
Berger et al. BMC Med Res Methodol          (2021) 21:168  

https://doi.org/10.1186/s12874-021-01303-z

RESEARCH

A roadmap to using randomization in clinical 
trials
Vance W. Berger1, Louis Joseph Bour2, Kerstine Carter3, Jonathan J. Chipman4,5 , Colin C. Everett6 , 

 Nicole Heussen7,8 , Catherine Hewitt9 , Ralf-Dieter Hilgers7 , Yuqun Abigail Luo10, Jone Renteria11,12, 

Yevgen Ryeznik13 , Oleksandr Sverdlov14*  and Diane Uschner15 for the Randomization Innovative Design 

Scientific Working Group 

Abstract 

Background: Randomization is the foundation of any clinical trial involving treatment comparison. It helps mitigate 

selection bias, promotes similarity of treatment groups with respect to important known and unknown confounders, 

and contributes to the validity of statistical tests. Various restricted randomization procedures with different proba-

bilistic structures and different statistical properties are available. The goal of this paper is to present a systematic 

roadmap for the choice and application of a restricted randomization procedure in a clinical trial.

Methods: We survey available restricted randomization procedures for sequential allocation of subjects in a rand-

omized, comparative, parallel group clinical trial with equal (1:1) allocation. We explore statistical properties of these 

procedures, including balance/randomness tradeoff, type I error rate and power. We perform head-to-head compari-

sons of different procedures through simulation under various experimental scenarios, including cases when com-

mon model assumptions are violated. We also provide some real-life clinical trial examples to illustrate the thinking 

process for selecting a randomization procedure for implementation in practice.

Results: Restricted randomization procedures targeting 1:1 allocation vary in the degree of balance/randomness 

they induce, and more importantly, they vary in terms of validity and efficiency of statistical inference when common 

model assumptions are violated (e.g. when outcomes are affected by a linear time trend; measurement error distribu-

tion is misspecified; or selection bias is introduced in the experiment). Some procedures are more robust than others. 

Covariate-adjusted analysis may be essential to ensure validity of the results. Special considerations are required when 

selecting a randomization procedure for a clinical trial with very small sample size.

Conclusions: The choice of randomization design, data analytic technique (parametric or nonparametric), and analy-

sis strategy (randomization-based or population model-based) are all very important considerations. Randomization-

based tests are robust and valid alternatives to likelihood-based tests and should be considered more frequently by 

clinical investigators.
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Background
Various research designs can be used to acquire sci-

entific medical evidence. �e randomized controlled 

trial (RCT) has been recognized as the most credible 

research design for investigations of the clinical effec-

tiveness of new medical interventions [1, 2]. Evidence 

from RCTs is widely used as a basis for submissions of 

regulatory dossiers in request of marketing authori-

zation for new drugs, biologics, and medical devices. 

�ree important methodological pillars of the modern 

RCT include blinding (masking), randomization, and 

the use of control group [3].

While RCTs provide the highest standard of clini-

cal evidence, they are laborious and costly, in terms of 

both time and material resources. �ere are alterna-

tive designs, such as observational studies with either 

a cohort or case–control design, and studies using 

real world evidence (RWE). When properly designed 

and implemented, observational studies can some-

times produce similar estimates of treatment effects 

to those found in RCTs, and furthermore, such stud-

ies may be viable alternatives to RCTs in many set-

tings where RCTs are not feasible and/or not ethical. 

In the era of big data, the sources of clinically relevant 

data are increasingly rich and include electronic health 

records, data collected from wearable devices, health 

claims data, etc. Big data creates vast opportunities for 

development and implementation of novel frameworks 

for comparative effectiveness research [4], and RWE 

studies nowadays can be implemented rapidly and rela-

tively easily. But how credible are the results from such 

studies?

In 1980, D. P. Byar issued warnings and highlighted 

potential methodological problems with comparison 

of treatment effects using observational databases [5]. 

Many of these issues still persist and actually become 

paramount during the ongoing COVID-19 pandemic 

when global scientific efforts are made to find safe and 

efficacious vaccines and treatments as soon as possi-

ble. While some challenges pertinent to RWE studies 

are related to the choice of proper research methodol-

ogy, some additional challenges arise from increasing 

requirements of health authorities and editorial boards 

of medical journals for the investigators to present 

evidence of transparency and reproducibility of their 

conducted clinical research. Recently, two top medical 

journals, the New England Journal of Medicine and the 

Lancet, retracted two COVID-19 studies that relied on 

observational registry data [6, 7]. �e retractions were 

made at the request of the authors who were unable 

to ensure reproducibility of the results [8]. Undoubt-

edly, such cases are harmful in many ways. �e already 

approved drugs may be wrongly labeled as “toxic” or 

“inefficacious”, and the reputation of the drug devel-

opers could be blemished or destroyed. �erefore, the 

highest standards for design, conduct, analysis, and 

reporting of clinical research studies are now needed 

more than ever. When treatment effects are modest, yet 

still clinically meaningful, a double-blind, randomized, 

controlled clinical trial design helps detect these dif-

ferences while adjusting for possible confounders and 

adequately controlling the chances of both false posi-

tive and false negative findings.

Randomization in clinical trials has been an important 

area of methodological research in biostatistics since the 

pioneering work of A. Bradford Hill in the 1940’s and 

the first published randomized trial comparing strep-

tomycin with a non-treatment control [9]. Statisticians 

around the world have worked intensively to elaborate 

the value, properties, and refinement of randomization 

procedures with an incredible record of publication [10]. 

In particular, a recent EU-funded project (www. IDeAl. 

rwth- aachen. de) on innovative design and analysis of 

small population trials has “randomization” as one work 

package. In 2020, a group of trial statisticians around the 

world from different sectors formed a subgroup of the 

Drug Information Association (DIA) Innovative Designs 

Scientific Working Group (IDSWG) to raise awareness of 

the full potential of randomization to improve trial qual-

ity, validity and rigor (https:// rando mizat ion- worki ng- 

group. rwth- aachen. de/).

�e aims of the current paper are three-fold. First, we 

describe major recent methodological advances in ran-

domization, including different restricted randomiza-

tion designs that have superior statistical properties 

compared to some widely used procedures such as per-

muted block designs. Second, we discuss different types 

of experimental biases in clinical trials and explain how a 

carefully chosen randomization design can mitigate risks 

of these biases. �ird, we provide a systematic roadmap 

for evaluating different restricted randomization proce-

dures and selecting an “optimal” one for a particular trial. 

We also showcase application of these ideas through sev-

eral real life RCT examples.

�e target audience for this paper would be clinical 

investigators and biostatisticians who are tasked with the 

design, conduct, analysis, and interpretation of clinical 

trial results, as well as regulatory and scientific/medical 

journal reviewers. Recognizing the breadth of the con-

cept of randomization, in this paper we focus on a ran-

domized, comparative, parallel group clinical trial design 

with equal (1:1) allocation, which is typically imple-

mented using some restricted randomization procedure, 

possibly stratified by some important baseline prognostic 

factor(s) and/or study center. Some of our findings and 

recommendations are generalizable to more complex 

http://www.IDeAl.rwth-aachen.de
http://www.IDeAl.rwth-aachen.de
https://randomization-working-group.rwth-aachen.de/
https://randomization-working-group.rwth-aachen.de/
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clinical trial settings. We shall highlight these generali-

zations and outline additional important considerations 

that fall outside the scope of the current paper.

�e paper is organized as follows. �e “Methods” sec-

tion provides some general background on the methodol-

ogy of randomization in clinical trials, describes existing 

restricted randomization procedures, and discusses some 

important criteria for comparison of these procedures in 

practice. In the “Results” section, we present our findings 

from four simulation studies that illustrate the thinking 

process when evaluating different randomization design 

options at the study planning stage. �e “Conclusions” 

section summarizes the key findings and important con-

siderations on restricted randomization procedures, and 

it also highlights some extensions and further topics on 

randomization in clinical trials.

Methods
What is randomization and what are its virtues in clinical 

trials?

Randomization is an essential component of an experi-

mental design in general and clinical trials in particular. 

Its history goes back to R. A. Fisher and his classic book 

“�e Design of Experiments” [11]. Implementation of 

randomization in clinical trials is due to A. Bradford Hill 

who designed the first randomized clinical trial evaluat-

ing the use of streptomycin in treating tuberculosis in 

1946 [9, 12, 13].

Reference [14] provides a good summary of the ration-

ale and justification for the use of randomization in clini-

cal trials. �e randomized controlled trial (RCT) has 

been referred to as “the worst possible design (except for 

all the rest)” [15], indicating that the benefits of randomi-

zation should be evaluated in comparison to what we are 

left with if we do not randomize. Observational studies 

suffer from a wide variety of biases that may not be ade-

quately addressed even using state-of-the-art statistical 

modeling techniques.

�e RCT in the medical field has several features that 

distinguish it from experimental designs in other fields, 

such as agricultural experiments. In the RCT, the experi-

mental units are humans, and in the medical field often 

diagnosed with a potentially fatal disease. �ese subjects 

are sequentially enrolled for participation in the study at 

selected study centers, which have relevant expertise for 

conducting clinical research. Many contemporary clinical 

trials are run globally, at multiple research institutions. 

�e recruitment period may span several months or even 

years, depending on a therapeutic indication and the tar-

get patient population. Patients who meet study eligibil-

ity criteria must sign the informed consent, after which 

they are enrolled into the study and, for example, rand-

omized to either experimental treatment E or the control 

treatment C according to the randomization sequence. In 

this setup, the choice of the randomization design must 

be made judiciously, to protect the study from experi-

mental biases and ensure validity of clinical trial results.

�e first virtue of randomization is that, in combina-

tion with allocation concealment and masking, it helps 

mitigate selection bias due to an investigator’s potential 

to selectively enroll patients into the study [16]. A non-

randomized, systematic design such as a sequence of 

alternating treatment assignments has a major fallacy: 

an investigator, knowing an upcoming treatment assign-

ment in a sequence, may enroll a patient who, in their 

opinion, would be best suited for this treatment. Conse-

quently, one of the groups may contain a greater number 

of “sicker” patients and the estimated treatment effect 

may be biased. Systematic covariate imbalances may 

increase the probability of false positive findings and 

undermine the integrity of the trial. While randomiza-

tion alleviates the fallacy of a systematic design, it does 

not fully eliminate the possibility of selection bias (unless 

we consider complete randomization for which each 

treatment assignment is determined by a flip of a coin, 

which is rarely, if ever used in practice [17]). Commonly, 

RCTs employ restricted randomization procedures which 

sequentially balance treatment assignments while main-

taining allocation randomness. A popular choice is the 

permuted block design that controls imbalance by mak-

ing treatment assignments at random in blocks. To mini-

mize potential for selection bias, one should avoid overly 

restrictive randomization schemes such as permuted 

block design with small block sizes, as this is very similar 

to alternating treatment sequence.

�e second virtue of randomization is its tendency to 

promote similarity of treatment groups with respect to 

important known, but even more importantly, unknown 

confounders. If treatment assignments are made at ran-

dom, then by the law of large numbers, the average values 

of patient characteristics should be approximately equal 

in the experimental and the control groups, and any 

observed treatment difference should be attributed to the 

treatment effects, not the effects of the study participants 

[18]. However, one can never rule out the possibility that 

the observed treatment difference is due to chance, e.g. as 

a result of random imbalance in some patient character-

istics [19]. Despite that random covariate imbalances can 

occur in clinical trials of any size, such imbalances do not 

compromise the validity of statistical inference, provided 

that proper statistical techniques are applied in the data 

analysis.

Several misconceptions on the role of randomization 

and balance in clinical trials were documented and dis-

cussed by Senn [20]. One common misunderstanding 

is that balance of prognostic covariates is necessary 
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for valid inference. In fact, different randomization 

designs induce different extent of balance in the dis-

tributions of covariates, and for a given trial there is 

always a possibility of observing baseline group dif-

ferences. A legitimate approach is to pre-specify in 

the protocol the clinically important covariates to be 

adjusted for in the primary analysis, apply a randomi-

zation design (possibly accounting for selected covari-

ates using pre-stratification or some other approach), 

and perform a pre-planned covariate-adjusted analysis 

(such as analysis of covariance for a continuous pri-

mary outcome), verifying the model assumptions and 

conducting additional supportive/sensitivity analyses, 

as appropriate. Importantly, the pre-specified prog-

nostic covariates should always be accounted for in the 

analysis, regardless whether their baseline differences 

are present or not [20].

It should be noted that some randomization designs 

(such as covariate-adaptive randomization procedures) 

can achieve very tight balance of covariate distributions 

between treatment groups [21]. While we address rand-

omization within pre-specified stratifications, we do not 

address more complex covariate- and response-adaptive 

randomization in this paper.

Finally, randomization plays an important role in sta-

tistical analysis of the clinical trial. �e most common 

approach to inference following the RCT is the invoked 

population model [10]. With this approach, one posits 

that there is an infinite target population of patients with 

the disease, from which n eligible subjects are sampled in 

an unbiased manner for the study and are randomized to 

the treatment groups. Within each group, the responses 

are assumed to be independent and identically distrib-

uted (i.i.d.), and inference on the treatment effect is per-

formed using some standard statistical methodology, e.g. 

a two sample t-test for normal outcome data. �e added 

value of randomization is that it makes the assumption of 

i.i.d. errors more feasible compared to a non-randomized 

study because it introduces a real element of chance in 

the allocation of patients.

An alternative approach is the randomization model, 

in which the implemented randomization itself forms the 

basis for statistical inference [10]. Under the null hypoth-

esis of the equality of treatment effects, individual out-

comes (which are regarded as not influenced by random 

variation, i.e. are considered as fixed) are not affected by 

treatment. Treatment assignments are permuted in all 

possible ways consistent with the randomization proce-

dure actually used in the trial. �e randomization-based 

p-value is the sum of null probabilities of the treat-

ment assignment permutations in the reference set that 

yield the test statistic values greater than or equal to the 

experimental value. A randomization-based test can be a 

useful supportive analysis, free of assumptions of para-

metric tests and protective against spurious significant 

results that may be caused by temporal trends [14, 22].

It is important to note that Bayesian inference has 

also become a common statistical analysis in RCTs [23]. 

Although the inferential framework relies upon subjec-

tive probabilities, a study analyzed through a Bayesian 

framework still relies upon randomization for the other 

aforementioned virtues [24]. Hence, the randomization 

considerations discussed herein have broad application.

What types of randomization methodologies are available?

Randomization is not a single methodology, but a very 

broad class of design techniques for the RCT [10]. In 

this paper, we consider only randomization designs for 

sequential enrollment clinical trials with equal (1:1) allo-

cation in which randomization is not adapted for covari-

ates and/or responses. �e simplest procedure for an 

RCT is complete randomization design (CRD) for which 

each subject’s treatment is determined by a flip of a fair 

coin [25]. CRD provides no potential for selection bias 

(e.g. based on prediction of future assignments) but it can 

result, with non-negligible probability, in deviations from 

the 1:1 allocation ratio and covariate imbalances, espe-

cially in small samples. �is may lead to loss of statistical 

efficiency (decrease in power) compared to the balanced 

design. In practice, some restrictions on randomization 

are made to achieve balanced allocation. Such randomi-

zation designs are referred to as restricted randomization 

procedures [26, 27].

Suppose we plan to randomize an even number of sub-

jects n sequentially between treatments E and C. Two 

basic designs that equalize the final treatment numbers 

are the random allocation rule (Rand) and the truncated 

binomial design (TBD), which were discussed in the 

1957 paper by Blackwell and Hodges [28]. For Rand, any 

sequence of exactly n/2 E’s and n/2 C’s is equally likely. 

For TBD, treatment assignments are made with prob-

ability 0.5 until one of the treatments receives its quota 

of n/2 subjects; thereafter all remaining assignments are 

made deterministically to the opposite treatment.

A common feature of both Rand and TBD is that 

they aim at the final balance, whereas at intermedi-

ate steps it is still possible to have substantial imbal-

ances, especially if n is large. A long run of a single 

treatment in a sequence may be problematic if there 

is a time drift in some important covariate, which can 

lead to chronological bias [29]. To mitigate this risk, 

one can further restrict randomization so that treat-

ment assignments are balanced over time. One com-

mon approach is the permuted block design (PBD) [30], 

for which random treatment assignments are made 

in blocks of size 2b ( b is some small positive integer), 



Page 5 of 24Berger et al. BMC Med Res Methodol          (2021) 21:168  

with exactly b allocations to each of the treatments E 

and C. �e PBD is perhaps the oldest (it can be traced 

back to A. Bradford Hill’s 1951 paper [12]) and the 

most widely used randomization method in clinical tri-

als. Often its choice in practice is justified by simplicity 

of implementation and the fact that it is referenced in 

the authoritative ICH E9 guideline on statistical prin-

ciples for clinical trials [31]. One major challenge with 

PBD is the choice of the block size. If b = 1 , then every 

pair of allocations is balanced, but every even alloca-

tion is deterministic. Larger block sizes increase allo-

cation randomness. �e use of variable block sizes has 

been suggested [31]; however, PBDs with variable block 

sizes are also quite predictable [32]. Another problem-

atic feature of the PBD is that it forces periodic return 

to perfect balance, which may be unnecessary from the 

statistical efficiency perspective and may increase the 

risk of prediction of upcoming allocations.

More recent and better alternatives to the PBD are 

the maximum tolerated imbalance (MTI) procedures 

[33–41]. �ese procedures provide stronger encryp-

tion of the randomization sequence (i.e. make it more 

difficult to predict future treatment allocations in the 

sequence even knowing the current sizes of the treat-

ment groups) while controlling treatment imbalance 

at a pre-defined threshold throughout the experiment. 

A general MTI procedure specifies a certain bound-

ary for treatment imbalance, say b > 0 , that cannot 

be exceeded. If, at a given allocation step the absolute 

value of imbalance is equal to b , then one next alloca-

tion is deterministically forced toward balance. �is 

is in contrast to PBD which, after reaching the target 

quota of allocations for either treatment within a block, 

forces all subsequent allocations to achieve perfect bal-

ance at the end of the block. Some notable MTI pro-

cedures are the big stick design (BSD) proposed by 

Soares and Wu in 1983 [37], the maximal procedure 

proposed by Berger, Ivanova and Knoll in 2003 [35], the 

block urn design (BUD) proposed by Zhao and Weng 

in 2011 [40], just to name a few. �ese designs control 

treatment imbalance within pre-specified limits and are 

more immune to selection bias than the PBD [42, 43].

Another important class of restricted randomization 

procedures is biased coin designs (BCDs). Starting with 

the seminal 1971 paper of Efron [44], BCDs have been 

a hot research topic in biostatistics for 50 years. Efron’s 

BCD is very simple: at any allocation step, if treat-

ment numbers are balanced, the next assignment is 

made with probability 0.5; otherwise, the underrepre-

sented treatment is assigned with probability p , where 

0.5 < p ≤ 1 is a fixed and pre-specified parameter that 

determines the tradeoff between balance and random-

ness. Note that p = 1 corresponds to PBD with block 

size 2. If we set p < 1 (e.g. p = 2/3 ), then the proce-

dure has no deterministic assignments and treatment 

allocation will be concentrated around 1:1 with high 

probability [44]. Several extensions of Efron’s BCD pro-

viding better tradeoff between treatment balance and 

allocation randomness have been proposed [45–49]; for 

example, a class of adjustable biased coin designs intro-

duced by Baldi Antognini and Giovagnoli in 2004 [49] 

unifies many BCDs in a single framework. A compre-

hensive simulation study comparing different BCDs has 

been published by Atkinson in 2014 [50].

Finally, urn models provide a useful mechanism for 

RCT designs [51]. Urn models apply some probabilis-

tic rules to sequentially add/remove balls (representing 

different treatments) in the urn, to balance treatment 

assignments while maintaining the randomized nature of 

the experiment [39, 40, 52–55]. A randomized urn design 

for balancing treatment assignments was proposed by 

Wei in 1977 [52]. More novel urn designs, such as the 

drop-the-loser urn design developed by Ivanova in 2003 

[55] have reduced variability and can attain the target 

treatment allocation more efficiently. Many urn designs 

involve parameters that can be fine-tuned to obtain ran-

domization procedures with desirable balance/random-

ness tradeoff [56].

What are the attributes of a good randomization 

procedure?

A “good” randomization procedure is one that helps suc-

cessfully achieve the study objective(s). Kalish and Begg 

[57] state that the major objective of a comparative clini-

cal trial is to provide a precise and valid comparison. To 

achieve this, the trial design should be such that it: 1) 

prevents bias; 2) ensures an efficient treatment compar-

ison; and 3) is simple to implement to minimize opera-

tional errors. Table 1 elaborates on these considerations, 

focusing on restricted randomization procedures for 1:1 

randomized trials.

Before delving into a detailed discussion, let us intro-

duce some important definitions. Following [10], a rand-

omization sequence is a random vector δn = (δ1, . . . , δn) , 

where δi = 1 , if the ith subject is assigned to treat-

ment E or δi = 0 , if the i th subject is assigned to treat-

ment C. A restricted randomization procedure can be 

defined by specifying a probabilistic rule for the treat-

ment assignment of the (i+1)st subject, δi+1 , given 

the past allocations δi for i ≥ 1 . Let NE(i) =

∑i
j=1

δj 

and NC(i) = i − NE(i) denote the numbers of subjects 

assigned to treatments E and C, respectively, after i allo-

cation steps. �en D(i) = NE(i) − NC(i) is treatment 

imbalance after i allocations. For any i ≥ 1 , D(i) is a 

random variable whose probability distribution is deter-

mined by the chosen randomization procedure.
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Balance and randomness

Treatment balance and allocation randomness are 

two competing requirements in the design of an RCT. 

Restricted randomization procedures that provide a good 

tradeoff between these two criteria are desirable in practice.

Consider a trial with sample size n . �e absolute value 

of imbalance, |D(i)| (i = 1, . . . , n) , provides a measure of 

deviation from equal allocation after i allocation steps. 
|D(i)| = 0 indicates that the trial is perfectly balanced. 

One can also consider Pr(|D(i)| = 0) , the probability of 

achieving exact balance after i allocation steps. In par-

ticular Pr(|D(n)| = 0) is the probability that the final 

treatment numbers are balanced. Two other useful sum-

mary measures are the expected imbalance at the ith step, 

E|D(i)| and the expected value of the maximum imbal-

ance of the entire randomization sequence, 

E

(

max
1≤i≤n

|D(i)|

)

.

Greater forcing of balance implies lack of randomness. 

A procedure that lacks randomness may be suscepti-

ble to selection bias [16], which is a prominent issue in 

open-label trials with a single center or with randomi-

zation stratified by center, where the investigator knows 

the sequence of all previous treatment assignments. A 

classic approach to quantify the degree of susceptibility 

of a procedure to selection bias is the Blackwell-Hodges 

model [28]. Let Gi = 1 (or 0), if at the ith allocation step 

an investigator makes a correct (or incorrect) guess on 

treatment assignment δi , given past allocations δi−1 . 

�en the predictability of the design at the ith step is the 

expected value of Gi , i.e. E(Gi) = Pr(Gi = 1) . Blackwell 

and Hodges [28] considered the expected bias factor, 

the difference between expected total number of correct 

guesses of a given sequence of random assignments and 

the similar quantity obtained from CRD for which treat-

ment assignments are made independently with equal 

probability: E(F) = E
(
∑

n

i=1
Gi

)

− n/2 . �is quantity is 

zero for CRD, and it is positive for restricted randomiza-

tion procedures (greater values indicate higher expected 

bias). Matts and Lachin [30] suggested taking expected 

proportion of deterministic assignments in a sequence as 

another measure of lack of randomness.

In the literature, various restricted randomization 

procedures have been compared in terms of balance 

and randomness [50, 58, 59]. For instance, Zhao et  al. 

[58] performed a comprehensive simulation study of 

14 restricted randomization procedures with different 

choices of design parameters, for sample sizes in the 

range of 10 to 300. �e key criteria were the maximum 

absolute imbalance and the correct guess probability. 

�e authors found that the performance of the designs 

was within a closed region with the boundaries shaped 

by Efron’s BCD [44] and the big stick design [37], sig-

nifying that the latter procedure with a suitably chosen 

MTI boundary can be superior to other restricted ran-

domization procedures in terms of balance/random-

ness tradeoff. Similar findings confirming the utility of 

the big stick design were recently reported by Hilgers 

et al. [60].

Validity and e�ciency

Validity of a statistical procedure essentially means that 

the procedure provides correct statistical inference fol-

lowing an RCT. In particular, a chosen statistical test is 

valid, if it controls the chance of a false positive finding, 

that is, the pre-specified probability of a type I error of 

the test is achieved but not exceeded. �e strong control 

of type I error rate is a major prerequisite for any con-

firmatory RCT. Efficiency means high statistical power 

for detecting meaningful treatment differences (when 

they exist), and high accuracy of estimation of treatment 

effects.

Both validity and efficiency are major requirements of 

any RCT, and both of these aspects are intertwined with 

treatment balance and allocation randomness. Restricted 

randomization designs, when properly implemented, 

provide solid ground for valid and efficient statistical 

inference. However, a careful consideration of different 

options can help an investigator to optimize the choice of 

a randomization procedure for their clinical trial.

Let us start with statistical efficiency. Equal (1:1) allo-

cation frequently maximizes power and estimation pre-

cision. To illustrate this, suppose the primary outcomes 

Table 1 Considerations for the choice of a restricted randomization procedure

Objective Desired feature(s) of a randomization procedure

Mitigate potential for selection bias A procedure should have high degree of randomness.

Mitigate potential for chronological bias. A procedure should balance treatment assignments over time.

Valid and efficient treatment comparison A procedure should have established statistical properties, provide strong control of false posi-
tive rate and yield unbiased, low variance estimates of the treatment difference.

A procedure should preserve the unconditional allocation ratio (e.g. 1:1) at every allocation 
step and achieve approximately or exactly the target sample sizes per group.

Ease of implementation Validated statistical software for implementing a randomization procedure must be in place.
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in the two groups are normally distributed with respec-

tive means µE and µC and common standard deviation 

σ > 0 . �en the variance of an efficient estimator of 

the treatment difference µE − µC is equal to V =
4σ

2

n−Ln
 , 

where Ln =
|D(n)|2

n
 is referred to as loss [61]. Clearly, V  is 

minimized when Ln = 0 , or equivalently, D(n) = 0 , i.e. 

the balanced trial.

When the primary outcome follows a more complex 

statistical model, optimal allocation may be unequal 

across the treatment groups; however, 1:1 allocation is 

still nearly optimal for binary outcomes [62, 63], survival 

outcomes [64], and possibly more complex data types 

[65, 66]. �erefore, a randomization design that balances 

treatment numbers frequently promotes efficiency of the 

treatment comparison.

As regards inferential validity, it is important to dis-

tinguish two approaches to statistical inference after the 

RCT – an invoked population model and a randomization 

model [10]. For a given randomization procedure, these 

two approaches generally produce similar results when 

the assumption of normal random sampling (and some 

other assumptions) are satisfied, but the randomization 

model may be more robust when model assumptions are 

violated; e.g. when outcomes are affected by a linear time 

trend [67, 68]. Another important issue that may inter-

fere with validity is selection bias. Some authors showed 

theoretically that PBDs with small block sizes may result 

in serious inflation of the type I error rate under a selec-

tion bias model [69–71]. To mitigate risk of selection bias, 

one should ideally take preventative measures, such as 

blinding/masking, allocation concealment, and avoidance 

of highly restrictive randomization designs. However, 

for already completed studies with evidence of selection 

bias [72], special statistical adjustments are warranted to 

ensure validity of the results [73–75].

Implementation aspects

With the current state of information technology, imple-

mentation of randomization in RCTs should be straight-

forward. Validated randomization systems are emerging, 

and they can handle randomization designs of increasing 

complexity for clinical trials that are run globally. How-

ever, some important points merit consideration.

�e first point has to do with how a randomization 

sequence is generated and implemented. One should 

distinguish between advance and adaptive randomiza-

tion [16]. Here, by “adaptive” randomization we mean 

“in-real-time” randomization, i.e. when a randomization 

sequence is generated not upfront, but rather sequen-

tially, as eligible subjects enroll into the study. Restricted 

randomization procedures are “allocation-adaptive”, in 

the sense that the treatment assignment of an individual 

subject is adapted to the history of previous treatment 

assignments. While in practice the majority of trials with 

restricted and stratified randomization use randomiza-

tion schedules pre-generated in advance, there are some 

circumstances under which “in-real-time” randomiza-

tion schemes may be preferred; for instance, clinical trials 

with high cost of goods and/or shortage of drug supply 

[76].

�e advance randomization approach includes the fol-

lowing steps: 1) for the chosen randomization design and 

sample size n , specify the probability distribution on the 

reference set by enumerating all feasible randomization 

sequences of length n and their corresponding prob-

abilities; 2) select a sequence at random from the refer-

ence set according to the probability distribution; and 3) 

implement this sequence in the trial. While enumeration 

of all possible sequences and their probabilities is feasible 

and may be useful for trials with small sample sizes, the 

task becomes computationally prohibitive (and unneces-

sary) for moderate or large samples. In practice, Monte 

Carlo simulation can be used to approximate the prob-

ability distribution of the reference set of all randomiza-

tion sequences for a chosen randomization procedure.

A limitation of advance randomization is that a 

sequence of treatment assignments must be generated 

upfront, and proper security measures (e.g. blinding/

masking) must be in place to protect confidentiality of 

the sequence. With the adaptive or “in-real-time” rand-

omization, a sequence of treatment assignments is gen-

erated dynamically as the trial progresses. For many 

restricted randomization procedures, the randomization 

rule can be expressed as Pr(δi+1 = 1) = |F{D(i)}| , where 

F{·} is some non-increasing function of D(i) for any i ≥ 1 . 

�is is referred to as the Markov property [77], which 

makes a procedure easy to implement sequentially. Some 

restricted randomization procedures, e.g. the maximal 

procedure [35], do not have the Markov property.

�e second point has to do with how the final data anal-

ysis is performed. With an invoked population model, 

the analysis is conditional on the design and the rand-

omization is ignored in the analysis. With a randomiza-

tion model, the randomization itself forms the basis for 

statistical inference. Reference [14] provides a contem-

poraneous overview of randomization-based inference 

in clinical trials. Several other papers provide important 

technical details on randomization-based tests, includ-

ing justification for control of type I error rate with these 

tests [22, 78, 79]. In practice, Monte Carlo simulation can 

be used to estimate randomization-based p-values [10].

A roadmap for comparison of restricted randomization 

procedures

�e design of any RCT starts with formulation of the trial 

objectives and research questions of interest [3, 31]. �e 
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choice of a randomization procedure is an integral part 

of the study design. A structured approach for select-

ing an appropriate randomization procedure for an RCT 

was proposed by Hilgers et al. [60]. Here we outline the 

thinking process one may follow when evaluating differ-

ent candidate randomization procedures. Our presented 

roadmap is by no means exhaustive; its main purpose is 

to illustrate the logic behind some important considera-

tions for finding an “optimal” randomization design for 

the given trial parameters.

�roughout, we shall assume that the study is designed 

as a randomized, two-arm comparative trial with 1:1 allo-

cation, with a fixed sample size n that is pre-determined 

based on budgetary and statistical considerations to 

obtain a definitive assessment of the treatment effect via 

the pre-defined hypothesis testing. We start with some 

general considerations which determine the study design:

• Sample size (n). For small or moderate studies, exact 

attainment of the target numbers per group may 

be essential, because even slight imbalance may 

decrease study power. �erefore, a randomization 

design in such studies should equalize well the final 

treatment numbers. For large trials, the risk of major 

imbalances is less of a concern, and more random 

procedures may be acceptable.

• �e length of the recruitment period and the trial 

duration. Many studies are short-term and enroll 

participants fast, whereas some other studies are 

long-term and may have slow patient accrual. In the 

latter case, there may be time drifts in patient charac-

teristics, and it is important that the randomization 

design balances treatment assignments over time.

• Level of blinding (masking): double-blind, single-

blind, or open-label. In double-blind studies with 

properly implemented allocation concealment the 

risk of selection bias is low. By contrast, in open-label 

studies the risk of selection bias may be high, and the 

randomization design should provide strong encryp-

tion of the randomization sequence to minimize pre-

diction of future allocations.

• Number of study centers. Many modern RCTs are 

implemented globally at multiple research institu-

tions, whereas some studies are conducted at a single 

institution. In the former case, the randomization is 

often stratified by center and/or clinically important 

covariates. In the latter case, especially in single-insti-

tution open-label studies, the randomization design 

should be chosen very carefully, to mitigate the risk 

of selection bias.

An important point to consider is calibration of the 

design parameters. Many restricted randomization 

procedures involve parameters, such as the block size 

in the PBD, the coin bias probability in Efron’s BCD, the 

MTI threshold, etc. By fine-tuning these parameters, 

one can obtain designs with desirable statistical proper-

ties. For instance, references [80, 81] provide guidance 

on how to justify the block size in the PBD to mitigate 

the risk of selection bias or chronological bias. Refer-

ence [82] provides a formal approach to determine the 

“optimal” value of the parameter p in Efron’s BCD in 

both finite and large samples. �e calibration of design 

parameters can be done using Monte Carlo simulations 

for the given trial setting.

Another important consideration is the scope of rand-

omization procedures to be evaluated. As we mentioned 

already, even one method may represent a broad class 

of randomization procedures that can provide differ-

ent levels of balance/randomness tradeoff; e.g. Efron’s 

BCD covers a wide spectrum of designs, from PBD(2) 

(if p = 1 ) to CRD (if p = 0.5 ). One may either prefer to 

focus on finding the “optimal” parameter value for the 

chosen design, or be more general and include various 

designs (e.g. MTI procedures, BCDs, urn designs, etc.) 

in the comparison. �is should be done judiciously, on 

a case-by-case basis, focusing only on the most reason-

able procedures. References [50, 58, 60] provide good 

examples of simulation studies to facilitate comparisons 

among various restricted randomization procedures for 

a 1:1 RCT.

In parallel with the decision on the scope of randomi-

zation procedures to be assessed, one should decide upon 

the performance criteria against which these designs 

will be compared. Among others, one might think about 

the two competing considerations: treatment balance 

and allocation randomness. For a trial of size n , at each 

allocation step i = 1, . . . , n one can calculate expected 

absolute imbalance E|D(i)| and the probability of cor-

rect guess Pr(Gi = 1) as measures of lack of balance and 

lack of randomness, respectively. �ese measures can be 

either calculated analytically (when formulae are avail-

able) or through Monte Carlo simulations. Sometimes it 

may be useful to look at cumulative measures up to the 

ith  allocation step ( i = 1, . . . , n ); e.g. 1i
∑i

j=1
E
∣

∣D(j)
∣

∣ and 
1

i

∑i
j=1

Pr(Gj = 1) . For instance, 1n
∑n

j=1
Pr(Gj = 1) is the 

average correct guess probability for a design with sam-

ple size n . It is also helpful to visualize the selected crite-

ria. Visualizations can be done in a number of ways; e.g. 

plots of a criterion vs. allocation step, admissibility plots 

of two chosen criteria [50, 59], etc. Such visualizations 

can help evaluate design characteristics, both overall and 

at intermediate allocation steps. �ey may also provide 

insights into the behavior of a particular design for dif-

ferent values of the tuning parameter, and/or facilitate a 

comparison among different types of designs.
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Another way to compare the merits of different rand-

omization procedures is to study their inferential char-

acteristics such as type I error rate and power under 

different experimental conditions. Sometimes this can 

be done analytically, but a more practical approach is to 

use Monte Carlo simulation. �e choice of the modeling 

and analysis strategy will be context-specific. Here we 

outline some considerations that may be useful for this 

purpose:

• Data generating mechanism. To simulate individ-

ual outcome data, some plausible statistical model 

must be posited. �e form of the model will depend 

on the type of outcomes (e.g. continuous, binary, 

time-to-event, etc.), covariates (if applicable), the 

distribution of the measurement error terms, and 

possibly some additional terms representing selec-

tion and/or chronological biases [60].

• True treatment effects. At least two scenarios should 

be considered: under the null hypothesis ( H0 : treat-

ment effects are the same) to evaluate the type I error 

rate, and under an alternative hypothesis ( H1 : there 

is some true clinically meaningful difference between 

the treatments) to evaluate statistical power.

• Randomization designs to be compared. �e choice 

of candidate randomization designs and their param-

eters must be made judiciously.

• Data analytic strategy. For any study design, one 

should pre-specify the data analysis strategy to 

address the primary research question. Statistical 

tests of significance to compare treatment effects 

may be parametric or nonparametric, with or with-

out adjustment for covariates.

• �e approach to statistical inference: population 

model-based or randomization-based. �ese two 

approaches are expected to yield similar results when 

the population model assumptions are met, but they 

may be different if some assumptions are violated. 

Randomization-based tests following restricted rand-

omization procedures will control the type I error at 

the chosen level if the distribution of the test statistic 

under the null hypothesis is fully specified by the ran-

domization procedure that was used for patient allo-

cation. �is is always the case unless there is a major 

flaw in the design (such as selection bias whereby the 

outcome of any individual participant is dependent on 

treatment assignments of the previous participants).

Overall, there should be a well-thought plan captur-

ing the key questions to be answered, the strategy to 

address them, the choice of statistical software for sim-

ulation and visualization of the results, and other rel-

evant details.

Results
In this section we present four examples that illustrate 

how one may approach evaluation of different randomi-

zation design options at the study planning stage. Exam-

ple 1 is based on a hypothetical 1:1 RCT with n = 50 and 

a continuous primary outcome, whereas Examples 2, 3, 

and 4 are based on some real RCTs.

Example 1: Which restricted randomization procedures are 

robust and e�cient?

Our first example is a hypothetical RCT in which the 

primary outcome is assumed to be normally distributed 

with mean µE for treatment E, mean µC for treatment C, 

and common variance σ 2 . A total of n subjects are to be 

randomized equally between E and C, and a two-sam-

ple t-test is planned for data analysis. Let � = µE − µC 

denote the true mean treatment difference. We are 

interested in testing a hypothesis H0 : � = 0 (treatment 

effects are the same) vs. H1 : � �= 0.

�e total sample size n to achieve given power at some 

clinically meaningful treatment difference �c while main-

taining the chance of a false positive result at level α can 

be obtained using standard statistical methods [83]. For 

instance, if �c/σ = 0.95 , then a design with n = 50 sub-

jects (25 per arm) provides approximately 91% power of a 

two-sample t-test to detect a statistically significant treat-

ment difference using 2-sided α = 5%. We shall consider 

12 randomization procedures to sequentially randomize 

n = 50 subjects in a 1:1 ratio.

 1. Random allocation rule – Rand.

 2. Truncated binomial design – TBD.

 3. Permuted block design with block size of 2 – 

PBD(2).

 4. Permuted block design with block size of 4 – 

PBD(4).

 5. Big stick design [37] with MTI = 3 – BSD(3).

 6. Biased coin design with imbalance tolerance [38] 

with p = 2/3 and MTI = 3 – BCDWIT(2/3, 3).

 7. Efron’s biased coin design [44] with p = 2/3 – 

BCD(2/3).

 8. Adjustable biased coin design [49] with a = 2 – 

ABCD(2).

 9. Generalized biased coin design (GBCD) with γ = 1 

[45] – GBCD(1).

 10. GBCD with γ = 2 [46] – GBCD(2).

 11. GBCD with γ = 5 [47] – GBCD(5).

 12. Complete randomization design – CRD.

�ese 12 procedures can be grouped into five major 

types. I) Procedures 1, 2, 3, and 4 achieve exact final bal-

ance for a chosen sample size (provided the total sample 

size is a multiple of the block size). II) Procedures 5 and 
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6 ensure that at any allocation step the absolute value of 

imbalance is capped at MTI = 3. III) Procedures 7 and 8 

are biased coin designs that sequentially adjust randomiza-

tion according to imbalance measured as the difference in 

treatment numbers. IV) Procedures 9, 10, and 11 (GBCD’s 

with γ = 1, 2, and 5) are adaptive biased coin designs, 

for which randomization probability is modified accord-

ing to imbalance measured as the difference in treatment 

allocation proportions (larger γ implies greater forcing of 

balance). V) Procedure 12 (CRD) is the most random pro-

cedure that achieves balance for large samples.

Balance/randomness tradeo�

We first compare the procedures with respect to treatment 

balance and allocation randomness. To quantify imbalance 

after i allocations, we consider two measures: expected 

value of absolute imbalance E|D(i)| , and expected value 

of loss E(Li) = E|D(i)|2/i [50, 61]. Importantly, for pro-

cedures 1, 2, and 3 the final imbalance is always zero, thus 

E|D(n)| ≡ 0 and E(Ln) ≡ 0 , but at intermediate steps one 

may have E|D(i)| > 0 and E(Li) > 0 , for 1 ≤ i < n . For 

procedures 5 and 6 with MTI = 3, E(Li) ≤ 9/i . For pro-

cedures 7 and 8, E(Ln) tends to zero as n → ∞ [49]. For 

procedures 9, 10, 11, and 12, as n → ∞ , E(Ln) tends to the 

positive constants 1/3, 1/5, 1/11, and 1, respectively [47]. 

We take the cumulative average loss after n allocations as an 

aggregate measure of imbalance: Imb(n) =
1

n

∑
n

i=1
E(Li) , 

which takes values in the 0–1 range.

To measure lack of randomness, we consider two meas-

ures: expected proportion of correct guesses up to the 

ith  step, PCG(i) =
1

i

∑i
j=1

Pr(Gj = 1),  i = 1, . . . , n , and 

the forcing index [47, 84], FI(i) =

∑i
j=1

E|φj−0.5|
i/4  , where 

E
∣

∣φj − 0.5
∣

∣ is the expected deviation of the conditional 

probability of treatment E assignment at the jth  alloca-

tion step ( φj ) from the unconditional target value of 0.5. 

Note that PCG(i) takes values in the range from 0.5 for 

CRD to 0.75 for PBD(2) assuming i is even, whereas FI(i) 

takes values in the 0–1 range. At the one extreme, we 

have CRD for which FI(i) ≡ 0 because for CRD φi = 0.5 

for any i ≥ 1 . At the other extreme, we have PBD(2) for 

which every odd allocation is made with probability 0.5, 

and every even allocation is deterministic, i.e. made with 

probability 0 or 1. For PBD(2), assuming i is even, there 

are exactly i/2 pairs of allocations, and so 
∑i

j=1
E
∣

∣φj − 0.5
∣

∣

= 0.5 · i/2 = i/4 , which implies that 

FI(i) = 1 for PBD(2). For all other restricted randomiza-

tion procedures one has 0 < FI(i) < 1.

A “good” randomization procedure should have low val-

ues of both loss and forcing index. Different randomization 

procedures can be compared graphically. As a balance/ran-

domness tradeoff metric, one can calculate the quadratic 

distance to the origin (0,0) for the chosen sample size, e.g. 

d(n) =

√

{Imb(n)}
2
+ {FI(n)}

2 (in our example n = 50 ), and 

the randomization designs can then be ranked such that 

designs with lower values of d(n) are preferable.

We ran a simulation study of the 12 randomization 

procedures for an RCT with n = 50 . Monte Carlo aver-

age values of absolute imbalance, loss, Imb(i) , FI(i) , and 

d(i) were calculated for each intermediate allocation step 

( i = 1, . . . , 50 ), based on 10,000 simulations.

Figure  1 is a plot of expected absolute imbalance vs. 

allocation step. CRD, GBCD(1), and GBCD(2) show 

increasing patterns. For TBD and Rand, the final imbal-

ance (when n = 50 ) is zero; however, at intermediate 

steps is can be quite large. For other designs, absolute 

imbalance is expected to be below 2 at any allocation step 

up to n = 50 . Note the periodic patterns of PBD(2) and 

PBD(4); for instance, for PBD(2) imbalance is 0 (or 1) for 

any even (or odd) allocation.

Figure  2 is a plot of expected proportion of correct 

guesses vs. allocation step. One can observe that for CRD 

it is a flat pattern at 0.5; for PBD(2) it fluctuates while 

reaching the upper limit of 0.75 at even allocation steps; 

and for ten other designs the values of proportion of cor-

rect guesses fall between those of CRD and PBD(2). �e 

TBD has the same behavior up to ~  40th allocation step, 

at which the pattern starts increasing. Rand exhibits an 

increasing pattern with overall fewer correct guesses 

compared to other randomization procedures. Interest-

ingly, BSD(3) is uniformly better (less predictable) than 

ABCD(2), BCD(2/3), and BCDWIT(2/3, 3). For the three 

GBCD procedures, there is a rapid initial increase fol-

lowed by gradual decrease in the pattern; this makes good 

sense, because GBCD procedures force greater balance 

when the trial is small and become more random (and less 

prone to correct guessing) as the sample size increases.

Table 2 shows the ranking of the 12 designs with respect 

to the overall performance metric d(n) =
√

{Imb(n)}
2
+ {FI(n)}

2 

for n = 50 . BSD(3), GBCD(2) and GBCD(1) are the top 

three procedures, whereas PBD(2) and CRD are at the bot-

tom of the list.
Figure 3 is a plot of FI(n) vs. Imb(n) for n = 50 . One can see 

the two extremes: CRD that takes the value (0,1), and PBD(2) 

with the value (1,0). �e other ten designs are closer to (0,0).

Figure  4 is a heat map plot of the metric d(i) for 

i = 1, . . . , 50 . BSD(3) seems to provide overall best tradeoff 

between randomness and balance throughout the study.

Inferential characteristics: type I error rate and power

Our next goal is to compare the chosen randomization 

procedures in terms of validity (control of the type I 

error rate) and efficiency (power). For this purpose, we 

assumed the following data generating mechanism: for 

the ith subject, conditional on the treatment assignment 

δi , the outcome Yi is generated according to the model
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where ui is an unknown term associated with the 

ith subject and εi ’s are i.i.d. measurement errors. We shall 

explore the following four models:

• M1: Normal random sampling: ui ≡ 0 and εi ∼ i.i.d. 

N(0,1), i = 1, . . . , n . �is corresponds to a standard 

setup for a two-sample t-test under a population 

model.

• M2: Linear trend:  ui =
5i

n+1
 and εi ∼ i.i.d. N(0,1), 

i = 1, . . . , n . In this model, the outcomes are affected 

by a linear trend over time [67].

• M3: Cauchy errors: ui ≡ 0 and εi ∼ i.i.d. Cauchy(0,1), 

i = 1, . . . , n . In this setup, we have a misspecification 

of the distribution of measurement errors.

• M4: Selection bias:  ui+1 = −ν · sign{D(i)} , 

i = 0, . . . , n − 1 , with the convention that D(0) = 0 . 

Here, ν > 0 is the “bias effect” (in our simula-

tions we set ν = 0.5 ). We also assume that εi ∼ 

i.i.d. N(0,1), i = 1, . . . , n . In this setup, at each 

allocation step the investigator attempts to intel-

ligently guess the upcoming treatment assignment 

(1)Yi = δiµE + (1 − δi)µC + ui + εi, i = 1, . . . , n and selectively enroll a patient who, in their view, 

would be most suitable for the upcoming treat-

ment. �e investigator uses the “convergence” 

guessing strategy [28], that is, guess the treatment 

as one that has been less frequently assigned thus 

far, or make a random guess in case the current 

treatment numbers are equal. Assuming that the 

investigator favors the experimental treatment and 

is interested in demonstrating its superiority over 

the control, the biasing mechanism is as follows: at 

the (i + 1) st step, a “healthier” patient is enrolled, if 

D(i) < 0 ( ui+1 = 0.5 ); a “sicker” patient is enrolled, 

if D(i) > 0 ( ui+1 = −0.5 ); or a “regular” patient is 

enrolled, if D(i) = 0 ( ui+1 = 0).

We consider three statistical test procedures:

• T1: Two-sample t-test: The test statistic is t =
Y E−Y C

√

S2
p

(

1

NE (n)
+

1

NC (n)

)

 , 

where Y E =
1

NE (n)

∑n

i=1
�iY i

 and Y C =
1

NC (n)

∑n

i=1
(1 − �i)Yi 

are the treatment sample means,  NE(n) =
∑n

i=1
�i and 

NC(n) = n − NE(n) are the observed group sample 

Fig. 1 Simulated expected absolute imbalance vs. allocation step for 12 restricted randomization procedures for n = 50. Note: PBD(2) and PBD(4) 

have forced periodicity absolute imbalance of 0, which distinguishes them from MTI procedures
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sizes, and S2p is a pooled estimate of variance, where 

S2
p
=

1

n−2

�

∑n

i=1
�i

�

Yi − Y E

�2

+
∑n

i=1
(1 − �i)

�

Yi − Y C

�2
�

 . 

Then H0 : � = 0 is rejected at level α , if |t| > t1− α

2
,n−2 , 

the 100(1 −

α

2
)th percentile of the t-distribution with 

n − 2 degrees of freedom.

• T2: Randomization-based test using mean dif-

ference: Let δobs and yobs denote, respectively the 

observed sequence of treatment assignments and 

responses, obtained from the trial using randomiza-

tion procedure R . We first compute the observed 

mean difference Sobs = S
(

δobs, yobs
)

= Y E − Y C . 

�en we use Monte Carlo simulation to generate 

L randomization sequences of length n using pro-

cedure R , where L is some large number. For the 

ℓth generated sequence, δℓ , compute Sℓ = S(δℓ, yobs) , 

where ℓ = 1, . . . , L . �e proportion of sequences for 

which Sℓ is at least as extreme as Sobs is computed as 

P̂ = 1

L

∑
L

ℓ=1
1{|Sℓ| ≥ |Sobs|} . Statistical significance is 

declared, if P̂ < α.

• T3: Randomization-based test based on ranks: 

�is test procedure follows the same logic as T2, 

except that the test statistic is calculated based 

on ranks. Given the vector of observed responses 

yobs = (y1, . . . , yn) , let ajn denote the rank of yj 

among the elements of yobs . Let an denote the aver-

age of ajn’s, and let an = (a1n − an, ...,αnn − an)
′ . 

�en a linear rank test statistic has the form 

Sobs = δ
′

obs
an =

∑
n

i=1
δi(ain − an).

Fig. 2 Simulated expected proportion of correct guesses vs. allocation step for 12 restricted randomization procedures for n = 50

Table 2 Ranking of 12 restricted randomization procedures with 

respect to balance/randomness tradeoff for a trial with n = 50 

subjects

Rank Design Imb(n) FI(n) d(n)

1 BSD(3) 0.226 0.316 0.389

2 GBCD(2) 0.220 0.344 0.409

3 GBCD(1) 0.341 0.240 0.417

4 ABCD(2) 0.170 0.419 0.452

5 GBCD(5) 0.121 0.522 0.536

6 BCD(2/3) 0.233 0.487 0.540

7 BCDWIT(2/3, 3) 0.148 0.560 0.579

8 Rand 0.505 0.318 0.597

9 PBD(4) 0.082 0.813 0.818

10 TBD 0.868 0.225 0.896

11 PBD(2) 0.052 1.000 1.001

12 CRD 1.014 0.000 1.014
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Fig. 3 Simulated forcing index (x-axis) vs. aggregate expected loss (y-axis) for 12 restricted randomization procedures for n = 50

Fig. 4 Heatmap of the balance/randomness tradeoff d(i) =

√

{Imb(i)}2 + {FI(i)}2 vs. allocation step ( i = 1, . . . , 50 ) for 12 restricted randomization 

procedures. The procedures are ordered by value of d(50), with smaller values (more red) indicating more optimal performance



Page 14 of 24Berger et al. BMC Med Res Methodol          (2021) 21:168 

We consider four scenarios of the true mean dif-

ference  � = µE − µC , which correspond to the Null 

case ( � = 0 ), and three choices of � > 0 which cor-

respond to Alternative 1 (power ~ 70%), Alternative 2 

(power ~ 80%), and Alternative 3 (power ~ 90%). In all 

cases, n = 50 was used.

Figure  5 summarizes the results of a simulation study 

comparing 12 randomization designs, under 4 models 

for the outcome (M1, M2, M3, and M4), 4 scenarios for 

the mean treatment difference (Null, and Alternatives 1, 

2, and 3), using 3 statistical tests (T1, T2, and T3). �e 

operating characteristics of interest are the type I error 

rate under the Null scenario and the power under the 

Alternative scenarios. Each scenario was simulated 

10,000 times, and each randomization-based test was 

computed using L = 10, 000 sequences.

From Fig. 5, under the normal random sampling model 

(M1), all considered randomization designs have similar 

performance: they maintain the type I error rate and have 

similar power, with all tests. In other words, when popu-

lation model assumptions are satisfied, any combination 

of design and analysis should work well and yield reliable 

and consistent results.

Under the “linear trend” model (M2), the designs 

have differential performance. First of all, under the 

Null scenario, only Rand and CRD maintain the type 

I error rate at 5% with all three tests. For TBD, the 

t-test is anticonservative, with type I error rate ~ 20%, 

whereas for nine other procedures the t-test is con-

servative, with type I error rate in the range 0.1–2%. 

At the same time, for all 12 designs the two randomi-

zation-based tests maintain the nominal type I error 

rate at 5%. These results are consistent with some 

previous findings in the literature [67, 68]. As regards 

power, it is reduced significantly compared to the 

normal random sampling scenario. The t-test seems 

to be most affected and the randomization-based 

test using ranks is most robust for a majority of the 

designs. Remarkably, for CRD the power is similar 

with all three tests. This signifies the usefulness of 

randomization-based inference in  situations when 

outcome data are subject to a linear time trend, and 

Fig. 5 Simulated type I error rate and power of 12 restricted randomization procedures. Four models for the data generating mechanism of the 

primary outcome (M1: Normal random sampling; M2: Linear trend; M3: Errors Cauchy; and M4: Selection bias). Four scenarios for the treatment 

mean difference (Null; Alternatives 1, 2, and 3). Three statistical tests (T1: two-sample t-test; T2: randomization-based test using mean difference; T3: 

randomization-based test using ranks)
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the importance of applying randomization-based tests 

at least as supplemental analyses to likelihood-based 

test procedures.

Under the “Cauchy errors” model (M3), all designs 

perform similarly: the randomization-based tests 

maintain the type I error rate at 5%, whereas the t-test 

deflates the type I error to 2%. As regards power, all 

designs also have similar, consistently degraded perfor-

mance: the t-test is least powerful, and the randomiza-

tion-based test using ranks has highest power. Overall, 

under misspecification of the error distribution a ran-

domization-based test using ranks is most appropriate; 

yet one should acknowledge that its power is still lower 

than expected.

Under the “selection bias” model (M4), the 12 designs 

have differential performance. �e only procedure that 

maintained the type I error rate at 5% with all three tests 

was CRD. For eleven other procedures, inflations of the 

type I error were observed. In general, the more ran-

dom the design, the less it was affected by selection bias. 

For instance, the type I error rate for TBD was ~ 6%; for 

Rand, BSD(3), and GBCD(1) it was ~ 7.5%; for GBCD(2) 

and ABCD(2) it was ~ 8–9%; for Efron’s BCD(2/3) it 

was ~ 12.5%; and the most affected design was PBD(2) for 

which the type I error rate was ~ 38–40%. �ese results 

are consistent with the theory of Blackwell and Hodges 

[28] which posits that TBD is least susceptible to selec-

tion bias within a class of restricted randomization 

designs that force exact balance. Finally, under M4, statis-

tical power is inflated by several percentage points com-

pared to the normal random sampling scenario without 

selection bias.

We performed additional simulations to assess the 

impact of the bias effect ν under selection bias model. 

�e same 12 randomization designs and three statisti-

cal tests were evaluated for a trial with n = 50 under the 

Null scenario ( � = 0 ), for ν in the range of 0 (no bias) to 

1 (strong bias). Figure S1 in the Supplementary Materials 

shows that for all designs but CRD, the type I error rate is 

increasing in ν , with all three tests. �e magnitude of the 

type I error inflation is different across the restricted ran-

domization designs; e.g. for TBD it is minimal, whereas 

for more restrictive designs it may be large, especially 

for ν ≥ 0.4 . PBD(2) is particularly vulnerable: for ν in the 

range 0.4–1, its type I error rate is in the range 27–90% 

(for the nominal α = 5%).

In summary, our Example 1 includes most of the key 

ingredients of the roadmap for assessment of compet-

ing randomization designs which was described in the 

“Methods” section. For the chosen experimental sce-

narios, we evaluated CRD and several restricted rand-

omization procedures, some of which belonged to the 

same class but with different values of the parameter (e.g. 

GBCD with γ = 1, 2, 5 ). We assessed two measures of 

imbalance, two measures of lack of randomness (predict-

ability), and a metric that quantifies balance/randomness 

tradeoff. Based on these criteria, we found that BSD(3) 

provides overall best performance. We also evaluated 

type I error and power of selected randomization proce-

dures under several treatment response models. We have 

observed important links between balance, randomness, 

type I error rate and power. It is beneficial to consider all 

these criteria simultaneously as they may complement 

each other in characterizing statistical properties of ran-

domization designs. In particular, we found that a design 

that lacks randomness, such as PBD with blocks of 2 or 4, 

may be vulnerable to selection bias and lead to inflations 

of the type I error. �erefore, these designs should be 

avoided, especially in open-label studies. As regards sta-

tistical power, since all designs in this example targeted 

1:1 allocation ratio (which is optimal if the outcomes are 

normally distributed and have between-group constant 

variance), they had very similar power of statistical tests 

in most scenarios except for the one with chronological 

bias. In the latter case, randomization-based tests were 

more robust and more powerful than the standard two-

sample t-test under the population model assumption.

Overall, while Example 1 is based on a hypothetical 1:1 

RCT, its true purpose is to showcase the thinking pro-

cess in the application of our general roadmap. �e fol-

lowing three examples are considered in the context of 

real RCTs.

Example 2: How can we reduce predictability 

of a randomization procedure and lower the risk 

of selection bias?

Selection bias can arise if the investigator can intelli-

gently guess at least part of the randomization sequence 

yet to be allocated and, on that basis, preferentially 

and strategically assigns study subjects to treatments. 

Although it is generally not possible to prove that a par-

ticular study has been infected with selection bias, there 

are examples of published RCTs that do show some evi-

dence to have been affected by it. Suspect trials are, for 

example, those with strong observed baseline covariate 

imbalances that consistently favor the active treatment 

group [16]. In what follows we describe an example of 

an RCT where the stratified block randomization proce-

dure used was vulnerable to potential selection biases, 

and discuss potential alternatives that may reduce this 

vulnerability.

Etanercept was studied in patients aged 4 to 17  years 

with polyarticular juvenile rheumatoid arthritis [85]. �e 

trial consisted of two parts. During the first, open-label 

part of the trial, patients received etanercept twice weekly 

for up to three months. Responders from this initial part 
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of the trial were then randomized, at a 1:1 ratio, in the 

second, double-blind, placebo-controlled part of the trial 

to receive etanercept or placebo for four months or until 

a flare of the disease occurred. �e primary efficacy out-

come, the proportion of patients with disease flare, was 

evaluated in the double-blind part. Among the 51 rand-

omized patients, 21 of the 26 placebo patients (81%) with-

drew because of disease flare, compared with 7 of the 25 

etanercept patients (28%), yielding a p-value of 0.003.

Regulatory review by the Food and Drug Administra-

tive (FDA) identified vulnerability to selection biases in 

the study design of the double-blind part and potential 

issues in study conduct. �ese findings were succinctly 

summarized in [16] (pp.51–52).

Specifically, randomization was stratified by study center 

and number of active joints (≤ 2 vs. > 2, referred to as 

“few” or “many” in what follows), with blocked randomi-

zation within each stratum using a block size of two. Fur-

thermore, randomization codes in corresponding “few” 

and “many” blocks within each study center were mirror 

images of each other. For example, if the first block within 

the “few” active joints stratum of a given center is “placebo 

followed by etanercept”, then the first block within the 

“many” stratum of the same center would be “etanercept 

followed by placebo”. While this appears to be an attempt 

to improve treatment balance in this small trial, unblind-

ing of one treatment assignment may lead to determinis-

tic predictability of three upcoming assignments. While 

the double-blind nature of the trial alleviated this concern 

to some extent, it should be noted that all patients did 

receive etanercept previously in the initial open-label part 

of the trial. Chances of unblinding may not be ignorable if 

etanercept and placebo have immediately evident different 

effects or side effects. �e randomized withdrawal design 

was appropriate in this context to improve statistical power 

in identifying efficacious treatments, but the specific ran-

domization procedure used in the trial increased vulner-

ability to selection biases if blinding cannot be completely 

maintained.

FDA review also identified that four patients were ran-

domized from the wrong “few” or “many” strata, in three 

of which (3/51 = 5.9%) it was foreseeable that the treat-

ment received could have been reversed compared to 

what the patient would have received if randomized in 

the correct stratum. �ere were also some patients ran-

domized out of order. Imbalance in baseline characteris-

tics were observed in age (mean ages of 8.9 years in the 

etanercept arm vs. that of 12.2 years in the placebo arm) 

and corticosteroid use at baseline (50% vs. 24%).

While the authors [85] concluded that “�e unequal 

randomization did not affect the study results”, and 

indeed it was unknown whether the imbalance was a 

chance occurrence or in part caused by selection biases, 

the trial could have used better alternative randomization 

procedures to reduce vulnerability to potential selection 

bias. To illustrate the latter point, let us compare pre-

dictability of two randomization procedures – permuted 

block design (PBD) and big stick design (BSD) for several 

values of the maximum tolerated imbalance (MTI). We 

use BSD here for the illustration purpose because it was 

found to provide a very good balance/randomness trade-

off based on our simulations in Example 1. In essence, 

BSD provides the same level of imbalance control as PBD 

but with stronger encryption.

Table  3 reports two metrics for PBD and BSD: pro-

portion of deterministic assignments within a randomi-

zation sequence, and excess correct guess probability. 

�e latter metric is the absolute increase in proportion 

of correct guesses for a given procedure over CRD that 

has 50% probability of correct guesses under the “opti-

mal guessing strategy”.1 Note that for MTI = 1, BSD 

is equivalent to PBD with blocks of two. However, by 

increasing MTI, one can substantially decrease predict-

ability. For instance, going from MTI = 1 in the BSD to 

an MTI of 2 or 3 (two bottom rows), the proportion of 

deterministic assignments decreases from 50% to 25% 

and 16.7%, respectively, and excess correct guess prob-

ability decreases from 25% to 12.5% and 8.3%, which is a 

substantial reduction in risk of selection bias. In addition 

to simplicity and lower predictability for the same level 

of MTI control, BSD has another important advantage: 

investigators are not accustomed to it (as they are to the 

PBD), and therefore it has potential for complete elimi-

nation of prediction through thwarting enough early pre-

diction attempts.

Our observations here are also generalizable to other 

MTI randomization methods, such as the maximal pro-

cedure [35], Chen’s designs [38, 39], block urn design 

[40], just to name a few. MTI randomization procedures 

can be also used as building elements for more complex 

stratified randomization schemes [86].

Example 3: How can we mitigate risk of chronological bias?

Chronological bias may occur if a trial recruitment period 

is long, and there is a drift in some covariate over time that 

is subsequently not accounted for in the analysis [29]. To 

mitigate risk of chronological bias, treatment assignments 

should be balanced over time. In this regard, the ICH E9 

guideline has the following statement [31]:

“...Although unrestricted randomisation is an accept-

able approach, some advantages can generally be 

gained by randomising subjects in blocks. �is helps 

1 Guess the next allocation as the treatment with fewest allocations in the 

sequence thus far, or make a random guess if the treatment numbers are 

equal.
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to increase the comparability of the treatment groups, 

particularly when subject characteristics may change 

over time, as a result, for example, of changes in 

recruitment policy. It also provides a better guarantee 

that the treatment groups will be of nearly equal size...”

While randomization in blocks of two ensures best bal-

ance, it is highly predictable. In practice, a sensible tradeoff 

between balance and randomness is desirable. In the fol-

lowing example, we illustrate the issue of chronological bias 

in the context of a real RCT.

Altman and Royston [87] gave several examples of clini-

cal studies with hidden time trends. For instance, an RCT 

to compare azathioprine versus placebo in patients with 

primary biliary cirrhosis (PBC) with respect to overall 

survival was an international, double-blind, randomized 

trial including 248 patients of whom 127 received azathi-

oprine and 121 placebo [88]. �e study had a recruitment 

period of 7 years. A major prognostic factor for survival 

was the serum bilirubin level on entry to the trial. Alt-

man and Royston [87] provided a cusum plot of log bili-

rubin which showed a strong decreasing trend over time 

– patients who entered the trial later had, on average, 

lower bilirubin levels, and therefore better prognosis. 

Despite that the trial was randomized, there was some 

evidence of baseline imbalance with respect to serum 

bilirubin between azathioprine and placebo groups. �e 

analysis using Cox regression adjusted for serum bili-

rubin showed that the treatment effect of azathioprine 

was statistically significant (p = 0.01), with azathioprine 

reducing the risk of dying to 59% of that observed during 

the placebo treatment.

�e azathioprine trial [88] provides a very good example 

for illustrating importance of both the choice of a randomi-

zation design and a subsequent statistical analysis. We eval-

uated several randomization designs and analysis strategies 

under the given time trend through simulation. Since we 

did not have access to the patient level data from the aza-

thioprine trial, we simulated a dataset of serum bilirubin 

values from 248 patients that resembled that in the original 

paper (Fig. 1 in [87]); see Fig. 6 below.

For the survival outcomes, we use the following data gen-

erating mechanism [71, 89]: let hi(t, δi) denote the hazard 

function of the ith patient at time t such that

where hc(t) is an unspecified baseline hazard, logHR is 

the true value of the log-transformed hazard ratio, and ui 

is the log serum bilirubin of the ith patient at study entry.

Our main goal is to evaluate the impact of the time 

trend in bilirubin on the type I error rate and power. We 

consider seven randomization designs: CRD, Rand, TBD, 

PBD(2), PBD(4), BSD(3), and GBCD(2). �e latter two 

designs were found to be the top two performing proce-

dures based on our simulation results in Example 1 (cf. 

Table 2). PBD(4) is the most commonly used procedure 

in clinical trial practice. Rand and TBD are two designs 

that ensure exact balance in the final treatment numbers. 

CRD is the most random design, and PBD(2) is the most 

balanced design.

To evaluate both type I error and power, we consider 

two values for the true treatment effect: HR = 1 (Null) 

and HR = 0.6 (Alternative). For data analysis, we use 

the Cox regression model, either with or without adjust-

ment for serum bilirubin. Furthermore, we assess two 

approaches to statistical inference: population model-

based and randomization-based. For the sake of sim-

plicity, we let hc(t) ≡ 1 (exponential distribution) and 

assume no censoring when simulating the data.

For each combination of the design, experimental sce-

nario, and data analysis strategy, a trial with 248 patients 

was simulated 10,000 times. Each randomization-based 

test was computed using L = 1, 000 sequences. In each 

simulation, we used the same time trend in serum biliru-

bin as described. �rough simulation, we estimated the 

probability of a statistically significant baseline imbalance 

in serum bilirubin between azathioprine and placebo 

groups, type I error rate, and power.

First, we observed that the designs differ with respect 

to their potential to achieve baseline covariate balance 

under the time trend. For instance, probability of a sta-

tistically significant group difference on serum bilirubin 

(two-sided P < 0.05) is ~ 24% for TBD, ~ 10% for CRD, 

~ 2% for GBCD(2), ~ 0.9% for Rand, and ~ 0% for BSD(3), 

PBD(4), and PBD(2).

Second, a failure to adjust for serum bilirubin in the 

analysis can negatively impact statistical inference. 

Table  4 shows the type I error and power of statistical 

analyses unadjusted and adjusted for serum bilirubin, 

using population model-based and randomization-based 

approaches.

If we look at the type I error for the population model-

based, unadjusted analysis, we can see that only CRD 

(2)

hi

(

t, �i
)

= hc(t)exp
(

�ilog HR + ui

)

, i = 1,… , 248

Table 3 Predictability of permuted block design (PBD) and big 

stick design (BSD) for different values of maximum tolerated 

imbalance (MTI)

MTI Proportion of Deterministic 
Assignments

Excess Correct Guess
Probability

PBD BSD PBD BSD

1 50% 50% 25% 25%

2 33.3% 25% 20.8% 12.5%

3 25% 16.7% 18.3% 8.3%
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Fig. 6 Cusum plot of baseline log serum bilirubin level of 248 subjects from the azathioprine trial, reproduced from Fig. 1 of Altman and Royston 

[87]

Table 4 Type I error and power of seven randomization designs under a time trend

Type I error rate Power

Without adjustment for serum 
bilirubin

With adjustment for serum 
bilirubin

Without adjustment for serum 
bilirubin

With adjustment 
for serum bilirubin

Population model-based approach to statistical inference

CRD 0.0481 0.0504 0.6114 0.9694

Rand 0.0517 0.0511 0.6193 0.9701

TBD 0.1451 0.0511 0.5856 0.9702

PBD(2) 0.0064 0.0511 0.6540 0.9704

PBD(4) 0.0073 0.0518 0.6612 0.9688

BSD(3) 0.0084 0.0541 0.6547 0.9697

GBCD(2) 0.0185 0.0546 0.6367 0.9699

Randomization-based approach to statistical inference

CRD 0.049 0.052 0.617 0.970

Rand 0.047 0.048 0.602 0.973

TBD 0.047 0.048 0.367 0.968

PBD(2) 0.048 0.048 0.901 0.969

PBD(4) 0.047 0.047 0.874 0.971

BSD(3) 0.048 0.051 0.860 0.964

GBCD(2) 0.050 0.049 0.803 0.971
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and Rand are valid (maintain the type I error rate at 5%), 

whereas TBD is anticonservative (~ 15% type I error) and 

PBD(2), PBD(4), BSD(3), and GBCD(2) are conservative 

(~ 1–2% type I error). �ese findings are consistent with 

the ones for the two-sample t-test described earlier in the 

current paper, and they agree well with other findings in 

the literature [67]. By contrast, population model-based 

covariate-adjusted analysis is valid for all seven randomi-

zation designs. Looking at the type I error for the rand-

omization-based analyses, all designs yield consistent 

valid results (~ 5% type I error), with or without adjust-

ment for serum bilirubin.

As regards statistical power, unadjusted analyses 

are substantially less powerful then the correspond-

ing covariate-adjusted analysis, for all designs with 

either population model-based or randomization-

based approaches. For the population model-based, 

unadjusted analysis, the designs have ~ 59–65% power, 

whereas than the corresponding covariate-adjusted 

analyses have ~ 97% power. �e most striking results are 

observed with the randomization-based approach: the 

power of unadjusted analysis is quite different across 

seven designs: it is ~ 37% for TBD, ~ 60–61% for CRD 

and Rand, ~ 80–87% for BCD(3), GBCD(2), and PBD(4), 

and it is ~ 90% for PBD(2). �us, PBD(2) is the most 

powerful approach if a time trend is present, statistical 

analysis strategy is randomization-based, and no adjust-

ment for time trend is made. Furthermore, randomiza-

tion-based covariate-adjusted analyses have ~ 97% power 

for all seven designs. Remarkably, the power of covari-

ate-adjusted analysis is identical for population model-

based and randomization-based approaches.

Overall, this example highlights the importance of 

covariate-adjusted analysis, which should be straight-

forward if a covariate affected by a time trend is known 

(e.g. serum bilirubin in our example). If a covariate is 

unknown or hidden, then unadjusted analysis following 

a conventional test may have reduced power and dis-

torted type I error (although the designs such as CRD 

and Rand do ensure valid statistical inference). Alter-

natively, randomization-based tests can be applied. �e 

resulting analysis will be valid but may be potentially 

less powerful. �e degree of loss in power following 

randomization-based test depends on the randomiza-

tion design: designs that force greater treatment bal-

ance over time will be more powerful. In fact, PBD(2) is 

shown to be most powerful under such circumstances; 

however, as we have seen in Example 1 and Example 2, 

a major deficiency of PBD(2) is its vulnerability to selec-

tion bias. From Table  4, and taking into account the 

earlier findings in this paper, BSD(3) seems to provide 

a very good risk mitigation strategy against unknown 

time trends.

Example 4: How do we design an RCT with a very small 

sample size?

In our last example, we illustrate the importance of the 

careful choice of randomization design and subsequent 

statistical analysis in a nonstandard RCT with small sam-

ple size. Due to confidentiality and because this study is 

still in conduct, we do not disclose all details here except 

for that the study is an ongoing phase II RCT in a very 

rare and devastating autoimmune disease in children.

�e study includes three periods: an open-label single-

arm active treatment for 28 weeks to identify treatment 

responders (Period 1), a 24-week randomized treatment 

withdrawal period to primarily assess the efficacy of 

the active treatment vs. placebo (Period 2), and a 3-year 

long-term safety, open-label active treatment (Period 3). 

Because of a challenging indication and the rarity of the 

disease, the study plans to enroll up to 10 male or female 

pediatric patients in order to randomize 8 patients (4 per 

treatment arm) in Period 2 of the study. �e primary end-

point for assessing the efficacy of active treatment versus 

placebo is the proportion of patients with disease flare 

during the 24-week randomized withdrawal phase. �e 

two groups will be compared using Fisher’s exact test. In 

case of a successful outcome, evidence of clinical efficacy 

from this study will be also used as part of a package to 

support the claim for drug effectiveness.

Very small sample sizes are not uncommon in clinical 

trials of rare diseases [90, 91]. Naturally, there are several 

methodological challenges for this type of study. A major 

challenge is generalizability of the results from the RCT 

to a population. In this particular indication, no approved 

treatment exists, and there is uncertainty on disease epi-

demiology and the exact number of patients with the 

disease who would benefit from treatment (patient hori-

zon). Another challenge is the choice of the randomiza-

tion procedure and the primary statistical analysis. In 

this study, one can enumerate upfront all 25 possible out-

comes: {0, 1, 2, 3, 4} responders on active treatment, and 

{0, 1, 2, 3, 4} responders on placebo, and create a chart 

quantifying the level of evidence (p-value) for each exper-

imental outcome, and the corresponding decision. Before 

the trial starts, a discussion with the regulatory agency is 

warranted to agree upon on what level of evidence must 

be achieved in order to declare the study a “success”.

Let us perform a hypothetical planning for the given 

study. Suppose we go with a standard population-based 

approach, for which we test the hypothesis H0 : pE = pC 

vs. H0 : pE > pC (where pE and pC stand for the true 

success rates for the experimental and control group, 

respectively) using Fisher’s exact test. Table  5 provides 

1-sided p-values of all possible experimental outcomes. 

One could argue that a p-value < 0.1 may be viewed as a 

convincing level of evidence for this study. �ere are only 
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3 possibilities that can lead to this outcome: 3/4 vs. 0/4 

successes (p = 0.0714); 4/4 vs. 0/4 successes (p = 0.0143); 

and 4/4 vs. 1/4 successes (p = 0.0714). For all other out-

comes, p ≥ 0.2143, and thus the study would be regarded 

as a “failure”.

Now let us consider a randomization-based inference 

approach. For illustration purposes, we consider four 

restricted randomization procedures—Rand, TBD, PBD(4), 

and PBD(2)—that exactly achieve 4:4 allocation. �ese pro-

cedures are legitimate choices because all of them provide 

exact sample sizes (4 per treatment group), which is essen-

tial in this trial. �e reference set of either Rand or TBD 

includes 70 =

(

8

4

)

 unique sequences though with differ-

ent probabilities of observing each sequence. For Rand, 

these sequences are equiprobable, whereas for TBD, some 

sequences are more likely than others. For PBD(2b ), the 

size of the reference set is 

{(

2b

b

)}B

 , where B = n/2b is 

the number of blocks of length 2b for a trial of size n (in our 

example n = 8 ). �is results in in a reference set of 24 = 16 

unique sequences with equal probability of 1/16 for PBD(2), 

and of 62 = 36 unique sequences with equal probability of 

1/36 for PBD(4).

In practice, the study statistician picks a treatment 

sequence at random from the reference set according to 

the chosen design. �e details (randomization seed, cho-

sen sequence, etc.) are carefully documented and kept 

confidential. For the chosen sequence and the observed 

outcome data, a randomization-based p-value is the sum 

of probabilities of all sequences in the reference set that 

yield the result at least as large in favor of the experimen-

tal treatment as the one observed. �is p-value will depend 

on the randomization design, the observed randomization 

sequence and the observed outcomes, and it may also be 

different from the population-based analysis p-value.

To illustrate this, suppose the chosen randomiza-

tion sequence is CEECECCE (C stands for control and 

E stands for experimental), and the observed responses 

Table 5 All possible outcomes, p-values, and corresponding decisions for an RCT with n = 8 patients (4 per treatment arm) with 

Fisher’s exact test

a  F Declare study a failure, S Declare study a success

Number of responders Di�erence in proportions (Experimental 
vs. Control)

Fisher’s exact test 1-sided 
p-value

Decisiona

Experimental Control

0/4 0/4 0 1.0 F

1/4 1/4 0 0.7857 F

2/4 2/4 0 0.7571 F

3/4 3/4 0 0.7857 F

4/4 4/4 0 1.0 F

1/4 0/4 0.25 0.5 F

2/4 0/4 0.50 0.2143 F

3/4 0/4 0.75 0.0714 S

4/4 0/4 1 0.0143 S

0/4 1/4 -0.25 1.0 F

0/4 2/4 -0.50 1.0 F

0/4 3/4 -0.75 1.0 F

0/4 4/4 -1 1.0 F

2/4 1/4 0.25 0.5 F

3/4 1/4 0.50 0.2429 F

4/4 1/4 0.75 0.0714 S

1/4 2/4 -0.25 0.9286 F

1/4 3/4 -0.50 0.9857 F

1/4 4/4 -0.75 1.0 F

3/4 2/4 0.25 0.5 F

4/4 2/4 0.50 0.2143 F

2/4 3/4 -0.25 0.9286 F

2/4 4/4 -0.50 1.0 F

4/4 3/4 0.25 0.5 F

3/4 4/4 -0.25 1.0 F
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are FSSFFFFS (F stands for failure and S stands for suc-

cess). �us, we have 3/4 successes on experimental and 

0/4 successes on control. �en, the randomization-based 

p-value is 0.0714 for Rand; 0.0469 for TBD, 0.1250 for 

PBD(2); 0.0833 for PBD(4); and it is 0.0714 for the pop-

ulation-based analysis. �e coincidence of the randomi-

zation-based p-value for Rand and the p-value of the 

population-based analysis is not surprising. Fisher’s exact 

test is a permutation test and in the case of Rand as ran-

domization procedure, the p-value of a permutation test 

and of a randomization test are always equal. However, 

despite the numerical equality, we should be mindful of 

different assumptions (population/randomization model).

Likewise, randomization-based p-values can be derived 

for other combinations of observed randomization 

sequences and responses. All these details (the chosen 

randomization design, the analysis strategy, and cor-

responding decisions) would have to be fully specified 

upfront (before the trial starts) and agreed upon by both 

the sponsor and the regulator. �is would remove any 

ambiguity when the trial data become available.

As the example shows, the level of evidence in the 

randomization-based inference approach depends on 

the chosen randomization procedure and the resulting 

decisions may be different depending on the specific pro-

cedure. For instance, if the level of significance is set to 

10% as a criterion for a “successful trial”, then with the 

observed data (3/4 vs. 0/4), there would be a significant 

test result for TBD, Rand, PBD(4), but not for PBD(2).

Conclusions
Summary and discussion

Randomization is the foundation of any RCT involving 

treatment comparison. Randomization is not a single 

technique, but a very broad class of statistical methodol-

ogies for design and analysis of clinical trials [10]. In this 

paper, we focused on the randomized controlled two-arm 

trial designed with equal allocation, which is the gold 

standard research design to generate clinical evidence in 

support of regulatory submissions. Even in this relatively 

simple case, there are various restricted randomization 

procedures with different probabilistic structures and dif-

ferent statistical properties, and the choice of a randomi-

zation design for any RCT must be made judiciously.

For the 1:1 RCT, there is a dual goal of balancing treat-

ment assignments while maintaining allocation ran-

domness. Final balance in treatment totals frequently 

maximizes statistical power for treatment comparison. It is 

also important to maintain balance at intermediate steps 

during the trial, especially in long-term studies, to miti-

gate potential for chronological bias. At the same time, a 

procedure should have high degree of randomness so that 

treatment assignments within the sequence are not easily 

predictable; otherwise, the procedure may be vulnerable 

to selection bias, especially in open-label studies. While 

balance and randomness are competing criteria, it is pos-

sible to find restricted randomization procedures that 

provide a sensible tradeoff between these criteria, e.g. the 

MTI procedures, of which the big stick design (BSD) [37] 

with a suitably chosen MTI limit, such as BSD(3), has very 

appealing statistical properties. In practice, the choice of a 

randomization procedure should be made after a system-

atic evaluation of different candidate procedures under 

different experimental scenarios for the primary outcome, 

including cases when model assumptions are violated.

In our considered examples we showed that the choice 

of randomization design, data analytic technique (e.g. 

parametric or nonparametric model, with or without 

covariate adjustment), and the decision on whether to 

include randomization in the analysis (e.g. randomiza-

tion-based or population model-based analysis) are all 

very important considerations. Furthermore, these exam-

ples highlight the importance of using randomization 

designs that provide strong encryption of the randomiza-

tion sequence, importance of covariate adjustment in the 

analysis, and the value of statistical thinking in nonstand-

ard RCTs with very small sample sizes and small patient 

horizon. Finally, in this paper we have discussed rand-

omization-based tests as robust and valid alternatives to 

likelihood-based tests. Randomization-based inference is 

a useful approach in clinical trials and should be consid-

ered by clinical researchers more frequently [14].

Further topics on randomization

Given the breadth of the subject of randomization, many 

important topics have been omitted from the current 

paper. Here we outline just a few of them.

In this paper, we have focused on the 1:1 RCT. How-

ever, clinical trials may involve more than two treat-

ment arms. Extensions of equal randomization to the 

case of multiple treatment arms is relatively straight-

forward for many restricted randomization procedures 

[10]. Some trials with two or more treatment arms use 

unequal allocation (e.g. 2:1). Randomization procedures 

with unequal allocation ratios require careful considera-

tion. For instance, an important and desirable feature is 

the allocation ratio preserving property (ARP). A rand-

omization procedure targeting unequal allocation is said 

to be ARP, if at each allocation step the unconditional 

probability of a particular treatment assignment is the 

same as the target allocation proportion for this treat-

ment [92]. Non-ARP procedures may have fluctuations 

in the unconditional randomization probability from 

allocation to allocation, which may be problematic [93]. 

Fortunately, some randomization procedures naturally 

possess the ARP property, and there are approaches to 
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correct for a non-ARP deficiency – these should be con-

sidered in the design of RCTs with unequal allocation 

ratios [92–94].

In many RCTs, investigators may wish to prospec-

tively balance treatment assignments with respect to 

important prognostic covariates. For a small number of 

categorical covariates one can use stratified randomi-

zation by applying separate MTI randomization proce-

dures within strata [86]. However, a potential advantage 

of stratified randomization decreases as the number of 

stratification variables increases [95]. In trials where 

balance over a large number of covariates is sought and 

the sample size is small or moderate, one can consider 

covariate-adaptive randomization procedures that 

achieve balance within covariate margins, such as the 

minimization procedure [96, 97], optimal model-based 

procedures [46], or some other covariate-adaptive ran-

domization technique [98]. To achieve valid and pow-

erful results, covariate-adaptive randomization design 

must be followed by covariate-adjusted analysis [99]. 

Special considerations are required for covariate-adap-

tive randomization designs with more than two treat-

ment arms and/or unequal allocation ratios [100].

In some clinical research settings, such as trials for 

rare and/or life threatening diseases, there is a strong 

ethical imperative to increase the chance of a trial par-

ticipant to receive an empirically better treatment. 

Response-adaptive randomization (RAR) has been 

increasingly considered in practice, especially in oncol-

ogy [101, 102]. Very extensive methodological research 

on RAR has been done [103, 104]. RAR is increasingly 

viewed as an important ingredient of complex clinical 

trials such as umbrella and platform trial designs [105, 

106]. While RAR, when properly applied, has its merit, 

the topic has generated a lot of controversial discussions 

over the years [107–111]. Amid the ongoing COVID-19 

pandemic, RCTs evaluating various experimental treat-

ments for critically ill COVID-19 patients do incorpo-

rate RAR in their design; see, for example, the I-SPY 

COVID-19 trial (https:// clini caltr ials. gov/ ct2/ show/ 

NCT04 488081).

Randomization can also be applied more broadly than in 

conventional RCT settings where randomization units are 

individual subjects. For instance, in a cluster randomized 

trial, not individuals but groups of individuals (clusters) 

are randomized among one or more interventions or 

the control [112]. Observations from individuals within 

a given cluster cannot be regarded as independent, and 

special statistical techniques are required to design and 

analyze cluster-randomized experiments. In some clini-

cal trial designs, randomization is applied within subjects. 

For instance, the micro-randomized trial (MRT) is a novel 

design for development of mobile treatment interventions 

in which randomization is applied to select different treat-

ment options for individual participants over time to opti-

mally support individuals’ health behaviors [113].

Finally, beyond the scope of the present paper are the 

regulatory perspectives on randomization and practical 

implementation aspects, including statistical software 

and information systems to generate randomization 

schedules in real time. We hope to cover these topics in 

subsequent papers.
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