uncertainty that is higher than 70% (Fig.2a). Biospheric flux uncertainties, 

integrated across North America, peak around the middle of the summer (Fig. 3) and are the 

largest contributor to monthly atmospheric CO2 uncertainty for the entire year.  

As expected in domain-limited inverse estimates, the CO2 boundary inflow uncertainty is 

most important at the lateral boundaries of the domain. The northern and western boundaries are 

most visible, highlighting the large-scale CO2 inflow from higher latitudes, (40-60°N) driven 

over North America by the North Pacific Jet (Fig. 2b). The colocation of the CO2 boundary 

inflow uncertainty with the jet stream suggests the importance of synoptic-scale variations to 

annual biospheric flux estimates. The boundary inflow uncertainty shows seasonal variation 

similar to that of the biospheric uncertainty (Fig. 3). We hypothesize that this is due to large and 

uncertain biospheric fluxes in the northern hemisphere but outside of our study domain. Our 
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ability to constrain this inflow is limited by the sparsity of atmospheric CO2 observations near 

the western boundary of the domain (Fig. S7).  

Fossil fuel emissions uncertainty contributes the highest percentage to the annually-

averaged total in the regions offshore of the East and Gulf Coast, the northwestern coastal region 

and most of California (Fig. 2c). The climatological mean flow, composed of mid-latitudinal 

westerly winds, drives fossil fuel CO2 signals off the east coast.  Monthly variations remain 

nearly level, with just a slight increase in winter and summer. While fossil emission uncertainty 

is never dominant over North America, when combined with uncertainty in the boundary inflow 

these components contribute a substantial fraction to the total uncertainty (Fig. 3). Note that the 

sum of fossil fuel and boundary inflow uncertainties has monthly variations nearly identical to 

those of biospheric flux uncertainty. This makes them practically indistinguishable in an inverse 

problem, unless our observations take advantage of the spatial structures in their uncertainties 

(Fig. 2) or measurements of additional trace gases, such as radiocarbons, are used [Basu et al., 

2016; Rayner et al., 2010]. 

At the annual timescale, our results suggest that the transport uncertainty plays the least 

important role in regional biospheric CO2 flux estimation, while uncertainties in CO2 boundary 

inflow and fossil fuel emissions have greater potential to confound efforts to estimate North 

American biospheric fluxes. Observing the flow of air upstream, over the north-eastern Pacific 

Ocean and the northern boundary of the model domain, is a promising first step toward reduce 

the uncertainty introduced by large-scale CO2 boundary inflow [Alden et al., 2016; He et al., 

2018]. Accounting for fossil fuel uncertainty can further improve the accuracy of North 

American biospheric flux estimates.  Additional targeted atmospheric CO2 data, therefore, could 

substantially reduce the uncertainties in current regional and continental carbon flux estimates.  

4 Discussion and Conclusions 

Our study based on a calibrated ensemble modeling system suggests that, at seasonal to 

annual timescales, uncertainties in CO2 boundary inflow and fossil fuel emissions have greater 

potential to confound efforts to estimate North American biospheric fluxes, and that atmospheric 

transport uncertainty plays the least important role in regional biospheric CO2 flux estimation.  

These findings may be specific to moderately high-resolution, numerical weather models; 

atmospheric transport may be a larger source of uncertainty for coarser resolution transport 

models at the global scale. We suggest increasing the number of observations of atmospheric 

CO2 concentrations taken at the northern and western boundaries of North America as a first step 

to reduce the uncertainty introduced by continental CO2 boundary inflow. Accounting for 

uncertainty in fossil fuel emissions and including them in the inversion framework, with 

observations targeted to reduce uncertainty in fossil fuel emissions, can further improve the 

accuracy of North American biospheric CO2 flux estimates. While the uncertainties presented 

here are in terms of atmospheric concentrations, the conclusions obtained are directly 

transferable to the surface fluxes, since the spread of flux and concentration is fixed for each 
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ensemble. Unrealistic assumptions about either of these two sources of uncertainty is likely to 

lead to erroneous conclusions about the other component of the North American CO2 budget. 

Most challenging to inversions, transport model uncertainties at sub-monthly timescales remain 

critical, suggesting potential improvement in flux estimation from the joint assimilation of 

meteorological and CO2 data, or more sophisticated meteorological transport schemes. 

Evaluation of inverse fluxes will also benefit from independent data over regions where 

independent components to the atmospheric CO2 budget dominate, allowing improvements of 

the components to be evaluated. 

We acknowledge that this work is based on the midday atmospheric boundary layer CO2 

simulations, and the implications can be limited to the regional carbon flux inverse estimates 

with surface in-situ atmospheric CO2 data. The sensitivity of the model uncertainties is very 

likely different to the airborne in-situ and column-averaged measurements. Chen et al. [2019] 

studied the modeled CO2 uncertainties in full-column CO2 concentrations due to biospheric 

fluxes, transport and CO2 boundary inflow using an ensemble system. They found that the model 

uncertainty from CO2 boundary inflow stays consistent throughout the entire column of 

atmosphere, while both of the transport and biospheric CO2 uncertainty decrease rapidly with the 

increase of the height; therefore, CO2 boundary inflow plays the most important role for column-

averaged CO2 among the uncertainty components studied. A comprehensive study on the 

seasonal characteristics of these uncertainty components in the column-integrated CO2 is 

underway. However, none of similar studies have been done with airborne in-situ measurements 

so far. Urgent investigations on the sensitivity of the model uncertainty to various measurement 

platforms, such as the airborne in-situ and column-averaged measurements is needed due to the 

fact that the availability of aircraft and remote sensing data has grown rapidly in the past few 

years.  
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Figure 1. Uncertainty metrics of the modeled midday atmospheric boundary layer CO2 

concentrations as a function of timescale presented for four model components (transport 

models, biospheric fluxes, fossil fuel emissions, and the boundary inflow) over North America 

for 2010. The domain of interest includes the majority of North America land and the 

surrounding ocean (color-shaded area in Figure 2).  (a) Root-mean-square difference (RMSD) of 

simulated CO2 from the observations, as contributed to by each of the inversion components and 

the total); (b) Ratio of the uncertainty (in the same RMSD) due to biospheric fluxes over that due 

to the rest of the error terms with and without consideration of the fossil fuel uncertainty; (c) 

Fraction of each variance term to the total variance in the simulated CO2. The uncertainties 

plotted are those from the ensemble sampled at the location of six NOAA CO2 tall tower 

measurements, indicated by red triangles in Figure S2. The locations of these towers can be 

found in Figure 2 and Figure S2.  

Figure 2. Spatial distribution of the fractions of variance in atmospheric boundary layer CO2 

concentrations due to (a) biosphere, (b) boundary inflow, and (c) fossil fuel emission 

uncertainties to the sum of these three terms at the annual timescale. These three components are 

coupled with atmospheric transport when we run the simulations. As a result, transport 

uncertainty scales with one of the components and cannot be independently presented. Given that 

annual transport uncertainty weights the least and act as random noise in Figure 1, we only show 

the fraction maps for the variance of the biospheric flux, boundary inflow, and fossil fuel 

emission uncertainties. Similar to Figure 1, the modeled midday atmospheric boundary layer 

CO2 concentrations are used. The circled crosses denote the location of the NOAA tower 

measurements used for calculating RMSD in Figure 1.  

Figure 3. Monthly mean variations of the modeled midday atmospheric boundary layer CO2 

uncertainties from biospheric fluxes, fossil fuel emissions, and boundary inflow over North 

America for 2010. The uncertainty of a given component is calculated by RMSD of simulated 

CO2 across the associated ensemble members from the ensemble mean.  The domain considered 

in computing the statistics includes the majority of North America land and the surrounding 

ocean (color-shaded area in Figure 2).  The dashed line denotes the sum of the model uncertainty 

attributed to fossil fuel emissions and boundary inflow.  
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