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Abstract
Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the
most popular methods. Numerous improvements of these two clustering methods have been introduced, as well
as completely different approaches such as grid-based, density-based and model-based clustering. For improved
bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application.
In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering
algorithms.We review 40 different clustering algorithms of all approaches and datatypes.We compare algorithms on
the basis of desirable clustering features, and outline algorithms’ benefits and drawbacks as a basis for matching
them to biomedical applications.
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INTRODUCTION
Clustering in biomedicine is traced back to Greek

antiquity when Aristotle attempted to classify living

organisms. Clustering algorithms are developed for

datasets that are too large and complex for manual

analysis [1]. Not all existing clustering algorithms

have acquired prominence in bioinformatics and

many remain in obscurity [2, 3]. Clustering partitions

objects into clusters, such that objects with similar

characteristics are clustered together and dissimilar

objects are in different clusters [4–6]. Clustering is

a form of unsupervised learning. This means that no

prior knowledge exists on any object classifications.

Unsupervised learning differs from supervised learning,
such as support vector machines (SVMs) or decision

trees, where prior knowledge of several objects’

classifications is used for training the classification

algorithm.

Clustering in bioinformatics involves two groups

of users, both of which need to understand what

algorithmic features a biological application requires.

One user group includes biologists with experience

on the underlying biological problem, who apply

existing clustering algorithms to solve the problem.

The challenge is to choose a suitable algorithm from

the toolbox, since each algorithm will produce

different results. For instance, in clustering gene

expression data a biologist wishes to mix numerical

expression levels with discrete Gene Ontology (GO)

categorization. Another user group includes compu-

ter scientists who develop novel bioinformatics

algorithms. This group assumes current algorithms
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are insufficient for the underlying biological pro-

blem, and that progress requires improved methods.

For instance, clustering large sequence databanks

requires an algorithm that is fast and not affected by

redundant sequences. There is significant overlap

between these two user groups, since applications

often stimulate algorithmic development.

Biomedical applications have different require-

ments and clustering algorithms have various

features. To evaluate a clustering algorithm’s suit-

ability for a problem, we use a general set of desirable

features [7, 8].

Scalability: The runtime and memory require-

ments should not explode on large (high-

dimensional) datasets [9]. For example, clustering

large sequence datasets is computationally intensive

[10]. Krause et al. used 25 Linux machines to cluster

nearly one million non-redundant sequences in

3 months [11]. Li et al. used a Linux workstation

with dual 3.0 GHz Xeon processors and 4 GB RAM

to cluster 3.2 million proteins at 90% sequence

identity level in <8 h [12]. In such a setting scalability

of clustering algorithms is essential. For much smaller

gene expression datasets, most clustering algorithms

perform satisfactorily on a desktop computer and

thus scalability is not an impotant criterion in this

setting.

Robustness: Ability to detect outliers that are

distant from the rest of the samples. Outliers may

indicate objects that belong to a different population.

For example, cancer genes (oncogenes) may be

activated, over- or down-expressed, only in a small

number of samples [13].

Order insensitivity: A clustering algorithm should

not be sensitive to the ordering of the input objects.

For example, reordering the proteins in an inter-

actome dataset should not result in different clusters

[14]. Order insensitivity is important for every

application, as it is key to ensure reproducability

of results.

Minimum user-specified input: Parameters, such as

the number of clusters, will affect the result [1, 4].

For example, in gene expression data specifying the

number of clusters will result in different groups

of co-regulated genes [2, 3, 15].

Mixed datatypes: Objects may have numerical

descriptive attributes, such as a set of genes expressed

at different levels over time; and discrete (categorical)

descriptive attributes, such as genes with GO

annotations [16–18], or interactomes where a protein

is described by its connections to other proteins [19].

Arbitrary-shaped clusters: A clustering algorithm

should find arbitrary shaped clusters [20]. Figure 1

shows coinduced genes that present expression

Figure 1: Each row represents a yeast gene’s expression pattern over 17 time points [21]. Coinduced genes present
local similarities and time-shifted relationships.
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patterns with local similarities and time-shifted

relationships [21–23]. Some algorithms can identify

such clusters, while others find global similarity in

genes’ expression patterns. Cluster shapes are

meaningful only for numerical data.

Point proportion admissibility: Duplicating objects

and re-clustering should not change the result [20].

For example, Krause et al. removed nearly 200 000

redundant sequences, which were at least 80%

identical over at least 80% of their length to another

sequence, and clustered the remaining �1 000 000

sequences [11]. In contrast, in gene expression

datasets there are usually no identical expression

patterns in a series.

Evaluation of clustering quality is application-

dependent, with choices for quality measures

including: precision/recall to a gold standard [24];

entropy of the clusters [25]; ontology annotation

enrichment [17, 26]; reproducibility [27]; Hubert-

Arabie Indices, the number of pairs of objects that

are correctly in the same or different clusters divided

by all pairs of objects [28–30].

The objectives of this article are: a. to survey

important clustering applications in biomedicine,

b. to explain benefits and drawbacks of existing

clustering algorithms, c. to provide guidelines on

selecting a clustering algorithm for an application.

This article is organized as follows. First, we

outline different biomedical applications’ require-

ments. Next, we provide a classification of clustering

algorithms based on features that they inherit

from one another, as shown in Figure 2; refinement

algorithms inherit and improve upon root algo-

rithms’ features. Then, we compare the features of

40 clustering algorithms, divided by approach and

datatype, and explain their utility for biomedical

applications.

BIOMEDICALAPPLICATIONS
A suitable clustering algorithm depends on the

application and datatype [8]. Next, we outline

applications to gene expression, interactomes and

sequences.

Gene expression
A gene expression dataset contains measurements of

increasing or decreasing expression levels of a set of

genes [2, 3, 7, 31]. A number of gene expression

measurements are usually taken, across time points,

tissue samples, or patients. It is represented as a

matrix of numerical values: gene versus time, gene

versus tissue, gene versus patient. The clusters

contain similar objects with respect to a metric,

representing genes of similar functionality, or tissues

of similar profiles, or patients of similar clinical

outcomes [32–37].

There may be thousands of genes expressed only

at low levels. Desirable clustering features include

minimum user input, since small changes in parameters

will lead to different clusterings [38]. Another

desirable feature is ability to cluster mixed datatypes
[22]; especially for disease data, it is desirable to

complement the expression data with discrete data

such as patient sex, age group, etc. [39–41].

Arbitrary-shaped clusters are desirable since gene

expression patterns are locally rather than globally

Figure 2: Classification of clustering algorithms.
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similar and potentially time-shifted, as Figure 1

shows [21, 22, 42, 43, 143]. Moreover, robustness to
noise and outliers is desirable. Outliers appear in tumor

expression, where cancer is divided into subtypes,

and oncogenes are activated in few subtypes of

a cancer group; without outlier detection, subtypes

may be misclassified in clusters [13].

Microarrays allow to compare expression in

tumors and healthy tissues for several patients.

With the amount of tumor expression data increas-

ing rapidly, cancer is a common clustering applica-

tion [44]. Tumor clustering typically places tumor

samples into classes with different clinical behavior

and overall survival [2, 45, 46]. The ultimate aim is

targeting specific treatments to distinct tumor types

[47]. The best treatment can differ for each tumor,

e.g. prostate cancers may follow various clinical

courses after treatment [48, 49]. Tumor classification

involves: (i) Clustering tumor samples into groups of

similar behavior [3]. It is difficult to determine

whether clusters are meaningful, reflecting true

structure in the data or random aggregation

[50, 51]. The noise problem is aggravated by outlier

oncogenes, or differentially expressed genes, which

are activated for a small number of tumor samples

[52]. (ii) Classifying a new tumor sample correctly.

Gruetzmann et al. identified 568 differentially

expressed genes that were consistently up- or

down-regulated in pancreatic cancer, and could

represent good candidates for novel diagnostic and

therapeutic approaches to pancreatic cancer [53].

Birnie et al. used clustering to describe an expression

signature of 581 genes whose levels are significantly

different in prostate cancer stem cells, and found

tissue-specific signalling pathways [54].

Networks
Protein–protein interaction networks (interactomes)
consist of nodes representing biomolecules (pro-

teins), and edges representing interactions [55–59].

An interactome can be represented as a square

matrix, where a nonzero point means two proteins

interact, and zero otherwise. Clustering interactomes

often aims to predict complexes, where a complex is

a group of proteins interacting at the same time and

cellular location [60–64]. Desirable features include

robustness to noise and outliers, since interactomes have

many errors and clustering is sensitive to network

alterations [65]. User-specified parameters should be

minimal, since it is hard for users to specify

correct values for parameters, such as the number

of complexes. Integrating mixed data types such as GO

annotations helps with predicting complexes, since

three connected proteins do not imply all three

interactions occur at the same time and location

[16, 19].

Sequences can be clustered into protein families

[66]. Protein sequence family relationships are

typically represented as hierarchical [67, 68]. The

sequences can be of genomic, ‘transcriptomic’ (ESTs)

or protein origin [69]. The similarity is often based

on BLAST sequence alignment [70, 11]. Determin-

ing a representative structure for each family is the

aim of many initiatives [71]. With the tremendous

growth of sequence databases, clustering must be

scalable and fast. Because of the large size of sequence

datasets, essential features include order insensitivity.
Point proportion admissibility is also essential, since

sequences in public databases are often redundant

[72, 73]. Unlike gene expression or interactomes,

these features are essential in dealing with sequences.

The requirements of this domain pose a challenge

for hierarchical grouping methods.

Regulatory networks model transcription factors

activating or inhibiting the rates of gene transcription

into mRNA. Genes in a cell interact with one

another indirectly through their mRNA and protein

products.

Synthetic mutant lethality searches for interactions

between two genes, by examining if simultaneous

mutations in both genes lead to death or another cell

growth defect [74, 75]. This is explained by genetic

redundancy; both genes perform the same function

but each gene carries it out in a different way.

Synthetic mutant lethality data is represented as a

square matrix, where a point is set to one if the two

genes are lethal in combination and zero otherwise.

Clustering roadmap
Clustering partitions N objects into k clusters. Object

o has m attributes, {o1, . . . , om} (usually N�m).

Attribute oi, i¼ 1 . . .m, has a domain Di of a

datatype, such as numerical or discrete. Figure 2

depicts inheritance relationships between clustering

algorithms. Root approaches are separated into

algorithms with different features: partitioning

(k-means), hierarchical, grid-based, density-based,

model-based [8]. Refinement algorithms improve

upon a root approach, inheriting the approach’s

features, while possibly introducing drawbacks.

Table 1 compares algorithms’ features (Section 1)

and shows whether they are recommended for
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Table 1: Clustering algorithm comparison

Algorithm Complexity Robust
to
outliers

Order
independence

User
input

Mixed
datatypes

Arbitrary-
shaped
cluster

Point prop.
admiss

Availability Since Gene
expression

Interactomes Sequences Applied
to
biology

Partitioning (k-means)
k-Means [76] O(tkN) No No 1, 10 No No No Matlab,Weka, R 1998 Yes
Farth. First Trav. [77] O(Nk) No No 1 Yes No No Weka 2001 No
k-Medoids (PAM) [78] O(tkN) Yes No 1 No No Yes Matlab, R 1987 Yes
CLARA [79] O(ks2þ k(N-k)) Yes Yes 1 No Yes Yes Code 1990 rec No
CLARANS [80] O(N2) Yes Yes 1 No Yes Yes Code 1994 rec No
Fuzzy k-means [43, 81] O(tkN) No No 1 No Yes No Matlab,Weka 2002 Yes
k-Modes [82] O(tkN) No No 1 No ^ No Matlab,Weka, R 1998 Yes
Fuzzy k-modes [83] O(tkN) No No 1 No ^ No Matlab,Weka 1999 Yes
Squeezer [84] O(kN) No No 13 Yes No No Code 2006 No
k-Prototypes [85] O(tkN) No No 1 Yes No No Matlab,Weka 1997 No
COOLCAT [86] O(N2) No No 1 No No No ^ 2002 No
CLICK (gene expr.) [36] ‘Fast’ ^ Yes ^ No No No C 2000 Yes

Hierarchical
Agglomerative single,

average, complete-linkage
[145, 147]

O(N2) single,
O(N2logN)
average &
complete

No Yes 5, 15 Yes Yes No R hclust 1999 Yes

Eisen gene expr. [15, 87] O(N2) single,
O(N2logN)
average &
complete

No Yes 5 Yes Yes No Java appl. 1998 Yes

Spectral [88, 89] O(N) (roughly) No Yes 5 Yes No No Matlab, R, BicAT 2001 Yes
BIRCH [90] O(N) Yes Yes ^ No No Yes Cþþ 1996 rec rec rec No
CURE [91] O(N) Yes Yes ^ No Yes Yes Code 1998 rec rec rec No
ROCK [92] O(kN2) No Yes 1, 13 Yes ^ No C 2000 No
Chameleon [93] O(N2) Yes Yes 13 No Yes Yes Code, web service 1999 Yes
LIMBO [94] O(NlogN) Yes Yes 14 No ^ No Cþþ 2004 No
hMETIS [95] ‘Fast’ No Yes 5, 10 No No No Code, web service 1997 No
Power graphs [96] O(Nd2) Yes Yes 5, 10, 12, 13 Yes ^ Yes Cytoscape 2008 rec Yes

Density-based
HIERDENC [97] O(N) Yes Yes ^ Yes ^ No Code 2007 rec rec rec Yes
MULIC [14, 97] O(N2) Yes No ^ Yes ^ No Code, web service,

Cytoscape
2006 rec Yes

DBSCAN [98] O(NlogN) Yes Yes 3, 7 No Yes No Weka 1998 Yes
OPTICS [99] O(NlogN) Yes Yes 3, 7 No Yes No Weka 1999 Yes
DENCLUE [100] O(N2) Yes No 7 No Yes Yes Weka 1998 No

(continued)
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Table 1: Continued

Algorithm Complexity Robust
to
outliers

Order
independence

User
input

Mixed
datatypes

Arbitrary-
shaped
cluster

Point prop.
admiss

Availability Since Gene
expression

Interactomes Sequences Applied
to
biology

CACTUS [101] ’Scalable’ No Yes 1, 4 No No No Code 1999 No
STIRR [102] ’Scalable’ No No 12 No No No ^ 1998 No
CLICK (categ.) [103] ‘Scalable’ No Yes ^ No ^ No Code 2005 No
CLOPE [104] O(kdN) No Yes ^ No No No ^ 2002 No
WaveCluster [105] O(N) Yes Yes 8, 9 No Yes No Code 1998 No
STING [106] O(N) Yes Yes ^ No No No Code 1997 rec rec No
CLIQUE [107] O(N) Yes Yes 3,8 Yes Yes Yes Code 1998 rec No

Model-based
SOMs (NeuralNet) [23] O(N2) No No 1, 2, 5 No Yes No Matlab, Python,

WebSOM
1999 Yes

COBWEB [108] O(Nd2) Yes No ^ No ^ No Weka 1987 rec No
BILCOM [109] O(N2) Yes No 5 Yes ^ No Code 2006 rec Yes
AutoClass (ExpMax) [110] O(kd2Nt) Yes Yes ^ Yes Yes No Weka, Cþþ,

R mclust
1995 rec rec Yes

SVM clustering [111] O(N1.8) No No ^ Yes Yes Yes Matlab, Cþþ,
Java, SVMlight

2007 Yes

Graph-based
MCODE [19] O(Nd3) No Yes 6 No ^ No Cytoscape 2003 Yes
RNSC [112] O(N2) No Yes 1 No ^ No Code upon request 2004 Yes
SPC [65, 70] O(N2) Yes Yes 1 No Yes No Code upon request 1996 Yes
MCL [113] O(N3) Yes Yes 11 No ^ No Web service 2002 Yes

Variables:N¼ num objects, d¼dimensionality, k¼clusters, t¼ iterations, s¼ sample size.The reported complexities are according to the authors. Since these are the worst case complexities, an algorithmmay achieve
faster runtimes on most datasets. User-specified parameters include: 1. number of clusters, 2. training data as background knowledge, 3. minimum number of objects or density threshold, 4. average number of
dimensions, 5. threshold/cutoff for cluster discrimination, 6. degree (connectivity), 7. radius/maximumdistance, 8. grid size,9. wavelet transform,10. stop criterion,11.matrix inflation,12. node/edgeweights,13. minimum
similarity,14. bound formemory/info loss,15. dissimilaritymeasure.
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an application. The O(�) notation describes how the

size of the dataset affects an algorithm’s runtimes;

higher values are slower. In the next sections, we

discuss these algorithms.

PARTITIONING CLUSTERING
In this approach, objects are partitioned and may

change clusters based on dissimilarity [7]. Partitioning

methods are useful for bioinformatics applications

where a fixed number of clusters is desired, such as

small gene expression datasets [38]. A drawback is

that the user typically specifies the number of clusters

as an input parameter.

Numerical
k-Means
In k-means, the user specifies the number of clusters

k [76]. Clusters have a representative, which is the

meanvector, for finding the closest cluster to an object,

which minimizes mean-object dissimilarity with a

metric such as Euclidean distance. k-Means itera-

tively assigns objects to the closest of k clusters,

and the means get updated. Mean �C for cluster C
with nC objects contains the mean values of its

members, and is defined for attribute i:
PnC

j¼1 Xij=nC:
The iteration continues until the number of objects

changing clusters is below a user-specified threshold.

In [82] two methods for selecting the initial means

are discussed.

k-Means deals with numerical attribute values

(NAs), but it is also applicable to binary datasets.

k-Means has complexity O(tkN), where t is the

number of iterations. Typically k, t�N, so that

k-means is essentially linear in the number of objects

N. k-Means may terminate at a local rather than

global optimum. k-Means is unsuitable for noise,

since outliers may distort the representative cluster

means. k-Means is unsuitable for discovering

arbitrary shaped clusters (Figure 1). The result

depends on the initial cluster means.

The k-means algorithm was recently parallelized

for fast laboratory use [114]. Next, we discuss

improvements upon k-means addressing its short-

comings: speed, user parameters, sensitivity to out-

liers and initial means, arbitrary shaped clusters.

Farthest FirstTraversal k-center (FFT) algorithm
The FFT algorithm improves the k-means complex-

ity to O(Nk). It deals with k-means’ sensitivity to

initial cluster means, by ensuring means represent the

dataset variance. Like k-means, FFT is not suitable

for noisy datasets, since the means might be outliers.

K cluster centers are set. The first center is chosen

randomly. Each remaining center is determined by

greedily choosing the object farthest from the set of

already chosen centers, where the furthest object,

x, from a set, S, is defined as, maxx{min{distance

(x, j), j 2S}} [77]. Then, each remaining object is

assigned to the cluster center with minimum

distance.

k-Medoids or PAM: Partitioning AroundMedoids
k-Medoids deals with k-means’ problem of outliers,

by setting a cluster’s mean to the object that is nearest

to the ‘center’ of the cluster [78]. k-Medoids involves

reducing the distance between all objects in a cluster

and the central object.

CLARA: Clustering LargeApplications
k-Medoids does not scale well to large datasets.

CLARA is an extension of k-medoids with a focus

on scalability. CLARA selects a representative sample

of the entire dataset. Medoids are then chosen from

this sample, similar to k-medoids. If the sampling

is done properly, the medoids chosen from the

sample are similar to the ones that would have been

chosen from the whole dataset. CLARA’s effective-

ness depends on the sample size. CLARA’s com-

plexity is Oðks2 þ kðN � kÞÞ where s is the sample

size [79].

Figure 3: k-Means clustering. (a) Initial randomized means. (b) Objects are associated with the nearest mean.
(c) Means aremoved to the center of their respective clusters. (d) Last two steps are repeated until convergence.
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CLARANS: Clustering LargeApplications Based
Upon Randomized Search
CLARANS improves upon CLARA by allowing the

sample to change throughout clustering. Unlike

CLARA, CLARANS does not limit itself to a fixed

sample, but draws a sample with some randomness at

each iteration. CLARANS supports outlier detec-

tion. CLARANS is more effective than k-medoids

and CLARA. Its complexity is O(N2) [80].

Fuzzy k-means
The k-means clusters are ‘hard’, since an object

either is or is not a member of a cluster. Fuzzy

k-means produces ‘soft’ or ‘fuzzy’ clusters, where an

object has a degree of membership in each cluster

[81, 43]. Fuzzy k-means was applied to gene expres-

sion to study overlapping gene sets [115, 43].

Discrete
k-Modes
k-Modes is a discrete adaptation of k-means, with

similar runtime, benefits and drawbacks [82]. The

mode of cluster c is a vector �c¼f�c1; . . . ; �cmg,

where �ci is the most frequent value in c for the ith
attribute. The Hamming distance is used for finding

an object’s nearest cluster mode.

Fuzzy k-modes
Fuzzy k-modes extends fuzzy k-means to discrete

data [83]. Objects’ assignments to clusters involve

degrees of membership.

Squeezer
Squeezer is a one-pass algorithm that improves

upon the iteration-bound speed of k-modes [84].

Squeezer reads objects one-by-one. The first tuple

forms a cluster alone. Next objects are either put into

an existing cluster, or rejected by all to form a new

cluster. Squeezer may not produce the most accurate

clusterings. Squeezer is efficient with a complexity

of O(kN).

COOLCAT
COOLCAT deals with k-modes’ sensitivity to the

initial cluster modes. COOLCAT is sensitive to the

order of object selection. Clusters are created by

reducing their entropy [86]. COOLCAT finds a

set of k maximally dissimilar objects to create initial

clusters. All remaining objects are placed in one of

the clusters, such that the increase in entropy is

minimized [4].

Mixed Discrete and Numerical
k-Prototypes
An extension of k-modes called k-prototypes handles

mixed datatypes [85]. k-Prototypes uses a distance

metric that weighs the contribution of the numerical

versus discrete attributes. k-Prototypes iterates until

few objects change clusters.

HIERARCHICALCLUSTERING
Hierarchical clustering algorithms partition the

objects into a tree of nodes, where each node

represents a cluster [116, 117]. Each node in a tree

has zero or more child nodes, which are below it in

the tree; by convention, trees grow down, not up as

they do in nature. A node that has a child is called

the child’s parent node. A node has at most one

parent. Hierarchical methods include:

Agglomerative: Initially, many small clusters are

formed, which are merged based on their similarity.

Finally, one cluster contains all objects.

Divisive: Initially, all objects form one cluster,

which is decomposed into smaller clusters. Finally,

each object is in a cluster individually.

Linkage is the criterion by which the clustering

algorithm determines distance between two clusters:

Single linkage: the distance between two clusters is

their minimum distance: the distance between their

two closest objects. Single linkage may cause the

chaining problem, which forces clusters together due

to single objects being close to each other.

Complete linkage: the distance between two clusters

is their maximum distance. Complete linkage is

useful if objects are far in high-dimensional space.

Complete linkage is unsuitable for highly noisy

datasets, since outliers are given more weight in the

cluster decision.

Average linkage: takes the mean distance between

all pairs of objects of two clusters. Average linkage is

more computationally expensive than the methods

above. Average linkage is the most popular of the

three, avoiding the chaining problem and without

giving special weight to outliers.

Hierarchical methods are popular in bioinfor-

matics since clusters can be navigated at various levels

of granularity [15, 87, 118, 119]. Eisen et al. used

average linkage for clustering genes by expression

pattern similarity, as assessed by Euclidean distance.

For N genes, an N�N matrix is computed

containing gene pair similarities, and then scanned

to find the most similar genes. The clustering is
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illustrated by appending a tree reflecting gene

relations, with branch lengths reflecting gene simi-

larity. Hierarchical methods are useful for represent-

ing protein sequence family relationships [67, 68,

119]. Regulatory and interactome network cluster-

ing methods often involve finding cliques [120, 121].

Visualization of hierarchical clusters of cliques is

called ‘power graphs’ [96].

Hierarchical methods are often slow. Errors in

merging clusters cannot be undone and will affect

the result. If large clusters are merged then interesting

local cluster structure may be lost. Next, we discuss

hierarchical clustering of numerical and then

discrete data.

Numerical
BIRCH
BIRCH is suitable for large databases, improving the

slow runtimes of other hierarchical algorithms.

BIRCH is scalable with O(N) complexity. BIRCH

is based on clustering features (CF), and an

in-memory data structure, called CF-tree. A CF-

tree is a multilevel summary of the data distribution.

A nonleaf node in a CF tree contains summaries of

the CFs of its children, preserving the structure of the

data. Disadvantages include a difficulty in finding

arbitrary shaped clusters, since it uses the notion

of radius. BIRCH received the SIGMOD 10-Year

Test-of-Time award [90].

CURE
CURE improves upon BIRCH by ability to

discover clusters of arbitrary shapes. CURE is also

more robust with respect to outliers [91]. These

benefits are achieved by using several representative

objects for a cluster. The representatives for each

cluster are ‘shrunk’ or moved toward the cluster

center by a user-specified shrinking factor. At each

iteration, the two clusters with the closest pair of

representative objects are merged. CURE is scalable

to large datasets with a complexity of O(N), since

CURE requires one scan of the dataset. A drawback

is the user-specified parameter values, the number

of clusters and the shrinking factor.

Spectral clustering
Spectral clustering originated in graph partitioning

[122, 123, 88, 148]. Spectral algorithms use the

second largest eigenvalue of the Laplacian of the

graph adjacency (pairwise similarity) matrix, to

decide where to partition the matrix. The resulting

clusters are re-partititoned to generate a cluster

hierarchy [89]. Spectral clustering may be ineffective

for producing more than two clusters. Efficient linear

algebra software facilitate spectral clustering of

large datasets.

Biclustering of gene expression data allows

simultaneous clustering of the rows and columns

of a matrix, where rows correspond to genes and

columns to conditions [33, 124–127]. Biclustering

also allows overlap between clusters [37, 128, 129].

Discrete
ROCK
ROCK is an agglomerative algorithm [92]. ROCK

assumes a similarity measure between objects and

defines a ‘link’ between two objects whose similarity

exceeds a threshold. Initially, each object is assigned

to a separate cluster. Then, clusters are merged

repeatedly according to their closeness: the sum of

the number of ‘links’ between all pairs of objects

between two clusters. ROCK has cubic complexity

in N, and is unsuitable for large datasets [4, 103].

Chameleon
Chameleon improves upon some drawbacks of

CURE and ROCK. Chameleon considers the

internal interconnectivity and closeness of the objects

both between and within two clusters to be merged.

Chameleon applies to all datatypes, if a similarity

metric is specified [93]. Its complexity is O(N2).

LIMBO
LIMBO improves on the scalability of other

hierarchical clustering algorithms. LIMBO builds

on the Information Bottleneck (IB) framework for

quantifying the relevant information preserved when

clustering [94]. LIMBO uses the IB framework to

define a distance measure. LIMBO handles large

datasets, using a memory bound summary for the

data.

GRID-BASED CLUSTERING
While hierarchical and partitioning clustering are

common in bioinformatics, there exist other

approaches such as grid-based methods, which start

by forming a grid structure of cells from the

input objects. Each object is classified in a cell of

the grid. The clustering is performed on the resulting

grid structure.
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Numerical
STING
STING combines grid-based and hierarchical

clustering for numerical datasets [106]. STING has

complexity of O(N). STING partitions the dataset

into rectangular cells. A cell at a high level is

partitioned to form a number of cells at the next

lower level. Hierarchical levels of cells correspond to

different levels of resolution. Each cell of each level

stores count, mean, standard deviation, minimum

and maximum and the type of distribution that the

attribute value in the cell follows, such as normal,

uniform etc. A drawback is that cell boundaries are

not diagonal, such that objects could be separated

by multiple attribute values.

DENSITY-BASED CLUSTERING
Density-based approaches use a local density crite-

rion; clusters are subspaces in which the objects are

dense and are separated by subspaces of low density.

Density-based methods are useful in bioinformatics

for finding the densest subspaces in interactome

networks, typically involving cliques [19, 65].

Advantages of many density-based algorithms

include time efficiency and ability to find clusters

of arbitrary shapes. Some density-based algorithms

take user-specified input parameters, but not the

number of clusters k that changes the clustering.

Some cannot identify clusters of varying densities.

With some density-based algorithms the central

subspace of a cluster cannot be distinguished from

the rest of the cluster based on a higher density

[4, 103, 130]. Some density-based approaches are

also grid-based, since a histogram is constructed

by partitioning the dataset into a number of

non-overlapping regions.

Numerical
DBSCAN
DBSCAN regards clusters as dense regions of objects

in space that are separated by regions of low density.

For each object of a cluster, the neighborhood of

a given radius (") has to contain at least a minimum

number of objects (MinPts), where " and MinPts are

input parameters. Every object not contained in any

cluster is considered noise [98]. Its complexity is

O(NlogN) if a spatial index is used; otherwise, it is

O(N2). Its main advantage is that it can discover

clusters of arbitrary shapes. DBSCAN is resistant to

noise and provides a means of filtering for noise if

desired. Its main drawback is the user-specified

parameter values. DBSCAN is not suitable for

high-dimensional data; as dimensionality increases,

so does the relative distance between objects making

it harder to perform density analysis. Because of its

parameters, DBSCAN does not respond well to

varying densities, such as sequence databases with

subspaces of protein families; this leads to OPTICS.

OPTICS
Both DBSCAN and OPTICS require parameters to

be specified by the user that will affect the result.

However, OPTICS considers that different clusters

could require different values. OPTICS covers a

spectrum of all different "0 � " OPTICS has the same

complexity as DBSCAN, O(NlogN) if a spatial index

is used. DBSCAN and OPTICS have difficulty

identifying clusters within clusters [4, 130]. OPTICS

finds an ordering of the data that is consistent with

DBSCAN [99]. For sequence clustering, OPTICS

was extended into SEQOPTICS to support users

choosing parameters [10].

DENCLUE
The main advantage of DENCLUE is ability to find

arbitrary shaped clusters. DENCLUE differs from

other density-based approaches in that it pins density

to a point in the attribute space instead of an object

[100]. Its complexity is O(N). The drawback is that

it has a large number of input parameters. The

influence of each object within its neighborhood is

modeled using an influence function. The density

function is the sum of the influence functions of all

objects. Clusters are determined by identifying local

maxima of the overall density function.

WaveCluster
WaveCluster uses a wavelet to transform the original

data and find dense regions in the transformed space

[105]. A wavelet transform is useful because it can

suppress weaker information, and thus being effec-

tive for noise removal. This results in two main

benefits: with less information one can speed up the

process, and it can detect clusters at varying levels of

accuracy. Its complexity is O(N). However, it is only

applicable to low-dimensional datasets. Its input

parameters are the number of grid cells for each

dimension, the wavelet transform, and the number

of wavelet applications.
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CLIQUE
CLIQUE improves on the scalability of other

methods as its complexity is O(N). CLIQUE is

useful for clustering high-dimensional data and is

insensitive to object ordering. User-specified param-

eters are the grid size and a global density threshold

for clusters. CLIQUE partitions space into non-

overlapping rectangular units and identifies the dense

units; a unit is dense if the fraction of total objects

contained in it exceeds the user-specified value

[107]. CLIQUE considers only hyper-rectangular

clusters and projections parallel to the axes [4, 130].

Discrete
HIERDENC: Hierarchical Density-based Clustering
A challenge involved in applying density-based

clustering to discrete datasets is that the ‘cube’ of

attribute values has no ordering defined. The

HIERDENC algorithm for hierarchical density-based
clustering of discrete data offers a probabilistic basis for

designing faster density-based discrete clustering

algorithms. The characteristics of HIERDENC

include insensitivity to the order of object input,

and ability to handle outliers [97].

MULIC:Multiple Layer Incremental Clustering
MULIC is a faster simplification of HIERDENC

that focuses on the multi-layered structure of special

datasets, such as interactomes [14, 97, 131, 132].

MULIC produces layered clusters, which has several

differences from traditional hierarchical clustering.

First, MULIC requires no user-specified parameters.

MULIC clusters have a clear separation, not requir-

ing a cut-off to get the clusters as in hierarchical

clustering. MULIC does not merge clusters during

clustering, not losing interesting local cluster

structure; instead, any cluster mergings that may

be desirable are done after objects’ clustering has

finished. MULIC results in layered (or nested)

clusters of biomolecules, with each cluster corre-

sponding to a collapsed edge (biclique). MULIC

clusters had higher recall of known complexes

than other methods, and can be visualized in the

power graphs cytoscape tool (http://www.

proteinclustering.com).

Projected (subspace) clustering
Projected clustering is motivated by high-

dimensional datasets, where clusters exist only in

specific attribute subsets [133]. Clusters are subspaces

of high-dimensional datasets, determined by the

subset of attributes most relevant to each cluster.

The values at the relevant attributes are distributed

around some specific values in the cluster, while

objects of other clusters are less likely to have such

values. The drawback is that clustering depends on

user parameters for determining the relevant attri-

butes of each cluster; such parameters are the number

of clusters or the average number of dimensions for

each cluster. Projected clustering may distinguish

the center of a cluster based on higher density or

the relevant attributes [107].

CACTUS
CACTUS uses a minimum size for the relevant

attribute sets, and assumes that a cluster is identified

by a unique set of attribute values that seldom occur

in other clusters [101]. This assumption may be

unnatural for clustering many real world datasets.

CACTUS may return too many clusters [103].

CACTUS has difficulty finding clusters within

clusters [4, 130].

STIRR
STIRR looks for relationships between all attribute

values in a cluster [102]. Two sets of attribute values,

one with positive and another with negative weights,

define two clusters. STIRR is sensitive to object

ordering and lacks a definite convergence. The

notion of weights is non-intuitive and several

parameters are user-specified. The final detected

clusters are often incomplete [103].

CLICK
CLICK creates a graph representation; vertices are

discrete values and an edge is a co-occurrence of

values in an object. A cluster is a k-partite maximal

clique such that most pairs of vertices are connected

by an edge. CLICK may return too many clusters

or too many outliers [103].

CLOPE
CLOPE uses a heuristic of increasing the height-to-

width ratio of the cluster histogram [104]. CLOPE

is fast and scalable to high-dimensional datasets. The

accuracy of CLOPE’s results may suffer.

MODEL-BASED CLUSTERING
Model-based clustering assumes that objects match

a model, which is often a statistical distribution.

Then, the process aims to cluster objects such that

they match the distribution. The model may be user-

specified as a parameter and the model may change
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during the process. In bioinformatics, model-based

clustering methods integrate background knowledge

into gene expression, interactomes, and sequences

[134, 135]. Building models is an oversimplification;

user assumptions may be false and then results will

be inaccurate. Another disadvantage of model-based

clustering (especially neural networks) is slow

processing time on large datasets.

Numerical
Self-Organizing Maps
Self-OrganizingMaps involve neural networks, which

resemble processing that occurs in the brain.

NNs and SOM clustering involve several layers of

units that pass information between one another in

a weighed manner. Several units compete for an

object; the unit that is closest to the object becomes

the winning unit. SOMs assume that the winning

units will eventually learn the correct cluster

structure. NNs can model nonlinear relationships

between attributes, and can handle dependent

attributes. However, NNs have a number of draw-

backs. NNs can handle binary data, but discrete

attributes are hard to handle. Classifying a result into

multiple clusters is done by setting arbitrary value

thresholds for discriminating clusters. NNs do not

present an easily understandable model, being

more of a ‘black box’ that delivers results without

explaining how the results were derived.

Discrete
COBWEB
COBWEB is a conceptual clustering method.

COBWEB creates a hierarchical clustering in the

form of a classification tree. COBWEB integrates

observations incrementally into an existing classifica-

tion tree by classifying the observation along a path

of best matching nodes. A benefit of COBWEB is

that it can adjust the number of clusters in a partition,

without the user specifying this input parameter. A

drawback is that it may assume correlated attributes

are independent.

A classification tree differs from a decision tree.

In a COBWEB classification tree each node refers

to a concept, and contains the probability of the

concept and the probabilities of the attribute-value

pairs, which apply to the objects classified under that

node. This is unlike decision trees, which label

branches rather than nodes and use logical rather

than probabilistic descriptions. Sibling nodes at a

classification tree level form a partition [108].

Mixed Discrete and Numerical
BILCOMEmpirical Bayesian
Model-based methods for gene expression clustering,

such as Bi-level clustering of Mixed Discrete and

Numerical Biomedical Data (BILCOM) [109], often

adopt an empirical Bayesian approach, with GO

annotations as the prior. Model-based clustering can

find arbitrary shaped gene expression clusters

(Figure 1) by including background knowledge as

GO annotations [16, 18, 47, 136–139, 149].

For protein sequence clustering, Brown et al. used

mixture densities to estimate amino-acid preferences

within known subfamily clusters, achieving

scalability and accuracy [134].

AutoClass
AutoClass is a clustering algorithm for mixed

datatypes, which uses a Bayesian method for

determining the optimal classes based on prior

distributions [110]. Advantages of AutoClass include

that Bayesian theory is theoretically well-founded

and empirically well-tested. AutoClass investigates

different numbers of clusters, which are not user-

specified. The output is a mixture of several likely

answers. Drawbacks include that users have to specify

the model spaces to be searched in and wrong

models may produce wrong results. AutoClass can

be slow.

AutoClass finds the most likely classifications of

objects in clusters, given a prior distribution for each

attribute, symbolizing prior beliefs of the user. It

changes the classifications of objects in clusters and

changes the means and variances of the attributes’

distributions in each cluster, until they stabilize. As an

example, let the evidence on an object be X¼
{age¼ 28, blood-type¼A, weight¼ 73 kg}; blood-
type is a discrete attribute that is modeled with a

Bernoulli distribution, while age and weight are con-

tinuous attributes modeled with a normal (Gaussian)
distribution. AutoClass could classify X in a cluster,

based on attribute distributions in each of the clusters.

SVMClustering
SVMs provide a method for supervised learning

(Section 1). SVMs were also adapted for clustering.

SVM-based clustering does not use prior knowledge

of object classifications [111]. Initially, every object

in the dataset is randomly labelled and a binary SVM

classifier trained. Then the lowest confidence

classifications, those objects with confidence factor

values beyond some threshold, repeatedly have labels

308 Andreopoulos et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/10/3/297/211194 by guest on 21 August 2022



switched to the other class label. The SVM is

re-trained after each re-labeling on the lowest

confidence objects. The repetition of the above

process improves the classification accuracy and limits

local minima traps.

GRAPH-BASED CLUSTERING
Graph-based clustering methods have been applied

to interactomes for complex prediction (Section 2)

and to sequence networks. These methods are

sensitive to user-specified parameter values, and

often slow; exceptions are SEQOPTICS and

MULIC, presented previously.

Molecular Complex Detection
MCODE is designed to detect subnetworks with

many edges in an interactome [19]. MCODE is

sensitive to network alterations, edge removal

and addition, and threshold parameters. MCODE

complex prediction had high correctness, but few

complexes were retrieved.

Super Paramagnetic Clustering
SPC is similar to entropy-based COOLCAT;

when temperature or entropy increases, the system

becomes less stable and the clusters become smaller

[70]. SPC is robust to edge removal, but sensitive to

edge addition. SPC gave weak complex prediction

results [65].

Restricted Neighborhood Search
Clustering
RNSC is similar to ROCK and Chameleon,

considering the number of edges within and

between clusters [112]. RNSC is relatively robust

to parameter values and edge addition, but sensitive

to edge removal. It gives many mini-clusters of small

sizes [65].

Markov Clustering
MCL for interactomes is similar to projected

clustering, which often improves results on high-

dimensional datasets. It simulates a flow, finding

clusters as high-flow regions separated by no-flow

boundaries [113]. MCL is robust to network

alterations, both edge removal and addition.

An overall comparison showed MCL’s superiority

for finding complexes [65].

Other sequence clustering
TribeMCL clusters sequences into families using

BLAST similarity searches [113]. SPC was also

applied to sequences, improving sequence clustering

over TribeMCL [70]. CD-HIT removes redundant

sequences, satisfying the point proportion admissi-

bility requirement [12]. ProClust improves results,

using transitivity to conclude homology between

A$C based on homology between A$B and

B$C [141]. The BAG algorithm uses graph

theoretic properties to guide cluster splitting and

reduce errors [142].

DISCUSSIONSAND FUTURE
APPLICATIONS
Requirements and desirable features of biomedical

clustering applications were defined. Though not all

existing clustering algorithms have been applied

to biomedical problems yet, one can use Table 1 and

Figure 2 to find a method that matches an

application.

For gene expression clustering, k-means,

hierarchical clustering, and SOMs have been applied.

As discussed in the Introduction, desired features

are minimum user input, finding arbitrary shaped

clusters, robustness to outliers, and mixed datatypes.

Table 1 shows that algorithms CLARA, CLARANS,

BIRCH, CURE, HIERDENC, STING, AutoClass

are good matches. Suppose a biologist uses k-means

for clustering gene expression data, but outliers are a

problem [140]. Table 1 and Figure 2 show that s/he

could consider k-medoids, CLARA, CLARANS as

alternatives, which improve upon k-means support-

ing outlier detection. CLARANS further improves

upon k-medoids by supporting arbitrary shaped

clusters. Fuzzy k-means supports overlapping clusters

of co-regulated genes. If hierarchical clustering is

desired for visualization, BIRCH is suitable for

outlier detection. CURE additionally supports

arbitrary shaped clusters, but requires the number

of clusters as input. The projected density-based

approaches are known to improve quality on high-

dimensional data, such as 1000 samples of gene

expression, but take user-specified parameters.

For interactomes, previous algorithms gave

reasonable complex prediction results [146]. As

discussed in the Introduction, one desires minimum

user-specified parameters, integration of background

knowledge, such as GO annotations, and robustness

to noise. As Table 1 shows, AutoClass uses
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background knowledge distributions but requires

parameters. SVM clustering requires no user-

specified parameters. COBWEB finds the probabil-

ities of concepts in clusters, requiring no parameters.

In noisy high-throughput interactomes, weighed

edges reflect confidence of correctness; a version of

MULIC clustering called MULICsoft considers

such weights [132].

For sequences, hierarchical methods are suitable

for navigation and visualization. As discussed in

the Introduction, scalability and point-proportion

admissibility are essential. As Table 1 shows,

BIRCH, CURE and LIMBO are hierarchical,

scalable and satisfy point-proportion admissibility.

As future work, indexing methods are developed

for huge emerging sequence databanks [144].

Finally, we plan to do a large-scale study to

compare the performance of clustering algorithms on

various bioinformatics tasks. This study will evaluate

whether less common algorithms perform better

than the common ones in practice. We will also

address the problem of objectively comparing the

algorithms’ performance.
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