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Abstract 

This paper describes a novel road-matching method designed to support the real-time navigational function of cars 

for advanced systems applications in the area of driving assistance. This method provides an accurate estimation of 

position for a vehicle relative to a digital road map using Belief Theory and Kalman filtering. Firstly, an Extended 

Kalman Filter combines the DGPS and ABS sensor measurements to produce an approximation of the vehicle’s 

pose, which is then used to select the most likely segment from the database. The selection strategy merges several 

criteria based on distance, direction and velocity measurements using Belief Theory. A new observation is then built 

using the selected segment, and the approximate pose adjusted in a second Kalman filter estimation stage. The 

particular attention given to the modeling of the system showed that incrementing the state by the bias (also called 

absolute error) of the map significantly increases the performance of the method. Real experimental results show 

that this approach, if correctly initialized, is able to work over a substantial period without GPS. 

Keywords: Localization, Sensor Fusion, Belief Theory, Geographical Information System, Global Positioning System 

I. INTRODUCTION 
Many modern in-vehicle navigation and safety applications require real-time positioning of the vehicle 

with respect to a given set of digital map data. Real-time positioning allows the driving assistance module to 

accurately depict the position of the vehicle on the map, facilitates operations such as route calculation, 

supports Advanced Driver Assistance System applications (ADAS) such as Adaptive Cruise Control (ACC), 

adaptive lighting control, collision warning and lane departure warning. For driving assistance applications, the 

positioning module is of crucial importance to reach the ADAS attributes stored in the database, like the radius 

of curvature, the width of the road or the speed limits.  
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The quality of the localization process depends mainly on the quality of the road-matching which is a 

complicated problem when seeking to obtain reliable, precise and robust vehicle positioning on the road 

network (Bernstein), (Zhao).  

Positioning systems often rely on GPS, because of its affordability and convenience. However, GPS 

suffers from satellite masks occurring in urban environments, under bridges, tunnels or in forests. GPS appears 

then as an intermittently-available positioning system that needs to be backed up by a dead-reckoning system 

(Abbott). In this paper, we use the car’s rear wheel ABS sensors for this purpose. Given that the modern cars 

are often equipped with ABS braking systems, it seems to us judicious to re-use these sensors to measure 

elementary rotations of the wheels and to estimate the displacement of the car rather than to add sensors like 

gyrometers or magnetic compasses. Thus, a dead-reckoned estimated pose is obtained by integrating the 

elementary rotations of the wheels using a differential odometric model. The multisensor fusion of GPS and 

odometry is performed by an Extended Kalman Filter (denoted EKF in the following).  

The selection of candidate roads is the first stage of the road-matching problem (Taylor). Generally, this 

involves applying a first filter which selects all the segments close to the estimated position of the vehicle. The 

goal is then to select the most likely segment(s) from this subset. Nowadays, since the geometry of roadmaps is 

more and more detailed, the number of segments representing roads is increasing. The road selection module is 

an important stage in the vehicle localization process because the robustness and duration of the localization 

depends mainly on this stage. The road selection stage is also important because it reduces the number of roads 

to be processed, which is essential for a real time implementation. In order to be focused on this point, an 

accurate map Géoroute V2 provided by the French National Institute of Geography (IGN) was used in this 

work. Our strategy is based on the merging of several criteria using distance, direction and velocity 

measurements within the framework of Belief Theory. A connectivity test with the latest matched road is 

subsequently applied. Finally, the use of the one way restrictions, available in the database that has been used, 

allows less likely solutions to be eliminated by supposing that the driver respects the Highway Code. 

A more accurate location of the vehicle can be obtained by combining the selected segment with the 

pose estimated jointly by GPS and odometry. The key idea is to model the fact that the true position of the 

vehicle is located around the centerline of the most likely road. This region depends mainly on the width of the 

road, which is an ADAS attribute also stored in the database. We propose using the most likely road in order to 

build a new Kalman observation with its estimated associated error.  
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The outline is as follows. An overview of related work is firstly given in section II. Then, the 

architecture of the road-matching method is described. The state space formulation and the observation 

equations are detailed. We propose constructing a map observation akin to the GPS observation to be used in 

the Kalman filter. In section IV, we discuss the problem of road selection and we present the formulation of the 

problem in the framework of Belief Theory. Our approach is illustrated with an example, and experimental 

results corresponding to real situations are presented. Finally, real data results are analyzed in section V.  

II. RELATED WORK 

The road-matching problem is a localization problem which can be tackled in two different ways: global 

localization and/or pose tracking. The latter is the recursive estimation of the pose of the car starting from an 

approximate solution. Several aspects of this problem are linked to dynamic robot localization.  

Studies of navigation systems for driving assistance are often heuristic and not published in the 

literature because of patents. The early map-matching algorithms of the 1970s were deterministic. In this 

context, errors are not explicitly modeled and methods consist of correlating absolute or dead-reckoned 

positions and road geometry (Bernstein). Topology is used to eliminate outliers (Taylor, Greenfeld). In (Zhao), 

several approaches based on fuzzy logic are described and the problem of sensor and map-errors is addressed. 

Difficult problems occur when the vehicle is on a road not digitalized in the data base or when the situation is 

ambiguous like in junctions or when several roads are close and parallel. 

The localization problem of a land motorised vehicle on a digital roadmap can be seen as a robot 

localization problem. In the last ten years, a large number of approaches have been proposed in robotics and 

rely on the following key concepts (Borenstein). Localization sensors are generally imperfect and provide only 

uncertain information. Additionally, sensor readings generally contain noise. Moreover, readings can be 

ambiguous, that is, the environment may contain situations which cannot be distinguished. A localization 

method that seeks to be reliable must use a methodology able to handle uncertain and ambiguous information.  

Localization techniques can be distinguished according to the type of problem they address. Global 

localization (also called the wake-up robot problem) has to estimate the pose of the robot without any prior 

information. Such methods can handle the kidnapped robot problem, in which a robot is carried to an arbitrary 

location during its operation. Pose-tracking techniques (also called dynamic localization techniques) aim at 

compensating, by using absolute sensors, accumulated dead-reckoned or odometric errors that occur during 

vehicle navigation. They require the initial location of the vehicle to be approximately known and they cannot 
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recover if they lose the track of the vehicle pose. An outdoor vehicle equipped with a GPS receiver is faced 

with a pose-tracking problem since the probability of not having a GPS fix for a long distance is very low, even 

though the GPS system can be intermittent in urban environments for example. Therefore, the work reported in 

this paper is motivated by the need to build a robust pose tracking system based on a road-matching module. 

The objective is to localize the vehicle on a digital roadmap with a quantification of the accuracy of the 

positioning given the quality of sensor measurements. To manipulate uncertainty, we make use of Belief 

Theory (El Najjar).  

The pose-tracking problem is well described by a state space description (Dissanayake). The state 

vector contains the pose to be estimated along with other parameters like derivatives, bias or beacon 

coordinates in the case of a simultaneous localization and map building (Fox, Thrun). The evolution model 

integrates the inertial and odometric sensors while the absolute sensors feature in the observation model to 

correct the drift of the estimates. The combination process is often done in the context of Bayes recursive 

estimation (Kristensen). In the linear case and if the perturbations are white and Gaussian, Bayes filtering 

reduces to Kalman filtering (Arulampalam). If the equations are non linear and the noises non Gaussian, the 

probability density function can be estimated by particle filters. This methodology can then handle multi-

hypothesis situations (Jensfelt) if the resampling of the particles is well adapted to the problem and able to 

maintain the convergence of the estimation process. Gustafsson et al. recently completed a localization 

approach that has been successfully verified in a real environment with a digital roadmap using a rao-

blackwelised particular filter (Gustafsson). This method is well adapted to the global localization problem 

because it can output several particle clouds while the situation is ambiguous. But this method can give rise to 

many calculations which are not adapted for a real time implementation of the pose-tracking problem.  

III. PRINCIPLE OF THE ROAD-MATCHING METHOD 

The road-matching problem probably does not have an ideal solution. All developed methods have their 

advantages and their disadvantages and are optimized for the applications they were designed for (Tanaka), 

(Zhao). The performances of many navigation systems seem to be sufficient. However, safety applications 

need a reliable road-matching process. 

In addition, the techniques used to address this problem are in permanent evolution. Some problems 

solved today can disappear and other can appear. For example, improvements in satellite positioning systems 
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have tended to reduce absolute positioning errors. On the other hand, making an accurate road network 

increases the number of points describing arcs, thus making more complicated the segment selection problem. 

The road-matching method described in this section relies on Kalman filtering like in (Krakiwsky). The 

proposed approach can be described by figure 1. Firstly, the algorithm combines the ABS measurements with a 

GPS position, if it is available. Then, using this estimate, the credible roads are selected. If at least one segment 

is credible, a map observation is built and merged with the other data in a second Kalman filter estimation 

stage. We suppose that the reader is familiar with this formalism, so only the state-space representation will be 

detailed, i.e. the state vector, the motion model, the observation model and the covariance of the errors. 

 

DGP S

GIS

Map Matched 
pose 

M ulti-sensor
Fusion EKF

If at  least  one road is credible :
   - Select  t he most  credible segment
   - Build t he map observat ion 
   - Fuse it  with  Xk 

ABS wheel 
Sensors 

Road Selection

Odometry  

Xk

 

Fig. 1. Synoptic of the road-matching method. 

III.1 Localization and heading estimation by combining odometry and GPS 

Let us consider a car-like vehicle with front-wheel drive. The mobile frame is chosen with its origin M 

attached to the center of the rear axle. The x-axis is aligned with the longitudinal axis of the car (see Fig 2). 

 x0

 θk M yk

 xk

 y0

 W

 M

  
Fig. 2. The mobile frame attached to the car. 

The vehicle’s position is represented by the (xk,yk) Cartesian coordinates of M in a world frame. The heading 

angle is denoted θk. If the road is perfectly planar and horizontal, and if the motion is locally circular, the motion 

model can be expressed as (Ming Wang, Bonnifait): 
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where δs is the length of the circular arc followed by M, δθ the elementary rotation of the mobile frame. 

These values are computed using the ABS measurements of the rear wheels.   

III.2 Observation equations: GPS and Map 

When a GPS position is available, a correction of the odometric estimation is performed using an Extended 

Kalman Filter (EKF). If the GPS satellites signal is blocked by buildings or tunnels, for example, the motion model 

provides an odometric estimate of pose. 

This approximation of pose is used to select the most likely segment(s) from the database. These segments 

are then used to build a second observation (this approach will be presented in section III). If several segments are 

candidates, the observation function is non-linear (see Fig. 3). 

 
kXfY k β+= )(  (2) 

where Xk is the state and βk represents the observation error. 

 

Estimated 
position

Most likely segments extracted from 
the database for an estimated 

position 

 

Fig. 3 Non-linearity of the map observation. 

Two main strategies can deal with this non-linearity: 

 the management of multi-hypotheses 

 the selection of the most likely segment from the segment set. 

In this paper, we consider the second solution because of the simplicity of processing. The major drawback 

of this strategy is that the estimated location can be attributed to the wrong road, particularly when GPS 

measurements are not available. The management of multi-hypotheses is theoretically the ideal solution. 

Nevertheless, implementation is complicated because of combinatorial problems. In our method the most likely 
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segment is used to construct a map observation, denoted (xh,yh), and its associated error. Therefore, the complete 

observation equation becomes linear: 
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Where (xgps, ygps) is the GPS position measurement and (xh, yh) is the map observation. 

The GPS measurement error can be estimated in real time using the NMEA sentence "GST" provided by the 

Trimble AgGPS132 receiver which has been used in the experiments. Therefore, the GPS noise is not stationary.  

If we assume that the GPS position and the map observation errors are not correlated, the covariance matrix 

of the complete measurement Y can be separated into two parts: 

• Qgps: covariance matrix of the GPS error 

• Qh: covariance matrix of the map observation error. 
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Since Qk is diagonal, the GPS and map observations can be used in two separated Kalman filter estimation 

stages. This is an important issue for the real time implementation of the filter. 

III.3 Map observation 

One way of combining the most likely segment with the other sensors is to treat it as an observation that is a 

function of the state vector. Much effort has been spent on modeling the map observation error in a realistic way. It 

has turned out that a Gaussian mixture which encloses the road works well.  

To build the map observation, we consider two cases. 

III.3.1 Principle: case of a straight road 

 

Qgps 

Qh 
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Fig. 4. Case of a straight road. 

The simplest case occurs when the most likely segment corresponds to a straight road. In figure 4, the road 

selection stage provides three segments (bold characters). Their masses of Belief are 0.9, 0.7 and 0.55 for segments 

1, 2 and 3, respectively (We will see in section III how this masses can be assigned). As all these segments are 

credible (decision reached at the road selection stage), it is an ambiguous situation and the map observation is non-

linear. One way of circumventing this difficulty is to select the segment which has the highest Belief value 

(segment 1 here). The map observation (xh, yh) is defined as the orthogonal projection of the estimated position 

(xk, yk) onto segment 1 (Bétaille). Please note that the map observation can be constructed in a different way. In 

(Gustaffsson), the observation is the distance to the nearest road. In the recursive Bayesian estimation context (i.e. a 

particle filter), this (non-linear) measurement should be equal to zero.  

The problem is now to estimate the error of this observation.  

The box surrounding the segment and representing the road determines the maximum error of the map 

observation. The resulting probability density function is then theoretically spatially truncated. In the Kalman 

filtering context, this box is approximated by a Gaussian ellipse as shown in figures 4 and5.  

Let consider a local frame attached to the segment. Its x axis is collinear to the segment. In this frame, the 

Gaussian ellipse is oriented along the road segment and the co-ordinates of its center are (xh, yh).  

The error is then given by (in the ellipse co-ordinate system):  
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where E
xhσ  and E

yhσ  are the longitudinal and the transversal standard deviations. If the segment is infinite, 

then ∞=E
xhσ . This means that the map measurement can only correct the position in the y direction. 
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The transversal standard deviation is given by: 
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where  

 wy is the width of the road segment (wy is stored in the database as an ADAS attribute)  

 k is the constant associated with the chosen probability error ellipse P = 0.9 given by: 

 )1ln(2 Pk −−=  (7) 

 ec is the map error 

 

III.3.2 Case of a curved road  

In general roads are not straight and, because recent digital roadmaps are more detailed, segments have a 

smaller length (see Fig. 5).  
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result of the 
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Fig 5. Case of a curved road. 

 

The map observation is the nearest point from (xk,yk) making part of the most likely segment. Depending on 

the case, it is the orthogonal projection of (xk,yk) onto the segment or one of its extremities. It should be noticed that 

the most likely segment represents a linearization of the curved road.  

In this case, E
xhσ  is not infinite, but it needs to be big enough in comparison with E

yhσ  to indicate that the 

adjustment is greater in the y direction (in the local frame attached to the segment).  
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In the reference frame, the covariance matrix Qh of the map observation is obtained from E
hQ  by a simple 

rotation. If α is the orientation of the segment with respect to the x axis of the reference frame, then: 
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III.4  Augmenting the state vector 

 
The roads are symbolized by arcs whereas the car is moving with respect to a surface centered on these arcs. 

Moreover, the geometrical transformation between the GPS reference frame and the French Lambert projection 

frame can have an offset of several meters (<5m). Finally, the segment co-ordinates contain errors because of 

plotting inaccuracies and because the co-ordinates are stored as integers in the database (values rounded to the 

nearest meter).  

For all these reasons, combining GPS with odometry has a variable offset with respect to the map data. A 

solution to this problem is to add two offsets (denoted δx and δy) in the state vector and to observe them.  

As the goal of the positioning module is to localize the car on the road network (because the ADAS attributes 

are attached to this network), it is the GPS measurement that presents an offset rather than the map observation.  
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δx and δy are observable because they can be expressed as a combination of the measurements. The evolution 

of δx and δy is modeled by a constant. The evolution is made possible thanks to a non-zero state noise αk. Eq. 1 

becomes: 
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Let X=[x, y, θ, δx, δy]T and U=[δs, δθ]T. By rewriting Eq. 10 and 11, we obtain the state-space representation 

where the model error α and observation error β appear: 
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The observation model is linear whereas the evolution model is non linear. An Extended Kalman Filter 

with a measured input provides a means of combining all this data.  

IV. ROAD SELECTION USING MULTI-CRITERIA FUSION  

The road selection process can be described as in figure 6. The multi-sensor fusion gives an estimation 

of the pose X=(x,y,θ)t. In order to take account of the estimation error, a Gaussian ellipse is built using the co-

variance matrix P of the state vector X [El Najjar]. The speed v is the mean speed of the rear wheels.  

 Odometer 
(ABS sensors)

Fusion 

Multi-sensor 

Road selection

S1,S2, …,Sj,…Sn

Database 

x,y,θ,v,P 

Localization on 
the road 

DGPS

{Si } ⊂ { S1,…Sn} 

GIS 

 x,y,θ : position
 v : speed 
 P : covariance 
      matrix 

  

Fig. 6 . Architecture of road-matching  

 

The question is now to select the most likely segment(s) using a Geographical Information System 

(GIS). In order to speed up the treatments (a map contains thousands of roads, each one having several 
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segments), a first filter selects the n road segments {S1,…, Sn} that are located within a radius of 100 meters, for 

example. The center of the circle is the estimation of the current position (x, y) of the car. 

The problem is to select the 'good' segments from the subset {S1,…, Sn}: this is the road selection 

problem, also called Road Reduction Filter (El Najjar), (Taylor).  

This stage is difficult because, 

- The position is estimated with errors which can be increased by multi-path effects. In addition, 

the transformation between the GPS coordinates (WGS84 system of reference) and the French 

Lambert coordinates of the roadmap introduces errors (<5m), 

- The coordinates of the segments contain errors due to inaccurate terrain measurements by 

cartographers and because of numerical approximation,  

- The road network of the database does not always correspond to reality, i.e. it can contain old 

roads which no longer exist, and newly-built roads might not yet be included in the database, 

- The map does not contain all road network details. For example, a roundabout can be 

represented as a simple point, 

- The vehicle is moving on a 3D surface whereas the map represents a plane sight, 

- The vehicle does not run exactly on the segments representing the roads. 

Our road selection method combines several criteria using Belief Theory. This approach is very flexible 

and allows partial knowledge to be taken into account. This section first presents the concepts of Belief 

Theory. The criteria for selection will then be described, and finally the combination of data will be illustrated 

by a simple example and some real experiments. 

IV.1 Belief Theory 

Belief Theory allows uncertainties to be incorporated into calculations and provides a way of combining 

uncertain data. This theory was introduced by Dempster (Dempster) and mathematically formalized by Shafer 

in 1976 (Shafer). It is a generalization of Bayes Theory in the treatment of uncertainty. Generally, this theory is 

used in a multi-sensor context to merge heterogeneous information in order to obtain the best decision. 

The basic entity is a set of all possible answers (also called hypotheses) to a specific question. This set 

is called the frame of discernment and is denoted Θ. All the hypotheses must be exclusive and exhaustive and 

each subset of the frame of discernment can be a possible answer to the question. The degree of belief of each 
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hypothesis is represented by a real number in [0,1] called the mass function m(.). It satisfies the following 

rules: 

 ∑
Θ⊆

=

=

A

Am

m

1)(

0)(φ
 (13) 

A mass function is defined for all the different evidences. Each evidence A, for which m(A) ≠ 0, is 

called a focal element. 

As the application considered is related to road safety, only geometrical criteria are used because they 

are not influenced by human errors. This means that a criterion such as the speed of the vehicle is in 

accordance with the speed limitation is not considered. 

The two criteria chosen in this article can be formulated as follows:  

- The vehicle location is close to a segment of the neighborhood. This criterion depends on the error 

ellipse, 

- The segments on which the vehicle can be located are those which have an angle approximating to the 

direction of the vehicle. This criterion depends on the estimated 3σ bound of the direction and on the 

speed of the car. 

Belief Theory requires the assignment of elementary probabilistic masses defined on [0,1]. The mass 

assignment is computed on the definition referential 2Θ. 

2Θ={∅,H1,H2,…Hn,H1∪H2,…,Hi∪Hj∪Hk∪Hl∪…Hn}. 

This distribution is a function of the knowledge about the source. The total mass obtained is called the 

“basic mass assignment”. The sum of these masses is equal to one. Each expert - also called source of 

information - defines a mass assignment according to its opinion about the situation. 

In order to build mass assignments, we shall examine the inaccuracy of the various information sources 

(GPS, odometer and digital map) and physical observations like, for example, a car traveling at 40 m/s cannot 

be orthogonal to the direction of the segment. With this approach, information sources (i.e. criteria) are worked 

out from sensors. 

The problem of mass assignment of each criterion can be tackled in a global or local way. The global 

strategy involves examining simultaneously all the segments selected around an estimated position when 

assigning masses. The local strategy treats each segment separately with respect to the criterion under 
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consideration. Both strategies have been studied. We have concluded that the local strategy is the more 

effective, especially for a real-time application. 

The frame of discernment that we use is Θ = {Yes, No}, corresponding to the answer to the following 

question: is this segment the good one? The definition referential is then 2Θ = {Yes, No, Perhaps}. 

IV.2 Proximity criterion 

The proximity criterion is based on the measurement of Euclidean distance between the estimated 

position and each segment extracted from the road database. 

The estimated error of the position is quantified by an ellipse of 99% equi-probability produced by the 

EKF (drawn in dark gray in Fig. 7). The estimated position E is at the center of the ellipse.  

To allot a mass to a candidate segment [AB], we proceed as follows. Let denote d the distance between 

the segment and point E. 
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Fig. 7. Case of a non-credible segment. 
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dES’ = f(β)

e
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1 

 
Fig. 8. Mass assignment of the proximity criterion. 

The point S’ occurs at the intersection between the segment [ES] and the ellipse. The distance dES’ 

depends on the angle β of the segment [ES’] in the ellipse co-ordinates system. In the zone d < dES’, with a 

fuzzy modeling obtained by a probability-possibility transformation (Dubois), (Zadeh), the degree of 

membership is quantified. The upper curve in Fig. 8 assigns a mass to the Yes assumption. 

By complementing the mass of Yes, the mass of the Perhaps assumption is allotted. Then, the mass of 

Perhaps remains constant (equal to one) for dES’ < d < dES’+e, in order to consider the projection error and 
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the errors on the co-ordinates of the segments of the database. Finally, the mass of the No assumption is a step 

function starting from the distance d = dES’+e. 

In conclusion, the mass assignment of the proximity criterion depends on two variables:  

- The distance d between the center of the ellipse and the segment 

- The angle β between the distance support (ES) and the major axis of the ellipse 

The problem becomes more complicated when the width of the road is taken into account. Our method 

involves modeling the road by a box centered on the segment, the length of which is equal to that of the 

segment. The exact influence of the width of the road l is difficult to take into account in the computations of 

the criterion because l modifies the values of β and d. To simplify, we have chosen the following strategy: 

1) If the orthogonal projection of E exists inside segment [AB], d = dortho–l (Fig. 9a) 

2) If the orthogonal projection of E does not exist inside segment [AB], d = min(d1,d2,d3) (Fig. 9b) 

dortho

B
E

 l

A

(a) 

 
d1

d2
d3

A

B

E(b)

 
Fig. 9. Computation of the distance d by considering the width of the road. 

 

IV.3 Angular criterion 

In this section, a mass assignment function is proposed to express the fact that the most credible 

segments are those which have an angle approximating to the heading of the vehicle. 

Figure 10 presents the fuzzy modeling of the absolute value of the difference between the heading of the 

vehicle and the direction of the candidate segment: 

∆Heading = min(|α-θ| , |α-θ+π|)  with θ ∈[0,π].  (14) 

This curve depends on: 

- The speed of the vehicle 
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- The standard deviation of the estimation error of the heading angle  

Let m be the maximum belief which can be assigned to the Yes hypothesis (see Fig. 10). Therefore, m 

varies according to θσ : 

 θσ
πθσ 61)( −=m  (15) 

The scalar value B fixes the angular limit tolerated at a given velocity v : 

B(v) = 90°-kv, with k = (90-10)/Vmax. 

This strategy was developed to model the fact that an uncertain heading will not assign a significant 

mass to the Yes hypothesis. 
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Fig. 10. Mass assignment of Yes hypothesis for the angular criterion. 

 

The Perhaps mass assignment is done by computing the complement of the mass of Yes. The mass of 

No starts from the limit angle tolerated for a given speed i.e. B(v) and reaches one when the angle is equal to 

90 degrees (Fig.11). 
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Fig. 11. Examples of mass assignment at a given velocity (a): θσ = 0. (b): 
2
π
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IV.4 Criteria Fusion 

To obtain more reliable information from two different single sources S1 and S2, a combination of their 

mass assignments can be performed using Demspter-Shafer’s rule. Let A, Ai and Bi be assumptions of the 

definition referential 2Θ. The merging of the knowledge of S1 and S2 is given by:  

For all A in 2Θ = {Yes, No, Perhaps} 

 ∑
=∩

ΘΘΘ =
ABA

j
S

i
S

ji

BmAmAm )().()( 21  (16) 

If conjunctions exist which are not focal elements, a re-normalization step is necessary to satisfy the 

rule that m(φ)=0. The coefficient of re-normalization is called kθ and is defined as: 

 )()( 21
j

S

BA
i

S BmAmk
ji

Θ
=∩

Θ∑=
φ

θ  (17) 

It represents the incoherence between the different sources. If we set 
θ

θ kK −= 1
1 , the normalized 

expression of the combination is given by: 

 ∑
=∩

ΘΘΘ ⋅=
ABA

j
S

i
S

ji

BmAmKAm )().()( 21
θ  (18) 

This combination rule is independent of the order in which evidences are combined, when more than 

two evidences are involved. 

After the combination step, several decision rules can be used to obtain the final result. It is then 

possible to adjust a desired behavior. If an optimistic decision is desired, the maximum of plausibility has to be 

used. For a pessimistic decision, one can apply the maximum of belief. 

Associated with each basic assignment, belief (Bel) and plausibility (Pl) are defined by: 

 
∑=

∑=

≠∩

⊆

φAB

AB

BmAPl

BmABel

)()(

)()(
                                            (19) 

Belief and plausibility are interrelated by the relationship: 

 )(1)( ABelAPl −=                                             (20) 

where A  denotes the complement of A. 
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Many other decision rules exist in Belief Theory, especially for non-exhaustive frames of discernment. 

More information about them can be found in (Fabiani). 

In decision-making, the strategy adopted here is to keep the most credible segments according the law 

of ideal decision. The likelihood of a singleton assumption is characterized by two quantities (belief and 

plausibility) which are calculated using the set of masses. These quantities respectively correspond to the 

minimal probability and the maximum probability of that assumption’s being true. Consequently, a law of 

decision without ambiguity is when an assumption has a belief higher than the plausibility of any other 

assumption. 

The conflict computed in the Dempster-Shafer fusion rule is large when the two criteria are in total 

confusion. Therefore, we eliminate the segments which present a significant conflict. Experimentally, we have 

taken a threshold equal to 0.5. 

IV.5 Illustrative example: approaching a junction 

 
Let us use a specific case study to illustrate the method. In figure 12, the vehicle is traveling on the road 

represented by the segments 1 and 3, at a speed of 80 km/h. Estimation errors and digital map errors result in an 

erroneous estimated position which is closer to segment 2 than to the others. In the following, the mass attribution, 

the combination and the decision stages are described for each segment. 
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position
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Fig. 12. Estimated position and heading of the vehicle and 3 candidate segments. 

Figures 13, 14 and 15 show the mass assignments generated by the belief functions. It can be seen that in 

segments 1 and 3, the proximity criterion and the heading criterion are in agreement because both of them assign a 

large belief to the Yes hypothesis, a small belief to the Perhaps hypothesis and nothing to the No hypothesis. 

Conversely, segment 2 presents a total conflict between the two criteria. 
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Fig. 13. Mass assignment for segment 1. 
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Fig. 14. Mass assignment for segment 2.  Fig. 15. Mass assignment for segment 3. 

Figure 16 shows the results of the fusion of the criteria with Dempster-Shafer rule without 

normalisation. It will be noticed that segment 2 contains a significant conflict, while the fusion of the criteria 

concerning segments 1 and 3 indicates a strong belief in the Yes hypothesis. 

 

 
Fig. 16. Fusion results without normalisation. 
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To decide if a segment is a good candidate, we first consider the conflict generated by the fusion stage. 

As it is important for segment 2, this segment is eliminated. Next, the ideal decision law is applied after 

normalisation of the masses. This law simply means here that if the Belief in the Yes hypothesis is larger than 

the sum of the No and Perhaps hypotheses, the segment in question is credible. Finally, figure 17 shows that 

segments 1 et 3 are selected. This result concurs with the real situation. 
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Fig. 17. Fusion results with normalisation. 

IV.6 Making use of road topology 

It is important to distinguish on the one hand road-matching methods that use known facts about a 

driver’s intended route, and on the other hand methods that do not use such information. Knowing the driver’s 

intended route can make the road-matching more easier since the search of possible segments is more 

restricted. For example, matching the location of a vehicle along its pre-calculated route is a relatively easy 

task since the vehicle is expected to follow a fixed set of segments in a predetermined sequence. However, 

confining the search space to only “expected to be traveled” segments is not always a good idea. Drivers can 

intentionally or unintentionally deviate from this itinerary. Various circumstances such as bad traffic conditions 

or inaccessibility of a given street segment can lead them to travel on an alternative route. Therefore, in our 

work, we avoid using route information in the selection of probable segments. 

It is also customary to distinguish road-matching methods that use only geometric information 

(Bernstein) from those that make use of topological information (Greenfeld). When using only geometric 

information, one can only make use of the “shape” of the segments and not of the way in which they are 

connected. Topological information makes use of the geometry of the arcs as well as the connectivity and the 

contiguity of the segments. This makes the topological solution much more reliable. Indeed, considering the 
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topological characteristics of the network and the progression of the car along this network prevents the 

algorithm from jumping between one road and another. More generally, the integration of additional criteria in 

the road selection stage can improve the robustness of a road-matching algorithm.  

Thus, two binary criteria have been added to the two credibilist criteria presented in sections IV.2 and 

IV.3: 

- Test of connectivity to the segment on which the vehicle was matched at the previous stage, if 

this segment existed, 

- Test of comparison between traffic direction, stored in the database and the estimated heading 

of the vehicle. This criterion is very effective for removing ambiguity in case of parallel roads. 

IV.7 Experimental results of the road selection method 

The road-selection method presented above works in real time conditions with a frequency of 1Hz 

(under WIN NT/2000 Pentium III 700 MHz). The DGPS receiver used is a Trimble AgGPS132 with an 

Omnistar differential correction. It should noticed that 1 Hz sampling frequency is enough to compute an 

odometric estimation using ABS sensors. In order to synchronize this sampling process with the GPS, we have 

used the PPS signal of the AgGPS132 receiver. 

The following figure presents an aerial view of an experimental test performed in Compiègne, in 

France. The map data-base is managed and interfaced by the GIS software "Geoconcept". 

 
Fig. 18. Experimental situation on the “IGN Géoroute” database. The estimated positions are dotted. 
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Fig. 19. Candidate segments extracted from the “IGN Géoroute” database 

 (the estimated positions are dotted). 

 

To illustrate the road-selection method, let consider how it treats ambiguous situations. In the test 

shown in figure 20, the vehicle exits a motorway. This situation is very ambiguous because the angles of three 

segments (the motorway, the exit ramp and the entrance ramp) are close to the heading of the car. Moreover, 

they have a common point very close to the estimated position. 
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Fig. 20. The car exiting the motorway (local frame). 
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                 Fig. 21. Vehicle on exit ramp (a).    Fig. 22. Vehicle on the exit ramp (b). 

At the beginning, three segments are selected (shown by bold lines in Fig. 20). Two of them correspond 

to the motorway and one to the exit ramp. The entrance ramp (located on the opposite side of the road) is not 

selected because of its angular criterion. Afterwards, the situation is still ambiguous (Fig. 21) until the 

difference between the car’s heading and the angles of the motorway segments becomes significant. Then, the 

system is able to assert that the car is on the exit ramp (Fig. 22). 

Let us analyze the behavior of the method on another potentially-ambiguous situation. In figure 23, two 

critical situations occur. The first one corresponds to an intersection of three roads: two of them present the 

same direction and the third one has a 45-degree angle. In the second situation, three roads have the same 

direction and are very close to each other (<10m). The speed of the vehicle is 70 km/h. 

 
 400 m 

 Situation 1

 Situation 2 

 

Fig. 23. Top view of the test trajectory. 
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Figure 24 shows how the system treats the first critical situation: several credible roads are good 

candidates. First, it can be seen that only the segments which represent the parallel road are selected. 

Moreover, as these segments belong to two different roads, the situation is ambiguous. If the application which 

uses the road-matching method can tolerate errors, the most credible segment can be output. In this particular 

case, the most credible segment corresponds to the right road, but it is a matter of chance. 
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Fig. 24. Credible segments are in bold and the most credible is in large bold 

(French Lambert coordinates). 

Figure 25 shows the result for the second critical situation. In this situation, the vehicle is traveling on a 

wide road, represented by two arcs. A secondary road is parallel and very close to the main road.  

The road selection method extracts 4 segments. Once more, the situation is ambiguous, because the 

segments belong to three different roads.  
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Fig. 25. Credible segments are in bold and the most credible is in large bold. 



 "Autonomous Robots Journal" (Kluwer). 

 M.E. El Najjar and Ph. Bonnifait 25 

A possible strategy for handling the ambiguity of such a situation could be simply not to correct the 

pose using the map. In other words, the state observer, in this case, merges only the GPS and odometric 

measurements. 

V. EXPERIMENTAL RESULTS OF THE ROAD-MATCHING METHOD 

In this section, we analyze the behavior of the complete method combining the data of the ABS, the 

GPS receiver and the map. Figure 26 presents an aerial view of a 4-km long experimental test performed in 

Compiègne. In the following, the map observation covariance matrix was computed with P=0.9. 
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Fig 26. Experimental path and candidates roads.  

In figure 26, the gray path corresponds to the approximate absolute positions provided by the DGPS 

transformed in the French Lambert coordinate system of the map. The black path is the result of the fusion of 

the sensors with the roadmap. In this experiment, a DGPS signal mask was simulated (i.e. the DGPS 

measurements were not used). This signal mask starts at the exit of the first roundabout (in the bottom of 

Fig. 26). It can be seen that in spite of the long DGPS mask (about two kilometers), the vehicle location is 

matched correctly. In fact, the final estimated positions stay close to the DGPS points. 
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The fine performance of the road selection method is illustrated in figure 27. Between the two 

roundabouts, the journey is a 2x2-lane road: each roadway is represented by a one-way arc. In spite of the 

closeness of the DGPS positions to the wrong arc, the estimated positions are associated to the right arc. 

Moreover, the roundabouts succeed in correcting the estimation, even though they are represented by many 

segments, which leads to ambiguous situations. 
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Fig. 27. DGPS positions and {ABS, DGPS, map} fused positions. 
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Fig. 28. DGPS positions, {ABS, DGPS, map} fused positions and odometric estimation positions. 

In order to prove the interest of the map observation, figure 28 shows the dead-reckoning results using 

the ABS sensors only, when the GPS signal is not available. One can see that the map observation corrects 

efficiently the odometric drift (the GPS mask still starts at the exit of the roundabout in the bottom of the 

figure).  

 

VI. CONCLUSION 
 

This article has presented a road-matching method based on a multi-sensor fusion approach. The main 

contributions of this work are the formalization of a map observation in the Kalman filtering context, the use of 

a road selection method based on multi-criteria fusion using Belief Theory, and an experimental validation 

with real data. The selection of roads from a database is a key issue in the road-matching problem. A 

theoretical formalization of this problem in the framework of Belief Theory was proposed under the angle of 

data fusion of several criteria. Then, we presented the development of assignment functions, and an 

experimental validation was carried out with real data. Two criteria were developed. They use an estimation of 

the pose of the car and segments extracted from the database. It should be noticed that these criteria take into 

account explicitly the estimation and geographical errors. 
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It is also interesting to note that, in Belief Theory, a lack of knowledge of a criterion can be quantified 

(in this particular case, it is the Perhaps hypothesis) and managed in the fusion process. Moreover, as different 

decision-rules can be applied, different behaviors can be obtained. If one wants a reliable behavior, the ideal 

decision-rule is to be used. This is the choice which was made in this work. An advantage of this strategy is 

that it is possible to detect an ambiguous situation, where several roads are not distinguishable. On the 

contrary, this method can also detect the fact that the vehicle is not on a road stored in the database. This kind 

of situation can be frequently met if the roadmap is not exhaustive.  

Another interesting characteristic of this approach is that it is flexible and modular in the sense that it 

can easily integrate other criteria: the result of the combination of two criteria can be combined with the 

masses assigned by a third one, and so on. Therefore, it is possible, in the same framework, to build and 

combine other criteria testing, for example the compatibility between the current speed and that recorded in the 

database. This feature is interesting because adding other criteria is a way to increase the robustness of the road 

selection. 

Finally, a method to use the map as an observation of the state space representation has been introduced. 

This observation is used in the Kalman filter in the same way that the GPS data. It turned out in the 

experiments that the GPS measurements are not necessary all the time, since the merging of odometry and 

roadmap data can provide a good estimation of the position over a substantial period. Nevertheless, it was 

noticed that this estimation can sometimes diverge. This is due to the fact that the strategy presented in this 

paper keeps only the most likely segment. When approaching an intersection, several roads can be good 

candidates. If a wrong road is more credible than the right one, the method will diverge, because the GPS is not 

available to correct this wrong choice. A solution to this problem is to manage several hypotheses until the 

situation becomes unambiguous. We think that is the main perspective of this research. 
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