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Abstract All numerical calculations will fail to provide a reliable answer unless the con-
tinuous problem under consideration is well posed. Well-posedness depends in most cases
only on the choice of boundary conditions. In this paper we will highlight this fact, and
exemplify by discussing well-posedness of a prototype problem: the time-dependent com-
pressible Navier–Stokes equations. We do not deal with discontinuous problems, smooth
solutions with smooth and compatible data are considered. In particular, we will discuss
how many boundary conditions are required, where to impose them and which form they
should have in order to obtain a well posed problem. Once the boundary conditions are
known, one issue remains; they can be imposed weakly or strongly. It is shown that the weak
and strong boundary procedures produce similar continuous energy estimates. We conclude
by relating the well-posedness results to energy-stability of a numerical approximation on
summation-by-parts form. It is shown that the results obtained for weak boundary conditions
in the well-posedness analysis lead directly to corresponding stability results for the discrete
problem, if schemes on summation-by-parts form and weak boundary conditions are used.
The analysis in this paper is general and can without difficulty be extended to any coupled
system of partial differential equations posed as an initial boundary value problem coupled
with a numerical method on summation-by parts form with weak boundary conditions. Our
ambition in this paper is to give a general roadmap for how to construct a well posed con-
tinuous problem and a stable numerical approximation, not to give exact answers to specific
problems.
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1 Introduction

Initial boundary value problems are essential components for analysis in many areas of com-
putational mechanics and physics. The examples that we have in mind in this paper include:
the compressible and incompressible Navier–Stokes and Euler equations, the elastic wave
equations, the Dirac equations, the Schrödinger equation, the heat equation, the advection–
diffusion equation etc. In these examples, the equations themselves are given, and well posed
for smooth Cauchy or smooth periodic problems. However, for initial boundary value prob-
lems, boundary conditions are needed, and they can be poorly chosen, leading to ill-posed
problems.

To obtain a well posed initial boundary value problem, one needs to know: (i) how many
boundary conditions are required, (ii) where to impose them and (iii) which form they should
have. There are essentially two different methods available, namely the energy method and
the Laplace transform method [1,2]. The number of boundary conditions and where to place
them can be determined using the Laplace transform method [3,4]. However, the exact form
of the boundary conditions cannot be obtained; information regarding that must come from
other sources. The energy method, on the other hand, provides information on all the items
(i–iii).

Throughout this paperwe assume that we have unlimited access to accurate boundary data.
We do not consider non-reflecting or absorbing boundary conditions [5,6] even though we
expect that the derived boundary conditions will perform reasonably well, provided that
the corresponding data is known. As our prototype problem we consider the linearized
time-dependent compressible Navier–Stokes equations. Due to its complicated incompletely
parabolic character, it serves as a good example of how a roadmap to a well-posed and stable
problem can be constructed.

It has been shown previously that a weak imposition of well-posed boundary condi-
tions for finite difference [7,8], finite volume [9,10], spectral element [11,12], discontinuous
Galerkin [13,14] and flux reconstruction schemes [15,16] on summation-by-parts (SBP)
form can lead to energy stability. We will show that the continuous analysis of well posed
boundary conditions implemented with weak boundary procedures together with schemes on
Summation-by-parts (SBP) form automatically leads to stability. Aminimal additional analy-
sis of the semi-discrete problem is necessary. The analysis in this paper is general and can
without difficulty be extended to any coupled system of partial differential equations posed
as an initial boundary value problem coupled with a numerical method on summation-by
parts form with weak boundary conditions.

Note that this paper is not about deriving well posed boundary conditions for the time-
dependent compressible Navier–Stokes equations, that is essentially covered in [1]. Instead
we are aiming for a complete description leading to a well posed problem and a stable
approximation, i.e. a roadmap for the whole computational chain. In order not to be tangled
up in technical and yet unresolved theoretical difficulties, we do not deal with discontinuous
problems, such as for example in [12,17,18], only sufficiently smooth solutions with related
smooth and compatible data are considered.

2 The Governing Equations for the Prototype Problem

As our prototype problem,we consider the linearized frozen coefficient compressibleNavier–
Stokes equations in non-dimensional form
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Vt + ÃVx + B̃Vy + C̃Vz = F̃x + G̃ y + H̃z (2.1)

where

F̃ = D̃11Vx + D̃12Vy + D̃13Vz,

G̃ = D̃21Vx + D̃22Vy + D̃23Vz,

H̃ = D̃31Vx + D̃32Vy + D̃33Vz .

(2.2)

The subscripts t, x, y, z denotes partial differentiationwith respect to time and space. In (2.1),
V = (ρ, u, v, w, T )T is the perturbation from the constant state (denoted by an overbar)
around which we linearize.

The dependent variables are the density ρ, the velocity components u, v, w in the x, y, z
directions and the temperature T . The equations are written in non-dimensional form using
the free stream density ρ∞, the free stream velocityU∞ and the free stream temperature T∞.
The shear and second viscosity coefficientsμ, λ aswell as the coefficient of heat conduction κ

are non-dimensionalized with the free stream viscosityμ∞. The pressure in non-dimensional
form becomes, p/(ρ∞U 2∞) = ρT/(γ M2∞). Also used later on are

M2∞ = U 2∞
γ RT∞

, Pr = μ∞Cp

κ∞
, Re = ρ∞U∞L

μ∞
, γ = Cp

Cv

, ϕ = γ κ

Pr
(2.3)

where L is a length scale and M , Pr , Re = 1/ε and γ are the Mach, Prandtl and Reynolds
numbers and ratio of specific heats respectively. The time scale is L/U∞.

The first component in the viscous fluxes F̃, G̃ and H̃ are zero, since there are no second
derivatives in the continuity equation. This renders the system (2.1) incompletely parabolic
[4], and suitable as a prototype problem. All matrices D̃i j are proportional to ε and hence
we can easily include hyperbolic problems by letting ε = 0 in the same type of analysis.

Remark 2.1 To include the incompressible Navier–Stokes and Euler equations directly in
the analysis, would require that we multiply the time-derivative in (2.1) with a singular mass
matrix. For clarity and simplicity, we refrain from that complication.

3 Preliminaries

For ease of reading, we start with a brief outline of the main content.

3.1 The Roadmap

The step-by-step procedure leading to a well posed problem and a stable approximation
involve the following steps.

1. Symmetrization (Sect. 3.2)Unless an appropriate energy is known apriori (typically based
on physical reasoning, see for example [19]), the energy method requires symmetric
matrices, such that integration by parts can be performed.

2. The Continuous Energy Method (Sect. 4.1) By multiplying with the solution and inte-
grating over the domain, the energy rate consisting of a dissipative volume term and an
indefinite quadratic boundary term is derived.

3. The Number of Boundary Conditions (Sect. 4.2) The quadratic boundary term is rotated
into diagonal form and divided up into positive and negative parts corresponding to the
sign of the eigenvalues. The number of boundary conditions is equal to the number of
negative eigenvalues in the quadratic form.
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4. The Form of the Boundary Conditions (Sect. 4.3) The characteristic variables that cor-
respond to the negative eigenvalues are specified in terms of the corresponding positive
ones together with boundary data.

5. TheWeak Implementation (Sect. 4.4) The boundary conditions are imposed weakly using
a penalty formulation which is determined such that the boundary term becomes negative
semi-definite for zero boundary data.

6. The Discrete Approximation (Sect. 5.1) The continuous problem is discretized using SBP
operators andweak boundary conditionswith the same (except for obviousmodifications)
penalty matrices that were found in the continuous problem.

7. TheDiscrete EnergyMethod (Sect. 5.2) Finally, stability is shownby applying the discrete
energy method. The final form of the penalty terms are decided and it is shown that the
discrete energy rate mimics the continuous one.

3.2 Symmetrization

Thematrices related to the hyperbolic terms in (2.1)must be symmetric for the energymethod
to be applicable [1]. We choose the symmetrizer

S−1 = diag

[
c̄2√
γ

, ρ̄c̄, ρ̄c̄, ρ̄c̄,
ρ̄√

γ (γ − 1)M4∞

]
, (3.1)

where c̄ is the speed of sound at the constant state.

Remark 3.1 The three-dimensional compressible Navier–Stokes equations with 12 matrices
involved [see (2.1) and (2.2)], can be symmetrized by a single matrix [20]. This remarkable
fact was complemented by the observation that there exist at least two different symmetrizers,
based on either the hyperbolic or the parabolic terms. The symmetrizer (3.1) is related to the
parabolic terms.

After symmetrizing (2.1) by multiplying it from the left with S−1, we obtain

Ut + ĀUx + B̄Uy + C̄Uz = F̄x + Ḡ y + H̄z (3.2)

where

Ā =

⎛
⎜⎜⎜⎜⎜⎜⎝

ū c̄√
γ

0 0 0

c̄√
γ

ū 0 0 c̄
√

γ−1
γ

0 0 ū 0 0
0 0 0 ū 0

0 c̄
√

γ−1
γ

0 0 ū

⎞
⎟⎟⎟⎟⎟⎟⎠

D̄11 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 2μ̄ + λ̄ 0 0 0
0 0 μ̄ 0 0
0 0 0 μ̄ 0
0 0 0 0 ϕ̄

⎞
⎟⎟⎟⎟⎠ (3.3)

B̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

v̄ 0 c̄√
γ

0 0

0 v̄ 0 0 0
c̄√
γ
0 v̄ 0 c̄

√
γ−1
γ

0 0 0 v̄ 0

0 0 c̄
√

γ−1
γ

0 v̄

⎞
⎟⎟⎟⎟⎟⎟⎠

D̄22 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 μ̄ 0 0 0
0 0 2μ̄ + λ̄ 0 0
0 0 0 μ̄ 0
0 0 0 0 ϕ̄

⎞
⎟⎟⎟⎟⎠ (3.4)
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C̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

w̄ 0 0 c̄√
γ

0

0 w̄ 0 0 0
0 0 w̄ 0 0
c̄√
γ

0 0 w̄ c̄
√

γ−1
γ

0 0 0 c̄
√

γ−1
γ

w̄

⎞
⎟⎟⎟⎟⎟⎟⎠

D̄33 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 μ̄ 0 0 0
0 0 μ̄ 0 0
0 0 0 2μ̄ + λ̄ 0
0 0 0 0 ϕ̄

⎞
⎟⎟⎟⎟⎠ (3.5)

D̄12 = D̄T
21 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 λ̄ 0 0
0 μ̄ 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ D̄13 = D̄T

31 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 λ̄ 0
0 0 0 0 0
0 μ̄ 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (3.6)

D̄23 = D̄T
32 = ε

ρ̄

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 λ̄ 0
0 0 μ̄ 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ U =

⎛
⎜⎜⎜⎜⎝

c̄2ρ/
√

γ

ρ̄c̄u
ρ̄c̄v
ρ̄c̄w

ρ̄T/
√

γ (γ − 1)M4∞.

⎞
⎟⎟⎟⎟⎠ (3.7)

In (3.2)–(3.7), U = S−1V , Ā = S−1 ÃS, B̄ = S−1 B̃S, C̄ = S−1C̃ S and D̄i j = S−1 D̃i j S.

3.3 Well Posed Problems and Stability

In this section, we define the concepts needed in the rest of the paper, and most of the
material can be found in [2,21,22]. Roughly speaking, an initial boundary value problem is
well posed if a unique solution that depends continuously on the initial and boundary data
exists. Consider the following general linear initial boundary value problem

Wt + PW = F, x ∈ Ω, t ≥ 0

LW = g, x ∈ ∂Ω, t ≥ 0

W = f, x ∈ Ω, t = 0 (3.8)

whereW is the solution,P is the spatial differential operator andL is the boundary operator.
In this paper,P andL are linear operators, F is a forcing function, and g and f are boundary
and initial functions, respectively. F, g and f are the known data of the problem. In this paper
we consider smooth and compatible data leading to sufficiently smooth solutions. The initial
boundary value problem (3.8) is posed on the domain Ω with boundary ∂Ω .

We introduce the scalar product and norm as

(U, V )Ω =
∫

Ω

UT HV dx dy dz, ‖U (·, t)‖2Ω = (U,U )Ω, (3.9)

for real valued vector functions U, V and a positive definite symmetric matrix H .

Definition 3.1 Let be V be the space of differentiable functions satisfying the boundary
conditions LW = 0 on x ∈ ∂Ω . The differential operator P is semi-bounded if for all
W ∈ V the inequality

(W,PW )Ω ≥ −α‖W (·, t)‖2Ω (3.10)

holds, where the constant α is independent of W .

If a solution to (3.8) exist, semi-boundedness of P leads directly to well-posedness. How-
ever, with too many boundary conditions, existence is not guaranteed. Consequently, a more
restrictive definition is required.
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Definition 3.2 The differential operatorP ismaximally semi-bounded if it is semi-bounded
in the function space V but not semi-bounded in any space with fewer boundary conditions.

The energy method (which we will describe in detail in Sect. 4.1 below) and maximally
semi-bounded operators lead directly to well-posed problems.

Definition 3.3 The initial boundary value problem (3.8) with F = g = 0 is well posed if for
every f ∈ C∞ that vanishes in a neighborhood of ∂Ω , a unique smooth solution exists that
satisfies the estimate

‖W (·, t)‖2Ω ≤ Kc
1e

αct‖f‖2Ω (3.11)

where the constants Kc
1 and αc are bounded independently of f .

For certain classes of problems with specific types of boundary conditions, the energy
method in combination with maximally semi-boundedness operators lead to even stronger
estimates, and so called strongly well-posed problems.

Definition 3.4 The initial boundary value problem (3.8) is strongly well posed, if it is well-
posed and

‖W (·, t)‖2Ω ≤ Kc
2(t)

(
‖f‖2Ω +

∫ t

0
(‖F(·, τ )‖2Ω + ‖g(τ )‖2∂Ω)dτ

)
(3.12)

holds. The function Kc
2(t) for limited time is bounded independently of f, F and g.

Remark 3.2 Well-posedness of (3.8) requires that an appropriate number of boundary con-
ditions (number of linearly independent rows inL ) with the correct form ofL (the rows in
L have appropriate elements) is used. Too many boundary conditions means that existence
is not possible (the differential operator is not maximally semi-bounded), and too few that
neither the estimates (3.11)–(3.12) nor uniqueness can be obtained.

Remark 3.3 Generally speaking, the linear theory for well-posedness is complete. The the-
ory for smooth nonlinear problems can be extended by the linearization and localisation
principles, see [23],[24] for details. The fully nonlinear theory, necessary for problems with
discontinuities, is incomplete. Entropy estimates can be used to bound the solution, see for
example [12,17,18], but neither uniqueness nor existence follows. In this paper we do not
consider problems with discontinuities.

Closely related to well-posedness is the concept of stability. The semi-discrete version of
(3.8) is

(Wj )t + QWj = F j , x j ∈ Ω, t ≥ 0

MWj = g j , x j ∈ ∂Ω, t ≥ 0

Wj = f j , x j ∈ Ω, t = 0. (3.13)

The difference operatorQ approximates the differential operatorP and the discrete boundary
operator M approximates L . F j , g j and f j are the known smooth compatible data of the
problem (3.8) injected on the grid x j = (x j , y j , z j ). The difference approximation (3.13) is
a consistent approximation of (3.8).

We now define semi-bounded discrete operators in analogy with differential operators.
Let the volume element corresponding to the j th node be ΔΩ j . The discrete scalar product
and norm are defined by
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(U, V )Ωh =
j=N∑
j=1

UT
j Hj VjΔΩ j , ‖U (·, t)‖2Ωh

= (U,U )Ωh , (3.14)

for real valued vector functions Uj , Vj and positive definite symmetric matrices Hj .

Definition 3.5 Let be Vh be the space of grid vector functions satisfying the boundary con-
ditions MW = 0 on x j ∈ ∂Ω . The discrete operator Q is semi-bounded if for all W ∈ Vh

the inequality
(W,QW )Ωh ≥ −α‖W (·, t)‖2Ωh

(3.15)

holds, where the constant α is independent of W and h = mini �= j |x j − xi |.
Unlike in the continuous case, the problem with existence and uniqueness related to the

number of boundary conditions does not exist in the discrete case. The number of boundary
conditions (including numerical ones) is simply equal to the number of linearly independent
conditions in MWj = g j that are required for the semi-discrete system to have a unique
solution. Different numerical boundary conditions can lead to different solutions on coarse
grids.However, for sufficiently finemeshes and stable approximations, the numerical solution
will converge to the continuous unique solution.Henceweneednot restrict semi-boundedness
to maximal semi-boundedness as was done for the continuous case above.

The discrete energy method (which we will describe in detail in Sect. 5.2 below) and
semi-bounded operators lead directly to stability.

Definition 3.6 The semi-discrete approximation (3.13) with F j = g j = 0 is stable for every
projection f j of f ∈ C∞ that vanishes in a neighborhood of ∂Ω , if the solution Wj satisfies
the estimate

‖Wj (t)‖2Ωh
≤ Kd

1 e
αd t‖f j‖2Ωh

(3.16)

where the constants Kd
1 and αd are bounded independently of f j and h = mini �= j |x j − xi |.

As in the continuous case, for certain classes of problems with specific types of boundary
conditions, the energy method in combination with semi-bounded operators can lead to even
stronger estimates, and so called strongly stable problems.

Definition 3.7 The semi-discrete approximation (3.13) is strongly stable, if it is stable and

‖Wj (t)‖2Ωh
≤ Kd

2 (t)

(
‖f j‖2Ωh

+
∫ t

0
(‖F j (·, τ )‖2Ωh

+ ‖g j (τ )‖2∂Ωh
)dτ

)
(3.17)

holds. The function Kd
2 (t) for a limited time is bounded independently of f j , F j , g j and

h = mini �= j |x j − xi |.
The definitions of well-posedness and stability above are strikingly similar. However,

the bounds in the corresponding estimates need not be the same. The following definition
connects the growth rates of the continuous and semi-discrete solutions.

Definition 3.8 Assume that (3.8) is well-posed with αc in (3.11) and that the semi-discrete
approximation (3.13) is stable with αd in (3.16). If αd ≤ αc + O(h) for h ≤ h0 we say that
the approximation is strictly stable.

Remark 3.4 The norms in Definitions 3.3–3.7 can be quite general but in this paper we use
‖φ‖2Ω = ∫

Ω
φTφdxdydz ≈ φT Hφ = ‖φ‖2Ωh

and ‖φ‖2∂Ω = ∮
∂Ω

φTφds ≈ φT Kφ =
‖φ‖2∂Ωh

. The matrices H and K define appropriate quadrature rules and φ is a smooth
function. More details on the definitions above are given in [2,21].
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4 The Continuous Problem

The initial boundary value problem we will consider in this paper is obtained by adding the
boundary and initial conditions to (3.2)

Ut + ĀUx + B̄Uy + C̄Uz = F̄x + Ḡ y + H̄z, (x, y, z) ∈ Ω, t ≥ 0
HU = g, (x, y, z) ∈ δΩ, t ≥ 0
U = f, (x, y, z) ∈ Ω, t = 0.

(4.1)

The solution and the matrices in (4.1) are given by (2.2)–(3.7). The data g and f are smooth
compatible boundary and initial data respectively. The formulation (4.1) is used for strong
imposition of boundary conditions.

When imposing the boundary conditions weakly, consider

Ut + ĀUx + B̄Uy + C̄Uz = F̄x + Ḡ y + H̄z + L(Σ(HU − g)), (x, y, z) ∈ Ω, t ≥ 0
U = f, (x, y, z) ∈ Ω, t = 0

(4.2)
which should be interpreted in a weak sense. In (4.2), L is a lifting operator [25,26] defined
by

∫
Ω

φT L(ψ) dx dy dz = ∮
∂Ω

φTψds for smooth vector functions φ,ψ andΣ is an appro-
priate penalty matrix. The lifting operator adds a boundary term that can be chosen in order
to get an energy estimate.

The first task now is to determine the boundary operator H such that the problem (4.1)
using strong boundary conditions is well posed.

4.1 The Energy Method

The energymethod is applied to (4.1) bymultiplyingwithUT and integrating over the domain
Ω . Gauss’ theorem and integration by parts leads to

||U ||2t + 2DIc = BT (4.3)

where

DIc =
∫

Ω

⎡
⎣Ux

Uy

Uz

⎤
⎦
T ⎡

⎣D̄11 D̄12 D̄13

D̄21 D̄22 D̄23

D̄31 D̄32 D̄33

⎤
⎦

⎡
⎣Ux

Uy

Uz

⎤
⎦ dx dy dz (4.4)

and

BT = −
∮

∂Ω

UT AU − 2UT Fds. (4.5)

In (4.5), ds = √
dx2 + dy2 + dz2 is the surface element, n̂ = (n1, n2, n3)T is the outward

pointing unit normal on ∂Ω , and

A = n1 Ā + n2 B̄ + n3C̄, F = n1 F̄ + n2Ḡ + n3 H̄ . (4.6)

Due to the incompletely parabolic character of the problem, we consider the following block
structure of vectors and matrices in (4.5)

U =
[
U1

U2

]
, F =

[
0
F2

]
, A =

[
A11 A12

AT
12 A22

]
. (4.7)

In (4.7), U1 is a scalar, U2 and F2 are four components long, A11 is a scalar, A12 is a 1 × 4
matrix and A22 is a 4 × 4 matrix. With these notations we can write the quadratic form in
(4.5) as
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UT AU − 2UT F =
⎡
⎣U1

U2

F2

⎤
⎦
T ⎡

⎣A11 A12 0
AT
12 A22 −I
0 −I 0

⎤
⎦

⎡
⎣U1

U2

F2

⎤
⎦ , (4.8)

where I is the 4 × 4 identity matrix.
It is straightforward [27] to show that the dissipation term (4.4) on the left-hand-side in (4.3)

is positive semi-definite. Consequently, for maximal semi-boundedness and well-posedness
it remains to bound BT on the right-hand-sidewith aminimal number of boundary conditions
[2,21]. One needs to know (i) how many boundary conditions are required, (ii) where on ∂Ω

to impose them and (iii) which form they should have.

4.2 The Number and Position of the Boundary Conditions

By rotating the boundary matrix in (4.5) to block diagonal form [1] we obtain

BT = −
∮

δΩ

⎡
⎣w1

w2

w3

⎤
⎦
T

T T

⎡
⎣A11 A12 0
AT
12 A22 −I
0 −I 0

⎤
⎦ T

⎡
⎣w1

w2

w3

⎤
⎦ ds

= −
∮

δΩ

⎡
⎣w1

w2

w3

⎤
⎦
T ⎡

⎣A11 0 0
0 Ã22 0
0 0 −( Ã22)

−1

⎤
⎦

⎡
⎣w1

w2

w3

⎤
⎦ ds, (4.9)

where Ã22 = A22 − AT
12(A11)

−1A12,

T =
⎡
⎣I T12 T13
0 I T23
0 0 I

⎤
⎦ =

⎡
⎣I −A−1

11 A12 −A−1
11 A12 Ã

−1
22

0 I Ã−1
22

0 0 I

⎤
⎦ (4.10)

and ⎡
⎣w1

w2

w3

⎤
⎦ = T−1

⎡
⎣U1

U2

F2

⎤
⎦ =

⎡
⎣U1 + (A11)

−1A12U2

U2 − ( Ã22)
−1F2

F2

⎤
⎦ . (4.11)

Note that the rotation above requires that A11 is non-zero and Ã22 is non-singular.
Since Ã22 = ÃT

22 we can write Ã22 = XΛ22XT where Λ22 = diag(Λ+
22,Λ

−
22) and X =

[X+, X−] contain the positive and negative eigenvalues and the corresponding eigenvectors
respectively. By using this eigen-decomposition of Ã22, we obtain

BT = −
∮

δΩ

⎡
⎢⎢⎢⎢⎣

w1

XT+w2

XT−w2

XT+w3

XT−w3

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣
A11 0 0 0 0
0 Λ+

22 0 0 0
0 0 Λ−

22 0 0
0 0 0 −(Λ+

22)
−1 0

0 0 0 0 −(Λ−
22)

−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w1

XT+w2

XT−w2

XT+w3

XT−w3

⎤
⎥⎥⎥⎥⎦ ds. (4.12)

We are now ready to answer the questions (i) and (ii) posed above.
For the compressible Navier–Stokes equations, it can be shown the variables w1, XT+w2,

XT−w2, XT+w3, XT−w3 are linearly independent. The number of boundary terms in the
quadratic form (4.12) that can cause growth is hence equal to the sum of negative entries in
A11, Λ

−
22 and −(Λ+

22)
−1, which in turn is equal to the minimal number of boundary condi-

tions. The number of negative entries vary only with A11 along the boundary δΩ since the
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total number of negative entries in Λ−
22 and −(Λ+

22)
−1 are constant and equal to the number

of eigenvalues in Ã22.
In the general case, the situation is similar. The energy method leds to a boundary term

of quadratic nature, that cannot be limited by other terms in the energy rate. The minimal
number of boundary conditions is given by the number of negative entries in the diago-
nalized boundary matrix provided that the corresponding transformed variables are linearly
independent. With a minimal number of boundary conditions used to bound the solution, a
maximally semi-bounded operator and well-posedness is obtained [2,21]. Consequently, the
quadratic form must be reduced in such a way that the new transformed variables are linearly
independent.

Remark 4.1 We use the energy method and a minimal number of boundary conditions to
obtain maximally semi-bounded operators and well-posedness. The classical way to deter-
mine the number of boundary conditions, is based on the Laplace transform method [2–4].
For an illustrative example of the relation between the Laplace transform and energy method
regarding the number of boundary conditions for the incompressible Navier–Stokes equa-
tions, see [28].

Remark 4.2 In the compressible Navier–Stokes equations, A11 = (ū, v̄, w̄) · n̂ = un , where
un is the outward pointing normal velocity on the boundary. Consequently, the compressible
Navier–Stokes equations require five boundary conditions at an inflow boundary (un < 0)
and four at an outflow boundary (un > 0). This holds independently of whether the flow is
subsonic or supersonic. The fact that the number of boundary conditions for the compressible
Navier–Stokes equations is independent of the speed of the flow (whether it is subsonic or
supersonic), and only depends on the direction relative to the outward pointing normal, is
quite different from the situation for the Euler equations. See Fig. 1 for an illustration.

Remark 4.3 In the limit of vanishing viscosity ε → 0 and formally w3 = F2 = ε F̃2 → 0 in
(4.12) and we are left with the number of boundary conditions for the Euler equations [1].
However, F̃2 contains gradients [see (2.2),(4.6)] and, this limit is not known. An analysis of
the scalar viscous advection equation indicate that in fact ε F̃2 �= 0 as ε → 0. If this holds also
for the Navier–Stokes equations, it means that the Euler equations are not the high Reynolds
number approximation of the Navier–Stokes equations as commonly perceived.

4.3 The Form of the Boundary Conditions

We proceed by splitting (4.12) into one positive and one negative part respectively

BT = −
∮

δΩ

⎡
⎣1+(γ +)w1

XT+w2

XT−w3

⎤
⎦
T ⎡

⎣γ + 0 0
0 Λ+

22 0
0 0 −(Λ−

22)
−1

⎤
⎦

⎡
⎣1+(γ +)w1

XT+w2

XT−w3

⎤
⎦ ds

−
∮

δΩ

⎡
⎣1−(γ −)w1

XT−w2

XT+w3

⎤
⎦
T ⎡

⎣γ − 0 0
0 Λ−

22 0
0 0 −(Λ+

22)
−1

⎤
⎦

⎡
⎣1−(γ −)w1

XT−w2

XT+w3

⎤
⎦ ds.

(4.13)

In (4.13), 1+(x) and 1−(x) are indicator functions which are 1 if x is positive or negative
respectively, and zero otherwise. We have also used γ + = (A11 + |A11|)/2 and γ − =
(A11 − |A11|)/2.
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Fig. 1 A schematic showing the
relation between the background
velocity and the outward pointing
normal vector which decides the
sign of (ū, v̄, w̄) · n̂ = un

To simplify the notation we introduce

W+ =
⎡
⎣1+(γ +)w1

XT+w2

XT−w3

⎤
⎦ , Λ+ =

⎡
⎣γ + 0 0

0 Λ+
22 0

0 0 −(Λ−
22)

−1

⎤
⎦ ,

W− =
⎡
⎣1−(γ −)w1

XT−w2

XT+w3

⎤
⎦ , Λ− =

⎡
⎣γ − 0 0

0 Λ−
22 0

0 0 −(Λ+
22)

−1

⎤
⎦ .

(4.14)

Given the notations in (4.14), we rewrite (4.3) as

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
W−

]T [
Λ+ 0
0 Λ−

] [
W+
W−

]
ds. (4.15)

We are now ready to answer the question (iii) posed above. Together with the previous
answers to (i–ii) we summarize the result in the following proposition.

Proposition 4.1 The general form of the boundary condition in (4.1) that bound the right
hand side of (4.15) (as well as (4.12)) and lead to a maximally semi-bounded operator, well-
posedness for zero boundary data and strong well-posedness for non-zero boundary data
is

W− − RW+ = g. (4.16)

R is a matrix with the number of rows equal to the number of boundary conditions and g is
given boundary data. The number of rows in R is equal to the sum of negative entries in A11,
Λ−

22 and −(Λ+
22)

−1 in (4.12) and vary only with the sign of A11.

Proof The number of negative entries in the matrix vary only with A11 since the total number
of positive entries in Λ−

22 and −(Λ+
22)

−1 is constant and equal to the number of eigenvalues
in Ã22. The sign of A11 vary with the direction of the normal n̂ = (n1, n2, n3)T along the
boundary δΩ and the background velocity due to (4.6). The part of the proof showing that
(4.16) bounds (4.15) will be given below. ��
Remark 4.4 Note the close similarity of (4.16)with thewayone imposes boundary conditions
for hyperbolic problems, where the ingoing characteristic variables are given by the outgoing
ones together with boundary data.
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4.4 Weak and Strong Boundary Conditions

The boundary conditions in terms of (i–iii) are now known and only one issue remains; they
can be imposed weakly or strongly.

4.4.1 Strongly Imposed Homogeneous Boundary Conditions

The homogeneous version of the boundary condition (4.16) strongly imposed in (4.15) gives

‖U‖2t + 2DIc = −
∮

δΩ

(W+)T (RTΛ−R + Λ+)(W+). (4.17)

To get a bound on the right-hand-side of (4.17), the matrix R must satisfy

RTΛ−R + Λ+ ≥ 0. (4.18)

Remark 4.5 Time-integration of (4.17) completes the proof of Proposition 4.1 for strongly
imposed homogeneous boundary conditions and shows that the problem (4.1) is well posed
(see Definition 3.3).

The general boundary operators used in (4.16) leading to an energy estimate and a well
posed problem are

HU = (H− − RH+)U. (4.19)

The operators H+ and H− are decomposed as

H+U =
(
H+
0 + H+

D0x

∂

∂x
+ H+

D0y

∂

∂y
+ H+

D0z

∂

∂z

)
U = W+

H−U =
(
H−
0 + H−

D0x

∂

∂x
+ H−

D0y

∂

∂y
+ H−

D0z

∂

∂z

)
U = W− (4.20)

where

H+
0 =

⎡
⎣1+(γ +) 1+(γ +)(A11)

−1A12

0 XT+
0 0

⎤
⎦ , H−

0 =
⎡
⎣1−(γ −) 1−(γ −)(A11)

−1A12

0 XT−
0 0

⎤
⎦

H+
D0x

=
⎡
⎣0 0
0 −XT+( Ã22)

−1D1

0 XT−D1

⎤
⎦ , H−

D0x
=

⎡
⎣0 0
0 −XT−( Ã22)

−1D1

0 XT+D1

⎤
⎦

H+
D0y

=
⎡
⎣0 0
0 −XT+( Ã22)

−1D2

0 XT−D2

⎤
⎦ , H−

D0y
=

⎡
⎣0 0
0 −XT−( Ã22)

−1D2

0 XT+D2

⎤
⎦

H+
D0z

=
⎡
⎣0 0
0 −XT+( Ã22)

−1D3

0 XT−D3

⎤
⎦ , H−

D0z
=

⎡
⎣0 0
0 −XT−( Ã22)

−1D3

0 XT+D3

⎤
⎦ .

(4.21)

In (4.21), we used

D1 = n1 D̄11 + n2 D̄21 + n3 D̄31

D2 = n1 D̄12 + n2 D̄22 + n3 D̄32

D3 = n1 D̄13 + n2 D̄23 + n3 D̄33.

(4.22)

The boundary operators in (4.19)–(4.21) are obtained by combining (4.11), (4.14) and (4.16).
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Remark 4.6 Strongly imposed boundary conditions are characterized by the fact that some
of the variables in the boundary terms are replaced by others. In (4.17) for example, only
W+ is present.

4.4.2 Weakly Imposed Homogeneous Boundary Conditions

By imposing the homogeneous boundary condition (4.16) weakly using (4.2), we obtain

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
W−

]T [
Λ+ 0
0 Λ−

] [
W+
W−

]
ds

+
∮

δΩ

UTΣ(W− − RW+) + (UTΣ(W− − RW+))T ds. (4.23)

By introducing Σ− such that UTΣ = (W−)TΣ−, (4.23) becomes

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
W−

]T [
Λ+ RT (Σ−)T

Σ−R Λ− − Σ− − (Σ−)T

] [
W+
W−

]
ds. (4.24)

Remark 4.7 Weakly imposed boundary conditions are characterized by the fact that all vari-
ables are present in the boundary terms. In (4.24) for example, bothW+ andW− are present.

The choice Σ− = Λ− leads to UTΣ = (W−)TΛ− and the final penalty matrix

Σ = (H−)TΛ−. (4.25)

By using (4.18), the energy rate (4.24) can now be written as

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
W−

]T [
Λ+ RTΛ−

Λ−R −Λ−
] [

W+
W−

]
ds

= −
∮

δΩ

(W+)T (RTΛ−R + Λ+)(W+) ds

+
∮

δΩ

[
W+
W−

]T [−RTΛ−R RTΛ−
Λ−R −Λ−

] [
W+
W−

]
ds

= −
∮

δΩ

(W+)T (RTΛ−R + Λ+)(W+) ds

+
∮

δΩ

(W− − RW+)TΛ−(W− − RW+) ds,

(4.26)

where the right-hand-side is negative semi-definite if (4.18) holds.

Remark 4.8 Time-integration of (4.26) completes the proof of Proposition 4.1 for weakly
imposed homogeneous boundary conditions and shows that the problem (4.2) is well posed
(see Definition 3.3).

Remark 4.9 The energy estimate (4.26) shows that a weak imposition of well-posed homo-
geneous boundary conditions produces the strong energy rate with an additional term∮
δΩ

(W− − RW+)TΛ−(W− − RW+) ds that is proportional to the boundary condition.
A similar, dissipative term will appear in the discrete approximation.
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4.4.3 Strongly Imposed Non-homogeneous Boundary Conditions

The boundary conditions (4.16) strongly imposed in (4.15) leads to

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
g

]T [
RTΛ−R + Λ+ RTΛ−

Λ−R Λ−
] [

W+
g

]
ds. (4.27)

We can now add and subtract gT Gg where G is a positive semi-definite bounded matrix [29]
to obtain

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
g

]T [
RTΛ−R + Λ+ RTΛ−

Λ−R G

] [
W+
g

]
ds

+
∮

δΩ

gT (G + |Λ−|)g ds. (4.28)

The choice
G ≥ (Λ−R)(RTΛ−R + Λ+)−1(Λ−R)T , (4.29)

bounds the right-hand-side of (4.28). In order for condition (4.29) to make sense, we need to
sharpen (4.18) to

RTΛ−R + Λ+ > 0. (4.30)

Remark 4.10 Time-integration of (4.28) completes the proof of Proposition 4.1 for strongly
imposed non-homogeneous boundary conditions and show that the problem (4.1) is strongly
well posed (see Definition 3.4).

Remark 4.11 If (4.30) holds, then the choice (4.29) can always be made, and we can estimate
the solution in terms of the boundary data which leads to a strongly well-posed problem. If
condition (4.18) holds, but not (4.30), we get an energy estimate for zero boundary data and
we have a well posed problem [2]. Note also that even if Λ+ is singular, which is the case
for the Navier–Stokes equations at a solid boundary, G can be chosen in a similar way as in
(4.29) by separating out the zero eigenvalue.

Remark 4.12 The general form (4.16) can be used to formulate common standard boundary
conditions for initial boundary value problems, such as for example the no-slip conditions
for the compressible and incompressible Navier–Stokes equations and the specification of
electric and magnetic fields for the Maxwells equations. The formulation (4.16) can also be
used to check if the boundary conditions in a practical case leads to a well posed or strongly
well posed problem by identifying R and verify that it satisfies conditions (4.18) and (4.30)
respectively. Finally, (4.16), (4.18) and (4.30) can be used to find previously unknown well
posed boundary conditions.

4.4.4 Weakly Imposed Non-homogeneous Boundary Conditions

The boundary conditions (4.16) imposed weakly using (4.2) yields

‖U‖2t + 2DIc = −
∮

δΩ

[
W+
W−

]T [
Λ+ 0
0 Λ−

] [
W+
W−

]
ds (4.31)

+
∮

δΩ

UTΣ(W− − RW+ − g) + (UTΣ(W− − RW+ − g))T ds,
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whereΣ is the penalty matrix. Following the analysis above, we chooseΣ such thatUTΣ =
(W−)TΛ−, and insert this into (4.31) to find

‖U‖2t + 2DIc = −
∮

δΩ

⎡
⎣W+
W−
g

⎤
⎦
T ⎡

⎣ Λ+ RTΛ− 0
Λ−R −Λ− Λ−
0 Λ− 0

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎣W+
W−
g

⎤
⎦ ds. (4.32)

The matrix M in (4.32) can be divided into three parts and rewritten as

M =
⎡
⎣−RTΛ−R RTΛ− −RTΛ−

Λ−R −Λ− Λ−
−Λ−R Λ− −Λ−

⎤
⎦+

⎡
⎣RTΛ−R + Λ+ 0 RTΛ−

0 0 0
Λ−R 0 G

⎤
⎦+

⎡
⎣0 0 0
0 0 0
0 0 −G + Λ−

⎤
⎦ .

The second matrix above is positive semi-definite by the choice of G in (4.29), while the
third matrix leads to a bound in terms of the data. These two matrices correspond exactly to
the result obtained for strong boundary conditions in (4.28).

The firstmatrix inM , which is due to the use ofweak boundary conditions, can be rewritten
as ⎡

⎣R 0 0
0 I 0
0 0 I

⎤
⎦
T

(C0 ⊗ Λ−)

⎡
⎣R 0 0
0 I 0
0 0 I

⎤
⎦ , C0 =

⎡
⎣−1 +1 −1

+1 −1 +1
−1 +1 −1

⎤
⎦ , (4.33)

where ⊗ denotes the Kronecker product [30]. The matrix C0 is negative semi-definite with
eigenvalues −3, 0, 0 and hence the right-hand-side of (4.32) is bounded by data.

The difference between the estimate (4.28) obtained by strong imposition of boundary
conditions and the estimate (4.32) obtained by a weak imposition is the term

R̃ = −
∮

δΩ

⎡
⎣W+
W−
g

⎤
⎦
T ⎡

⎣R 0 0
0 I 0
0 0 I

⎤
⎦
T

(C0 ⊗ Λ−)

⎡
⎣R 0 0
0 I 0
0 0 I

⎤
⎦

⎡
⎣W+
W−
g

⎤
⎦ ds, (4.34)

on the right-hand-side in (4.32). We can expand the term R̃ by using

C0 = XΓ XT , X = 1√
3

⎡
⎣−1 +1 +1

+1 +1 −1
−1 0 −2

⎤
⎦ , Γ =

⎡
⎣−3 0 0

0 0 0
0 0 0

⎤
⎦ , (4.35)

and find

R̃ = −
∮

δΩ

⎡
⎣RW+

W−
g

⎤
⎦
T

(XΓ XT ⊗ Λ−)

⎡
⎣RW+

W−
g

⎤
⎦ ds

= −
∮

δΩ

⎡
⎣ W− − RW+ − g

RW+ + W−
RW+ − W− + 2g

⎤
⎦
T ⎡

⎣−1 0 0
0 0 0
0 0 0

⎤
⎦ ⊗ Λ−

⎡
⎣ W− − RW+ − g

RW+ + W−
RW+ − W− + 2g

⎤
⎦ ds

= +
∮

δΩ

(W− − RW+ − g)TΛ−(W− − RW+ − g) ds ≤ 0. (4.36)

Remark 4.13 Time-integration of (4.32) completes the proof of Proposition 4.1 for weakly
imposed non-homogeneous boundary conditions and show that the problem (4.2) is strongly
well posed (see Definition 3.4).
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Remark 4.14 Just as in the case for homogeneous boundary conditions, the additional term
R = ∮

δΩ
(W− − RW+ − g)TΛ−(W− − RW+ − g) in the weak energy rate is proportional

to the boundary condition. A similar non-zero dissipative term will appear in the discrete
approximation.

5 The Semi-discrete Approximation

To exemplify the straightforwardway to stability once the analysis for the continuous problem
is done,we employ a finite difference approximation on summation-by-parts (SBP) formwith
weakly imposed boundary conditions using the simultaneous approximation term (SAT)
technique [22].

Remark 5.1 The specific discretization technique used here is not important, it is chosen as
an example. We stress that any discretization technique that can be formulated on SBP form
such as for example finite difference [7,8], finite volume [9,10], spectral element [11,12],
discontinuous Galerkin [13,14] and flux reconstruction schemes [15,16] will lead to the same
analysis and principal results.

5.1 The Numerical Scheme

The semi-discrete SBP-SAT approximation of (4.1) on a cubic domain with weakly imposed
boundary conditions is

Vt + (Dx ⊗ Iy ⊗ Iz ⊗ A)V + (Ix ⊗ Dy ⊗ Iz ⊗ B)V + (Ix ⊗ Iy ⊗ Dz ⊗ C)V

= (Dx ⊗ Iy ⊗ Iz ⊗ I5)F + (Ix ⊗ Dy ⊗ Iz ⊗ I5)G + (Ix ⊗ Iy ⊗ Dz ⊗ I5)H

+
∑
n

PENn

V (0) = f. (5.1)

The weak penalty terms
∑

n PENn sum over all six faces of the cube. The discrete solution
Vi jk(t) ≈ U (xi , y j , zk, t) is arranged as

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0
V1
...

Vi
...

VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi0
Vi1
...

Vi j
...

ViM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi j0
Vi j1
...

Vi jkk
...

Vi j L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Vi jk =

⎡
⎢⎢⎢⎢⎣
V1
V2
V3
V4
V5

⎤
⎥⎥⎥⎥⎦
i jk

≈ U (xi , y j , zk, t).

There are N + 1, M + 1, L + 1 gridpoints in the x, y, z direction respectively. The matrices
Ā, B̄ and C̄ are matrices given in (4.1).

Out of the six penalty terms PENn [corresponding to the lifting operator L in (4.2)] on
each side of the cube, only the boundary condition at x = 1 of the form

PENN = (EN P−1
x Σ ⊗ Iy ⊗ Iz ⊗ I5)((H̃

− − R̃ H̃+)V − eN ⊗ g) (5.2)
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is considered. The discrete representation of the vectors F̄ , Ḡ and H̄ in (2.2) are

F̃ = ( Ĩ ⊗ D̄11)Vx + ( Ĩ ⊗ D̄12)Vy + ( Ĩ ⊗ D̄13)Vz

G̃ = ( Ĩ ⊗ D̄21)Vx + ( Ĩ ⊗ D̄22)Vy + ( Ĩ ⊗ D̄23)Vz

H̃ = ( Ĩ ⊗ D̄31)Vx + ( Ĩ ⊗ D̄32)Vy + ( Ĩ ⊗ D̄33)Vz,

(5.3)

where we, with a slight abuse of notation, have used Ĩ = (Ix ⊗ Iy ⊗ Iz) and

Vx = (Dx ⊗ Iy ⊗ Iz ⊗ I5)V, Vy = (Iy ⊗ Dy ⊗ Iz ⊗ I5)V, Vz = (Iz ⊗ Iy ⊗ Dz ⊗ I5)V .

The difference operators are on summation-by-parts form (SBP) [22], i.e. Dx,y,z =
P−1
x,y,z Qx,y,z where Px,y,z = PT

x,y,z > 0, Qx,y,z + QT
x,y,z = diag(−1, 0..., 0,+1). EN

is a matrix where the only non-zero element (N + 1,N + 1) is one. Ix , Iy , Iz and I5 are
identity matrices of appropriate sizes and eN = [0, . . . 0, 1] is of length N + 1.

The continuous boundary operator in (4.19) is H− − RH+ where both H+ and H− are
partioned matrix operators of Robin type, see (4.21). To construct the corresponding discrete
operators we use the same partitioning and define the discrete versions of H+ and H− as

H̃+ = (Ix ⊗ Iy ⊗ Iz ⊗ H+
0 ) + (Dx ⊗ Iy ⊗ Iz ⊗ H+

D0x )

+ (Ix ⊗ Dy ⊗ Iz ⊗ H+
D0y) + (Ix ⊗ Iy ⊗ Dz ⊗ H+

D0z),

H̃− = (Ix ⊗ Iy ⊗ Iz ⊗ H−
0 ) + (Dx ⊗ Iy ⊗ Iz ⊗ H−

D0x )

+ (Ix ⊗ Dy ⊗ Iz ⊗ H−
D0y) + (Ix ⊗ Iy ⊗ Dz ⊗ H−

D0z).

(5.4)

5.2 The Energy Method

Wemimic the analysis of the continuous problem above, but limit ourselves toweak boundary
conditions.

5.2.1 Weakly Imposed Homogeneous Boundary Conditions

The discrete energy method (multiply with V T (Px ⊗ Py ⊗ Pz ⊗ I5) from the left and add
the transpose) applied to (5.1) with g = 0 gives

d

dt
‖V ‖2Pxyz + 2DId = − V T (EN ⊗ Py ⊗ Pz ⊗ A)V + V T (EN ⊗ Py ⊗ Pz ⊗ I5)F̃

+ F̃T (EN ⊗ Py ⊗ Pz ⊗ I5)V

+ V T Σ̃(EN ⊗ Py ⊗ Pz ⊗ I5)(H̃
− − R̃ H̃+)V

+ V T (H̃− − R̃ H̃+)T (EN ⊗ Py ⊗ Pz ⊗ IM )Σ̃T V, (5.5)

where

DId =
⎡
⎣Vx

Vy

Vz

⎤
⎦
T

Pxyz

⎡
⎣ Ĩ ⊗ D̄11 Ĩ ⊗ D̄12 Ĩ ⊗ D̄13

Ĩ ⊗ D̄21 Ĩ ⊗ D̄22 Ĩ ⊗ D̄23

Ĩ ⊗ D̄31 Ĩ ⊗ D̄32 Ĩ ⊗ D̄33

⎤
⎦

⎡
⎣Vx

Vy

Vz

⎤
⎦

=
⎡
⎣Vx

Vy

Vz

⎤
⎦
T

Pxyz

⎛
⎝Ψ T

⎛
⎝

⎡
⎣D̄11 D̄12 D̄13

D̄21 D̄22 D̄23

D̄31 D̄32 D̄33

⎤
⎦ ⊗ Ĩ

⎞
⎠Ψ

⎞
⎠

⎡
⎣Vx

Vy

Vz

⎤
⎦ > 0.

(5.6)

In (5.6), we have used that the Kronecker product [30] is even permutation similar (with the
permutation matrixΨ ) for square matrices. Note that DId mimics the continuous dissipation
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DIc and is positive semi-definite.We have also used the notation Pxyz = (Px ⊗ Py ⊗ Pz ⊗ I5)
and R̃ = ( Ĩ ⊗ R).

Recall that (H− − RH+)U = W− − RW+ in the continuous case. The corresponding
discrete relation, see (5.4) reads

(H̃− − R̃ H̃+)V = W̃− − R̃W̃+. (5.7)

By expanding the fluxes defined in (5.3) and subsequently diagonalizing the resulting matrix,
we obtain

d
dt ‖V ‖2Pxyz + 2DId = −

[
W̃+
W̃−

]T

N

Pyz ⊗
[
Λ+ 0
0 Λ−

] [
W̃+
W̃−

]
N

+ V T Σ̃(EN ⊗ Py ⊗ Pz ⊗ I5)(W̃− − R̃W̃+)

+ (W̃− − R̃W̃+)T (EN ⊗ Py ⊗ Pz ⊗ I5)Σ̃T V,

(5.8)

which is the discrete version of (4.23). In (5.8), Pyz denotes Py⊗Pz and only the contribution
at x = 1 is considered.

To mimic the continuous setting we let V T Σ̃ = (W̃−)T Σ̃− which implies Σ̃ =
(H̃−)T Σ̃−. The additional choice Σ̃− = ( Ĩ ⊗ Σ−) gives

d

dt
‖V ‖2Pxyz + 2DId = −

[
W̃+
W̃−

]T

N

Pyz ⊗
[

Λ+ RT Σ̃−
(Σ̃−)T R Λ− − Σ̃− − (Σ̃−)T

] [
W̃+
W̃−

]
N

(5.9)

which corresponds to (4.24) in the continuous case. As in the continuous case we let Σ− =
Λ− which yields

Σ̃ = (H̃−)T ( Ĩ ⊗ Λ−) (5.10)

corresponding to (4.25) and the energy rate

d

dt
‖V ‖2Pxyz + 2DId = −(W̃+

N )T (Pyz ⊗ (RTΛ−R + Λ+))(W̃+
N )

+ (W̃−
N − RW̃+

N )T (Pyz ⊗ Λ−)(W̃−
N − RW̃+

N )

(5.11)

which correspond to (4.26). The second term in (5.11) adds a small amount of dissipation.
We summarize the result in the following Proposition.

Proposition 5.1 The semi-discrete approximation (5.1) of (4.1) with homogeneous weak
boundary conditions and penalty matrix (5.10) lead to a semi-bounded operator and a stable
approximation.

Proof Time-integration of (5.11) lead to an estimate of the form (3.16). ��
Since the semi-discrete energy rate (5.11) mimics the continuous energy rate (4.26) term

by term and will converge to the continuous solution, we can also state

Proposition 5.2 The semi-discrete approximation (5.1) of (4.1) with the penalty matrix
(5.10) is strictly stable.

Remark 5.2 The derivation in this section is completely analogous to the continuous one
above. In fact, the boundary conditions and penalty matrices are already derived in the
analysis of the continuous problem.
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5.2.2 Weakly Imposed Non-homogeneous Boundary Conditions

By using the same procedure as for the homogeneous case but with non-zero data, we end
up with

d
dt ‖V ‖2Pxyz + 2DId = −

⎡
⎣W̃+
W̃−
g

⎤
⎦
T

N

Pyz ⊗
⎡
⎣ Λ+ RTΛ− 0

Λ−R −Λ− Λ−
0 Λ− 0

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎣W̃+
W̃−
g

⎤
⎦

N

(5.12)

whereM in (5.12) is exactly the samematrix as in (4.32). Consequently, the continuous analy-
sis leads directly to strong stability. The discrete energy estimate is similar to the continuous
one, but the additional term

R̃d =
⎡
⎣W̃+
W̃−
g

⎤
⎦
T

N

Pyz ⊗
⎡
⎣−RTΛ−R RTΛ− −RTΛ−

Λ−R −Λ− Λ−
−Λ−R Λ− −Λ−

⎤
⎦

⎡
⎣W̃+
W̃−
g

⎤
⎦

N

= −(W̃−
N − RW̃+

N − g̃)T (Pyz ⊗ Λ−)(W̃−
N − RN W̃

+
N − g̃)

(5.13)

corresponding to R̃ in (4.36) adds a small amount of dissipation.
We summarize the result in the following Proposition.

Proposition 5.3 The semi-discrete approximation (5.1) of (4.1) with non-homogeneous
weak boundary conditions and penalty matrix (5.10) is strongly stable.

Proof Time-integration of (5.12) lead to an estimate of the form (3.17). ��
Remark 5.3 Just as in the preceding section on weak homogeneous boundary conditions, the
derivation in the semi-discrete case is analogous to the continuous one.

6 Conclusions

A complete roadmap for how to obtain well posed initial boundary value problems and
related stable approximations for smooth problems have been presented. The procedure was
exemplified by the time-dependent compressible Navier–Stokes equations. The number of
boundary conditions, where to impose them and their form have been derived. The procedure
is based on the energy method and generalize the characteristic boundary procedure for the
Euler equations.

The derived boundary conditions can be imposed weakly or strongly and they lead to
well posed or strongly well posed problems if the conditions (4.18) and (4.30) are satisfied
respectively. These conditions can be used to verify if the choice of boundary conditions in a
practical case leads to a well posed or strongly well posed problem, and later to the possibility
of a stable scheme.

It has also been shown that the weak boundary procedures in the well-posedness analysis
lead directly to stability, strong stability and strict stability of the numerical approximation
if schemes on SBP form are used. The same conditions as in the continuous problem are
required. The boundary conditions and penalty matrices were derived in the analysis of the
continuous problem. Almost no additional derivations are necessary.
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The analysis of the time-dependent compressible Navier–Stokes equations in this paper
is completely general and can without difficulty be extended to any coupled system of partial
differential equations posed as an initial boundary value problem coupled with a numerical
method on summation-by parts form.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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