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ABSTRACT

A very important class of queries in GIS applications is the
class of K-Nearest Neighbor queries. Most of the current
studies on the K-Nearest Neighbor queries utilize spatial in-
dex structures and hence are based on the Euclidean dis-
tances between the points. In real-world road networks,
however, the shortest distance between two points depends
on the actual path connecting the points and cannot be com-
puted accurately using one of the Minkowski metrics. Thus,
the Euclidean distance may not properly approximate the
real distance. In this paper, we apply an embedding tech-
nique to transform a road network to a high dimensional
space in order to utilize computationally simple Minkowski
metrics for distance measurement. Subsequently, we extend
our approach to dynamically transform new points into the
embedding space. Finally, we propose an efficient technique
that can find the actual shortest path between two points in
the original road network using only the embedding space.
Our empirical experiments indicate that the Chessboard dis-
tance metric (Lo ) in the embedding space preserves the or-
dering of the distances between a point and its neighbors
more precisely as compared to the Euclidean distance in the
original road network.
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1. INTRODUCTION

The K-Nearest Neighbor (KNN) queries are frequently
issued in multidimensional spaces. These queries ask for
the K closest points to a query point with respect to some
distance function. The complexity of the selected distance
function has direct impact on the complexity of these queries.
These distance functions are often computationally complex
because of either the nature of the function and/or the large
number of dimensions. A Road Network is a special case of
two dimensional spaces where the objects are points that
are inter-connected by roads and the dimensions specify the
geographical coordinates (i.e., latitude and longitude) of the
points. An example KNN query for such networks is to find
the K closest gas stations to a specific location. Evaluating
KNN queries for such networks is computationally expensive
because the distance is a function of the network paths con-
necting the points (e.g., shortest path between two points).
Now consider an application where the query point ¢ is mov-
ing (e.g., it is a car). In this case, the distance function D
from ¢ to the points of interest is to be computed very often
and in real-time. This renders the computation of complex
distance functions impractical for real-time KNN queries for
moving objects.

The majority of the current research on different aspects
of KNN queries are based on utilizing different spatial index
structures such as R-Tree or Quad-Tree. The use of index
structures for distance measurements implicitly implies the
use of Euclidean distance between the points. The first con-
tribution of this paper is that it demonstrates that the Eu-
clidean metric is not a good distance approximation for road
networks. Our experiments with real-world data show ap-
proximately 40% false hits for 100% recall when Euclidean
metric is used. The experiments also show that even for
lower percentages of recall, in which Euclidean metric pro-
vides a perfect 100% precision, the results are highly out of
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query points. Our approach, termed Road Network Embed-
ding (RNE), is based on transforming a road network into a
higher dimensional space in which simpler distance functions



can be utilized. In addition, we show that the Chessboard
distance metric in RNE provides a proper approximation
of the actual distances between the points. One drawback
of RNE is that the embedding technique requires an off-line
pre-computation of the shortest paths between all the points
in the network. However, we show that for a high percent-
age of the points, the Chessboard distance can be computed
using only a subset of the dimensions. Hence, we introduce
the notion of truncated RNE, where the shortest paths from
only a small percentage of the points are computed off-line.
Our experiments verify that while truncated RNE provides
an acceptable accuracy, it extensively reduces the space and
computation complexity of RNE.

Our proposed RNE approach is aimed for the KNN queries
when the query points are static. For moving query points,
RNE must re-compute the embedding of the original net-
work whenever the object moves (i.e, a new point is added
to the original space). To address this problem, we propose
an extension to RNE, termed D-RNE, to dynamically em-
bed moving or new query points. Finally, while RNE can
find the nearest neighbor, it cannot determine the actual
path between that neighbor and the query point. Hence,
we propose a greedy-heuristic algorithm, termed SP-RNE,
to find the actual path between the points using only their
transformations in RNE.

The remainder of this paper is organized as follows. In
Section 2, we review the current research on the KNN prob-
lem. Section 3 discusses the problem of KNN in road net-
works and briefly describes a naive solution based on pre-
computation of all the distances off-line. Section 4 provides
a background on the embedding techniques. We describe
our approach for KNN queries by embedding the road net-
works into higher dimensional spaces, and compare it with
the naive pre-computation approach in Section 5. In Sec-
tion 6, we propose two techniques for dynamic embedding
of moving objects and finding the shortest path using the
embedding space. We discuss our experimental results and
future work in Sections 7 and 8, respectively.

2. RELATED WORK

Recently, many new techniques have been proposed for
the K-Nearest Neighbor and range queries in two and multi-
dimensional spaces that can be adapted to road networks.
They can be categorized into two groups. The first group
partitions the space by utilizing different spatial or con-
ventional index structures such as R-Tree [3] and its vari-
ants [2]. The second group, graph-based, are based on pre-
computation of the nearest neighbors, and then use of index
structures and/or Voronoi diagram.

As examples of the first group, Roussopoulos et al. in
[6] propose branch-and-bound R-tree traversal algorithm to
find the nearest neighbor objects to a point, and then gener-
alize it to find the k nearest neighbors. The main drawback
of their algorithm is the depth-first traversal of the index tree
that incurs unnecessary disk accesses. Hjaltason and Samet
in [4] propose a general incremental nearest neighbor algo-
rithm that uses a priority queue on the index tree to reduce
disk accesses. Their algorithm is adapted to R-Tree and is
suitable for distance browsing queries but does not provide
a substantial improvement in performance over the current
R-Tree based KNN algorithms. Yufei et al. in [7] propose
query processing methods that use R-Tree as the underly-
ing data structure to address nearest neighbors for a query

point that is moving on a straight line segment. In gen-
eral, the use of index structures (e.g., R-Tree, Quad-Tree)
for distance measurement implicitly implies use of Euclidean
distance between the objects. This may not necessarily be a
good approximation of the actual distance between objects
in a road network where the distance between two points de-
pends on the actual path connecting the points and cannot
be computed accurately using one of the Minkowski metrics.

In [8], Yu et al. propose partitioning the data in a high-
dimensional space and selecting a reference point for each
partition. The data in each partition are transformed into
a single dimensional space based on their similarity with re-
spect to a reference point, and KNN queries are performed
using one-dimensional range search on a BT-Tree index.
The effectiveness of this approach depends on how the data
are partitioned. In [1], Berchtold et al. propose algorithm
for similarity search in multimedia databases with large set
of high-dimensional points. They suggest pre-computing the
result of any nearest-neighbor search, that corresponds to
a computation of the Voronoi cell of each data point and
storing the Voronoi cells into an index structure. The near-
est neighbor query is then equivalent to finding the Voronoi
diagram that contains the query point. Even though the
voronoi diagram techniques are efficient for first nearest neigh-
bor queries, but their extension for the KNN queries requires
a priori knowledge of the value of K.

The proposed approach in this paper can be categorized
in the second group and is based on transforming the road
networks into a higher dimensional space. The transforma-
tion requires a pre-computation of the distances from all or
a group of points to all other points.

3. PROBLEM DEFINITION

Consider a set of n multidimensional objects S = (01, 02, . .
and a function D that specifies the distance between the
objects. The K nearest neighbors problem with respect
to a query point, q, is to find a set S C S of K objects
with smallest distances to g, that is for any object o’ € S’
and o € S — S, D(d’,q) = D(o,q). The distance function
D usually requires expensive operations. For example, in
a biological database that contain information about pro-
tein molecules, a distance function performs complicated
quadratic-time structural comparisons to find the similar
molecules.

In the context of road networks and moving objects, the
original space contains two-dimensional objects: intersec-
tions (original nodes) connected by some streets. The query
points in such spaces are usually moving objects (e.g., cars)
travelling through the streets from a source to a destina-
tion and the KNN problem is defined as finding the closest
points of interest (e.g., hospitals, gas stations) to the moving
objects. Some of the challenges in such scenarios are:

e The distance function D between two original nodes
in the road networks is usually specified as the length
of the path between the nodes with some minimum
weight (e.g., time to travel along the path). These
weights result in complex algorithms for computation
of distance functions (e.g., Dijkstra algorithm to find
the minimum weighted path in a network with com-
plexity O(e + nlogn), where e and n are number of
edges and nodes in the network respectively).

e When the query point ¢ is a moving object, the dis-
tance function D from ¢ to the points of interests is to
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be computed very often and in real-time. This renders
the computation of complex distance functions imprac-
tical for real-time KNN queries for moving objects.

There are three different ways to address these challenges:

1. One approach is to approximate the complex distance
function D with a simpler distance function D’ in the
same original space. For example, the shortest path
between two intersections in a road network can be
approximated by their Euclidean distance. The advan-
tage of this approach is that the well studied spatial
index structures that are based on the Euclidean dis-
tance can be utilized to address regular and constraint
KNN queries. The disadvantage, however, is that the
Euclidean distance does not properly approximate the
actual distance function in the road networks.

2. Another naive approach is the pre-computation of all
shortest distance pairs during an off-line process. Con-
sider a road network S with n intersections and e
roads. In this approach, we pre-compute the short-
est distances between all intersections of S and store
the distances into a database. Hence, this approach
addresses the challenge of real-time KNN queries by
retrieving the distance between two points from the
database rather than computing it real-time. The space
complexity of this approach is O(n?) while the com-
putation complexity is O(n(e + nlogn)).

3. We propose a third approach as to introduce a new
multi-dimensional space with simple distance functions
D’s (e.g., Minkowski distance metrics) that can either
precisely approximate the distances between the orig-
inal nodes (i.e., D'(o’,p") = D(o,p)), or at least pre-
serve the ordering of the distances between the original
nodes (i.e., D(p,0) < D(p,q) = D'(p’,0’) 2 D'(p',q")).

In Section 5 we discuss our proposed approach to transform
the road network into an embedding space. We compare the
pros and cons of approaches 2 and 3 in Section 5.2.

4. BACKGROUND ON EMBEDDING

In this section, we provide an overview of the space embed-
ding techniques. Let (S, D) be a finite metric space where
S is a finite set of n objects and D : S * S — RT is a dis-
tance metric over S. The embedding, or transformation, of
a finite metric space (S, D) into a vector space (R*, D) is a
mapping E : S — R* where k is the dimensionality of the
vector space and D' is one of Minkowski L, metrics in R*:

k
Ly(y) = (3 loe = il?]” 1)

in which x; and y; are the ith coordinates of two points z,y
in space respectively, and p is the order of the Minkowski
metric. The first order of the Minkowski metric, Li, is
known as Manhattan distance, the second order Lo as Fu-
clidian distance, and the infinite order Lo = maz;|z; — ys|
as Chessboard distance. The objective of embedding is to
have a fast and computationally simple D’ function such
that D(z,y) = D'(E(z), E(y)). In other words, the distance
between two objects in the original metric space should be
close enough to the distance between their corresponding
embedded points in the embedding space. The quality of an
embedding technique FE is measured by distortion and stress.
Distortion specifies the maximum difference between dis-
tance functions D and D’ and is equal to ¢1 X ¢2 (c1,c2 > 1)

when it is guaranteed that for an embedding technique E:

D(x,
PLY < p(B@), Bw) < D) e @
for all pairs of objects x,y € S. Stress represents the overall

deviation in the distance and is defined as:
> yes(D'(E(z), E(y)) — D(z,y))*
Ez,yes D(LL‘7 y)2

The optimum D’ function generates zero stress, equivalent
to no distortion (i.e., c1 = ¢z = 1). An embedding technique
E is contractive when D'(E(z), E(y)) < D(z,y) and proz-
imity preserved when for all ,y and z in the original space,
D(x,y) < D(z, z) can be concluded from D’ (E(z), E(y)) <
D'(E(x), B(2)).

In Section 5, we describe how we transform a road network
to an embedding space using Lipschitz embedding tech-
nique.

5. ROAD NETWORK EMBEDDING (RNE)

A road network can be modelled as a weighted graph G =
(V,E). Let |[V| = n be the number of nodes in G (i.e., road
intersections), |E| = m be the number of edges in G (i.e.,
roads), and W (e) be the weight of an edge e € E (e.g.,
length of a road). The distance d(u,v) from node u to v is
defined as the length of the minimum weighted path from u
to v. We assume that for arbitrary nodes u,v and w, G is
undirected: d(u,v) = d(v,u), and W (e) is defined such that
the triangular inequality holds: d(u,v) < d(u,w) + d(w, v).
Therefore, the set of nodes in G with the distance function d
generates a metric space (V, d). In this space, d is symmetric,
non-negative and obeys triangular inequality.

We propose to utilize Linial, London and Robinovich (LLR)
[5] embedding technique on road networks. LLR embedding
technique is a contractive specialization of Lipschitz embed-
ding, in which an object in the original space is mapped
to a point in a k dimensional vector space. Consider space
(S, D) in which D(.,.) is a distance function between the
objects in S. Distance D is extended as follows: let S; be
a subset of S and D(zx,S;) = minyes,{D(x,y)}, that is,
D(x,S;) is the distance from x to its closest neighbor in S;.
Let R = {51, S2,..., Sk} be a set of subsets of S. Lipschitz
embedding with respect to R is then defined as: E(z) =
[D(z,S1), D(x, S2), ..., D(z, Sk)], which is a k-dimensional
point in a vector space with each axis corresponding to a
reference set in R. LLR embedding defines R as a set of
O(log®n) subsets of S: R = {S1.1,...,S81,n,.--,98.1,..-,98.x}
where kK = O(logn) and 8 = O(logn). Thus the original
space is embedded into a O(log? n) dimensional space. Each
subset S;; is defined as a random subset of S with size 2°.
This means that the first x reference sets have 2 objects, the
second k reference sets have 4, etc., until the last  reference
sets that have approximately n/2 objects. The embedding
E(z) defined above for LLR has a distortion of O(logn) (i.e.,
c¢1 = 1and c2 = O(logn) ). By using LLR technique, metric
space (V,d) which represents the road network is embedded
into (R*,d’) in which k& = O(log®n) and d’ distance func-
tion is one of the L, distance metrics over R* as defined in
Equation 1. Hence each node v in the original network is
mapped to the point E(v) in O(log? n) dimensional embed-
ding space:

E() = (Es;;(v),..., Es; . (v),..., Esﬁyl(v), vy Bsg (v))
in which Es, ;(v) = d(v, Si ;) (4

Stress =

3)



5.1 RNE: Making LLR Practical

Although LLR is a good start for transformation of road
networks, it needs some tweaking to render it practical.

e To reduce the computation complexity of RNE, we in-
troduce the notion of Truncated Embedding Space as
an embedding space where only the distance between
the original nodes and the first few reference sets are
computed and considered as the attributes of the em-
bedded points. The intuition is as follows. As dis-
cussed in Section 5, the value of the (4, j)th dimension
of the embedded point E(z) is defined as the minimum
distance between the original node z and the (i, j)th
reference set in R. We define A and B as sets of subsets

of S:
A=(S11,-.-,51,6,--+,5p,q) (5)
B = (Sp gy Sprisy-- ., 58,1) (6)

in which 1 <p < B and 1 <« p’ < 3. The sets A and
B contain the first and the last few reference sets of
R, respectively. Since the number of nodes in the ref-
erence sets of A are far less than the number of nodes
in the reference sets of B (e.g., sets with p = 1 contain
2 nodes while the sets with p’ = 3 contain n/2 nodes),
the distances between original nodes x and y to the
sets in A are probably greater than the distances to
the sets in B. Hence, the values of |E; ;(x) — E; ; (y)|
that correspond to the reference sets in A are proba-
bly greater than the values corresponding to the sets
in B. This means that the first dimensions of the em-
bedded points, and hence the first reference sets of R,
are more effective than the last dimensions when the
Chessboard metric is used. The results of our experi-
ments confirm this intuition.

e The Chessboard metric can precisely approximate the
actual distance between some nodes (i.e., d' = d).
Consider the contractive property of the LLR approach

that implies when (V, d) is embedded into (%logz " Loo):

d'(E(z), E(y)) = mazi ld(z, Si;) — d(y, Si ;)| < d(z%)y)
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This means that when the Chessboard metric is used
for distance measurement, d’ is always less than or
equal to d. The equality of d’ and d holds in the fol-
lowing two cases:

1. When for some i, j, Si,; € R, x € S;,; and x is the
nearest node to y in S; ;. Therefore d(y, Si ;) =
d(y,z) and d(z,S;;) = 0. Hence |d(z,S;;) —
d(yv Si,j)‘ = d(m7 y)'

2. When for some 4,5, S;,; € R, the shortest path
from z to its nearest node in S; ;, say z, passes
through y. In this case z is also the nearest node
to y in S; ;. Therefore d(z,S; ;) — d(y, Si,;) =
d(z,2z) —d(y, z) = d(z,y).

For the original nodes that are close to each other, the
Chessboard metric provides a better approximation for
the actual distance (d’ ~ d). The intuition is as fol-
lows. Consider two original nodes x,y that are very
close to each other. Also suppose that the Chessboard
distance between x and y is computed using reference
set S;; € S which as stated above, is probably one
of the first few reference sets of S with only a few
nodes. These assumptions imply that: a) one node, z,
in S;,; is probably the closest node to both z and v,

881,

and b) z is far from z and y. These resemble a trian-
gle Axzzy where the Tzy angle is close to 0° and hence
|d(z, z) — d(y, 2)| ~ d(z,y).

Note that in the computation of the Chessboard dis-
tance, different S; ;s are evaluated. The combination
of x,y and each S;; resembles a different triangle, but
the one that has the minimum value for angle zz%, and
hence leads to the maximum value for d’, is picked by
the Chessboard metric.

5.2 Analysis

In this section, we compare RNE with the naive pre-
computation approach discussed in Section 3 in terms of
precision, storage requirement, computation complexity and
functionality.

Precision: As discussed in Section 3, the naive approach
is based on pre-computing the shortest path between all
pairs of the original nodes. Hence this approach provides
a 100% precision when the distance between two original
nodes are requested. In contrast, RNE provides an approx-
imation of the actual distance which in the worst case is
distorted by a factor of O(logn). Our experiments, how-
ever, show that for real world road networks, distortion is
usually far less than the worst case and hence RNE also
provides acceptable precision in practice.

Storage Requirement: The space complexity of the
pre-computation approach is O(n?) since the shortest path
between all pairs of n original nodes generate a symmet-
ric matrix with n? elements, equivalent to n2/2 tuples in a
database. In contrast, each node in RNE is mapped to only
one point (i.e., n tuples in the database) with log®n dimen-
sions, requiring space complexity of O(nlog®n). The space
complexity for truncated RNE is O(n/n).

Computation Complexity: RNE’s off-line computa-

tion is more computationally complex than the pre-computation

approach since it uses the original distance function d (e.g.,
shortest travelling time in a road network) to compute the
transformations of the original nodes. However, truncated
RNE requires the shortest path computation to (O(y/n))
of the original nodes, and provides a better computation
complexity: O(n?y/n) as compared to O(n?) for the pre-
computation approach.

Functionality: RNE is complementary to the current
research on different aspects of the K nearest neighbor prob-
lem and embedding techniques. For example, caching tech-
niques for querying K nearest neighbors of moving objects
that are based on Euclidean distance and R-Tree index struc-
ture can be adapted to be used in the embedding space by
using Chessboard distance and the X-Tree [2] index struc-
ture. In contrast, the pre-computation approach only keeps
the distances between all pairs of the original nodes and
hence no index structure can be utilized to explore the ge-
ometry features of the nodes.

6. RNE EXTENSIONS

The RNE approach discussed in Section 5 is neither aimed
to address the points that dynamically change location (e.g.,
moving query points), nor can it identify the actual path
between the points. In this section, we propose two exten-
sions to RNE in order to: a) dynamically embed moving
objects, and b) find the actual path between two points in
the original space using their transformations in the embed-
ding space.
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Figure 1: RNE Extensions
6.1 Dynamic RNE (D-RNE)

In the road network embedding approach discussed so far,
we assumed that the query points and the points of interest
are subsets of the original points (i.e., intersections) and are
embedded off-line. This is not a realistic assumption since
the query points are often moving objects and the location
of the points of interest are usually between intersections
and may not even be predetermined. With the current em-
bedding techniques, insertion of a new set of points into the
original space leads to the recomputation of the transforma-
tions of all original points in the initial original space. This
renders these techniques impractical for real-time K nearest
neighbors for moving objects. Hence an online embedding
technique is required to embed these points as their locations
change.

We propose an extension to the transformation technique
discussed in Section 5 to embed the query points real-time.
Our technique utilizes two features:

1. The query points and points of interest in a road net-
work are always on the paths between the original
nodes, meaning that insertion of these points into the
original space does not introduce new edges into the
original graph and does not change the distances be-
tween the original nodes.

2. The probability of using those subsets of S that have
fewer number of nodes is higher with the Chessboard
metric Lo, as the distance measure (as discussed in
Section 5.1).

Consider Figure la where the query point @ is on the
path between the directly connected original nodes P; and
P;. From feature 1, we can conclude that if the query point
@ was initially in the original space, the distance between
Q and S, ., the (a, b)th dimension of E(Q), would be calcu-
lated as:

Es, ,(Q) = D(Q, Sap) =
min(D(Q, P) + D(Py, Sa), D(Q, P,) + D(P;, S0)) (8)

Insertion of ) after the original nodes are embedded may
change some of the subsets of S, with a probability of
2%/n. This probability is negligible for the road networks
with large number of original nodes (n > 1) and the subsets
Sa,p with a very few nodes (a % 1). This means that inclu-
sion of ) into the original space would not have changed the
subsets of S that have a few nodes, but may have changed
the subsets that contain large number of nodes (i.e., a > 1),
which in turn may lead to changes in the values of (a,b)th
dimensions of the embedded points. However, feature 2 in-
dicates that these dimensions are not effective anyway when
the Chessboard metric is used for distance measurements.

b. Shortest path estimation

We conclude that despite possible changes in the embedding
of the original nodes when a new node is inserted into the
original space, the Chessboard distances between the em-
bedded points still remain the same. Hence we generalize
Equation 8 to calculate all dimensions of E(Q).

6.2 Shortest Path in RNE (SP-RNE)

While the embedding techniques are intended to approx-
imate the actual complex distance functions with simpler
functions, they are not aimed to find the shortest path be-
tween the nodes in a road network. In this section, we
propose a greedy-heuristic algorithm to find the shortest
path between two points in the original space using only the
distances between their transformations in the embedding
space. Consider the query point () and point of interest [
in Figure 1b and suppose that @ is only connected to points
P1, Ps, ..., P;. The intuition of our algorithm is that for a per-
fect embedding function E that D(z,y) = D'(E(z), E(y))
for all z,y € S, if the shortest path from @ to I passes
through points p1, p2, ..., p;, then the shortest path from
E(Q) to E(I) passes through E(p1), E(p2),..., E(p;) and
vice versa. We assume that for an embedding function with
distortion, the probability that the shortest path from E(Q)
to E(I) does not pass through E(p1), E(p2), ..., E(p;) is pro-
portional to the distortion: the higher the distortion, the
higher the possibility that the shortest path from E(Q) to
E(I) goes through different points than the shortest path
from @ to I.

The algorithm tries to find the global optimum solution
by searching through the local optimums. In the first step,
a point P; among all directly connected neighbors of the
query point @ is found such that the length of the path
from the transformation of ) to I through P; is minimum.
This point is selected as the next point in the shortest path
from @ to I, and is then considered as the next query point.
The algorithm continues on the next query points until it
reaches a point that is directly connected to I.

The complexity of the algorithm is proportional to the
length of the diameter of the network: the longest path be-
tween any two points in the network when W (e) =1 for all
e. The upper-bound of the complexity is O(n) but in a real
world road network that nodes have a degree of 4 or less, the
complexity of the algorithm is far less. For example, the av-
erage complexity of the algorithm for a Manhattan network

is O(y/n).
7. PERFORMANCE EVALUATION

We conducted several experiments to: 1) compare the pre-
cision of different Minkowski metrics for distance measure-
ment in the embedding space discussed in Section 4, 2) study
the impact of K and density of the points of interest on the
performance of the RNE approach, and 3) study the accu-
racy of D-RNE approach and SP-RNE technique discussed
in Section 6.

For our experiments, we used a real data set for Kuwait
obtained from NavTech Company. The data covers a rectan-
gular area with corner points latitude and longitude (47.51,
29.06) and (48.44,29.60) and contains 117,000 road segments,
that constitute a graph with approximately 50,000 nodes.
Different features in that area were also used as points of
interest with different densities (density of the points of in-
terest is defined as the number of points of interest over
the number of original nodes). We use the precision-recall
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Figure 2: Precision comparison of different distance
metrics with K=5

metric to measure the accuracy and the longest common
subsequence to measure how precisely each approach/metric
preserves the ordering in the result sets.

In our first set of experiments, we investigated how pre-
cisely different metrics for distance (i.e., Chessboard, Eu-
clidean and Manhattan) in the embedding space approxi-
mate the real distance in the original space, by finding the
K nearest neighbors of the query points when the density
of the points of interest varies. Figure 2 depicts the preci-
sion of these metrics when K=5 and 100% recall is achieved
(i.e., when all the correct nearest neighbors are found). Our
experiments for other values of K show similar trends. As
shown in the figure, precision of the Chessboard metric in
the embedding space increases up to 98% as the density
grows. In contrast, Euclidean metric in the original space
behaves independent from the density and provides an al-
most constant precision of 60% to 70%. This means that
when the Euclidean distance is used in the original space to
find the K Nearest Neighbors of a query point, 40% of the
result set are false hits. The figure suggests a threshold value
for the density of the points of interest, 0.5% for our data set,
that can be used in a query optimizer to utilize either the
Euclidean metric in the original space or the Chessboard
metric in the embedding space for distance measurement.
The figure also shows that the Chessboard metric always
outperforms Manhattan and Euclidean metrics in the em-
bedding space. Hence, from now on, we focus on comparison
between the Chessboard metric in the embedding space and
the Euclidean metric in the original space.

Figure 3 depicts the precision-recall graph of the Chess-
board metric in the embedding space and the Euclidean met-
ric in the original space. As shown in Figure 3a, Chessboard
metric provides a better performance as the density of the
points of interest increases. This is because the higher the
density of the points of interest, the higher the possibility of
the first K of those points being closer to the query point,
and hence less distortion (as discussed in Section 5.1). In
contrast, Figure 3b shows that the performance of the Eu-
clidean metric in the original space slightly degrades as the
density increases. The intuition here is that when the points
of interest are sparse, the neighbors are far enough from the
query point that even the Euclidean metric can preserve the
ordering of the distances. Comparison between Figure 3a
and 3b also shows that the Euclidean distance in the orig-
inal space provides a better precision as compared to the
Chessboard metric in the embedding space only when the
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Figure 3: Precision-Recall with K=5
points of interest are very sparse.

Figure 4a depicts how different approaches preserve order
in the result set when K=5 (results for other values of K have
similar trends). The Y axis in the figure is the length of the
longest subset of the result set that has the same order as
the actual result set. As shown in the figure, the Chessboard
metric in the embedding space always outperforms other
metrics/approaches and provides better ordering in the re-
sult set as the density of the points of interest increases. In
contrast, the ordering in only 40% to 60% of the results are
preserved when the Euclidean metric in the original space
is used. This means that even for lower percentage values
of recall in which Euclidean metric provides a 100% preci-
sion (Figure 3b), the results are highly out of order. Since
in certain applications, the mis-ordering of some points in
the result set (i.e., the neighbors with similar distances to
the query point) may be tolerable, a relaxed measure can
be used to compute the longest common subsequence in the
result sets. Figure 4b shows the results when we relaxed the
longest common subsequence measure by 10% (i.e., we ne-
glected the mis-orderings between the neighbors that have
less than 10% difference in their distances from the query
point). As shown in the figure, this small relaxation of our
measure leads to much better order preservation in the re-
sult set of both Chessboard metric in the embedding space
and Euclidean metric in the original space. This means that
the mis-orders introduced by both metrics are mostly for the
points with similar distances to the query point.

Our next set of experiments' were aimed to investigate
the impact of K on the performance of the different metrics.
The results show that both Chessboard and Euclidean dis-

'Due to lack of space we eliminated the details and graphs
of the remaining experiments. Please refer to the full paper
for details.
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Figure 4: Comparison of order preservation by dif-
ferent approaches with K=5

tance metrics perform better for smaller values of K and the
performance of both decrease as the percentage of the recall
increases. The reason is that the higher values of recall are
achieved when the points of interest that are further from
the query point are found. Higher values of K also introduce
points of interest that are further from the query point. As
we discussed in Section 5.1, the points of interest that are
far from the query point contribute to more distortion and
hence less precision.

In our next set of experiments, we synthetically generated
3500 new nodes (7% of the original nodes) in the original
space to investigate the performance of D-RNE. Note that
the inclusion of the new nodes does not change the distances
between the original nodes. The results showed that the dif-
ference between the precisions when the synthetic nodes are
embedded off-line and when they are dynamically embed-
ded in real-time using D-RNE approach is always less than
0.8%. In our next set of experiments, we studied the ac-
curacy of the SP-RNE technique. Our experiments showed
that in 72% of the cases, the path between 2 nodes calcu-
lated by SP-RNE matches their actual shortest path, and
for the other 28% is on average 11% longer.

Our final set of experiments were aimed to study the space
requirements of pre-computation, RNE and truncated RNE
approaches. Table 1 shows the observations. As shown in
the table, 256 dimensions are required for the RNE, while
the Chessboard distance is computed for over 95% and 90%
of the embedded points using only the first 70 and 40 di-
mensions, respectively. The table also illustrates that the
shortest path computation in truncated RNE approaches
are performed for far less number of nodes as compared to

Approach Dimensions | Shortest paths Number of | Required
computed for Tuples Space
Pre-Computation - 50,000 nodes 1.25 billion 30 GB
RNE 256 50,000 nodes 50,000 103 MB
T-RNE, 95% acc. 70 672 nodes 50,000 28 MB
T-RNE, 90% acc. 40 160 nodes 50,000 16 MB
Table 1: Complexity comparison of pre-

computation, RNE and truncated RNE

the regular RNE and pre-computation approaches: 672 and
160 nodes versus 50,000 nodes. Finally, the number of tu-
ples generated and the total disk space required by the pre-
computation approach are significantly larger than those of
the RNE approaches.

8. CONCLUSION AND FUTURE WORK

In this paper, we focused on the class of K nearest neigh-
bor (KNN) queries for moving objects in road networks.
We proposed to apply an embedding technique to a road
network (RNE) in order to convert its points to a higher-
dimensional space and use the Chessboard metric for dis-
tance measurements in the new space. We introduced the
notion of truncated-RNE, that has less computation com-
plexity than RNE but still provides an acceptable precision.
We also proposed two extensions to RNE: 1) D-RNE to dy-
namically embed new points into the embedding space and
2) SP-RNE to find the shortest path between points in the
original road network using their transformations in the em-
bedding space.

We plan to extend this study in two ways. First, we plan
to modify the current Euclidean-based caching techniques
for KNN queries to work for the Chessboard metric in the
embedding space. Second, we intend to formalize the trade-
offs between the Euclidean metric in the original space and
the Chessboard metric in the embedding space in order to
utilize these trade-offs within a query optimizer for choosing
one approach over the other.
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