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Abstract— This paper describes a robot referee for “rock-
paper-scissors (RPS)” sound games; the robot decides the
winner from a combination of rock, paper and scissors uttered
by two or three people simultaneously without using any visual
information. In this referee task, the robot has to cope with
speech with low signal-to-noise ratio (SNR) due to a mixture
of speeches, robot motor noises, and ambient noises. Our robot
referee system, thus, consists of two subsystems – a real-time
robot audition subsystem and a dialog subsystem focusing on
RPS sound games. The robot audition subsystem can recognize
simultaneous speeches by exploiting two key ideas; preprocessing
consisting of sound source localization and separation with
a microphone array, and system integration based on missing
feature theory (MFT). Preprocessing improves the SNR of a
target sound signal using geometric source separation with
a multi-channel post-filter. MFT uses only reliable acoustic
features in speech recognition and masks out unreliable parts
caused by interfering sounds and preprocessing. MFT thus pro-
vides smooth integration between preprocessing and automatic
speech recognition. The dialog subsystem is implemented as
a system-initiative dialog system for multiple players based
on deterministic finite automata. It first waits for a trigger
command to start an RPS sound game, controls the dialog
with players in the game, and finally decides the winner of
the game. The referee system is constructed for Honda ASIMO
with an 8-ch microphone array. In the case with two players, we
attained a 70% task completion rate for the games on average.

I. INTRODUCTION

In daily lives, simultaneous listening, or listening to sev-
eral things at once, is mandatory for robots as well as human
in some situations; for example, multi-party games, auctions,
the stock exchange floor, and wholesale fish markets like
“Tsukiji” in Japan. A robot should cope with simultaneously-
uttered speech to realize rich and natural human-robot inter-
action. The robot will have a lot of opportunities to recognize
a mixture of speeches to help people in real dialog situations
as mentioned above. In addition, even in a normal multi-party
dialog, conversation is usually alternate, but is sometimes
interrupted by another speaker, which is called “barge-in”.
Therefore, a robot should recognize not only a speech from
a single speaker but also simultaneous speeches uttered by
multiple speakers.

Several dialog systems for a robot have been reported
so far. Asoh et al. have developed Jijo-2 which was able
to recognize and learn the surroundings through a dialog
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with people in an office environment [1]. Matsusaka et
al. reported ROBISUKE supporting a multi-party dialog. It
had a function to predict turn-taking by using users’ eye
movements and their speech [2]. Nakano et al. reported
a multi-domain dialog system which enabled a robot to
execute multiple tasks [3]. Mavridis and Roy proposed a
grounded situation model to develop amodal representation
and associated processes through verbal interaction with a
human, and showed the effectiveness for the control of a
robot arm [4]. Most of their robots made each speaker to
wear a headset microphone to obtain high signal-to-noise
ratio speech signals for automatic speech recognition (ASR).
This solution also avoided a barge-in situation where user’s
utterance was contaminated by other utterances and thus was
low in SNR. If a robot uses its own microphone, simul-
taneous speech recognition is critical in their applications.
This means that research focusing on simultaneous speech
recognition is necessary so that a robot can deal with real-
world situations.

For this purpose, “Robot Audition” has been proposed as
a new framework to recognize and understand real-world
auditory scenes by using robot’s own microphones in 2000
[5]. After several-year-studies to improve real-time auditory
processing in the real world, robot audition is now considered
as an essential function for understanding the surrounding
auditory world such as human voices, music, and other en-
vironmental sounds. Actually, various robot audition systems
were reported at robotics-related conferences [6], [7], [8], [9].
Thanks to recent rapid progress of signal processing level
functions such as sound source localization, tracking and
separation, we are ready to develop sophisticated applica-
tions. However, only a few preliminarily works have reported
recognition of separated speech, and real-world applications
of robot audition systems for human-robot interaction. Asano
et al. developed a robot audition system with a simple
dialog function in order to change TV channels and control
TV volume by using voice commands in a normal office
environment [8]. One weak point for their system is that
one target speaker for speech recognition was assumed. We
developed a robot audition system which is able to recognize
simultaneous speech, but system evaluation was insufficient
in terms of an application to human-robot interaction.

In this paper, we focus on a referee task for rock-
paper-scissors (RPS) sound games which requires simul-
taneous speech recognition. RPS is a worldwide pop-
ular game, world championships are held every year
(http://www.rpschamps.com/). In an RPS game, each player
uses their hand to represent a rock, a paper, or scissors, while,
in an RPS sound game, he or she says one of the three words
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Fig. 1. A Referee system for Rock-Paper-Scissors Sound Games

instead of using gestures (see also Fig.4).
The referee system consists of two subsystems, that is,

a robot audition subsystem and a dialog subsystem. The
robot audition subsystem is able to recognize simultaneous
speech by exploiting two key ideas; Preprocessing of ASR
and system integration based on Missing Feature Theory
(MFT)[10], [11]. Preprocessing of ASR such as sound source
localization and separation using a robot-embedded micro-
phone array to improve SNR before performing ASR. MFT
integrates preprocessing with ASR by masking out unreliable
features included in preprocessed signals and using only
reliable features for recognition. The dialog subsystem is
a system-initiative dialog system for multiple players based
on Deterministic Finite Automata (DFA). It first waits for
a trigger command to start an RPS sound game, controls
the dialog with players in the game, and finally decides the
winner of the game.

We implemented the referee system to Honda ASIMO
with an 8-ch microphone array. The system was evaluated
in terms of recognition of single and simultaneous speech
when a robot noise was present, and task completion rates of
RPS sound games to show the effectiveness of robot audition
system more practically.

The rest of this paper is organized as follows: Section II
explains system architecture of our referee system. Sec-
tion III and IV describe the robot audition subsystem and
the dialog subsystem, respectively. Section V evaluates our
system. The last section concludes this paper.

II. ROBOT REFEREE SYSTEM ARCHITECTURE

An 8-ch microphone array embedded in Honda ASIMO
is shown in the left side of Fig. 1. The positions of the
microphones are bilaterally symmetric. This is because the
longer the distance between microphones is, the better the
performance of sound source separation of Geometric Source
Separation (GSS). Fig. 1 depicts the architecture of the
referee system. It includes two subsystems – a robot audition
subsystem and a dialog subsystem. The robot audition sub-
system consists of seven modules: Sound Source Localization
(SSL), Sound Source Separation (SSS), Parameter Selection,
Acoustic Feature Extraction, Automatic Missing Feature Mask
Generation, Speech Recognition Client, and Missing Feature
Theory based Automatic Speech Recognition (MFT-ASR). The
six modules except for MFT-ASR are implemented as compo-
nent blocks of FlowDesigner [12], a free data flow oriented

development environment. The reason why MFT-ASR is
treated separately is twofold; First, it needs a heavy CPU
load in recognizing speech. Second, it uses a light-weighted
data format in communication with the other modules, that is,
it uses acoustic features and MFM for communication with
the other modules, while the other modules use raw signal
data for their communication. FlowDesigner and Multiband
Julian may run separately on different CPUs, since they can
communicate with each other via a network. Since the five
modules communicate a large amount of data with each
other, the reduction of communication traffic is critical in
real-time processing. FlowDesigner provides the mechanism
of sharing data on a shared memory between modules. It also
provides the reusability of modules for rapid prototyping.

The dialog subsystem consists of five modules – Speech
Understander, Dialog Manager, Action Generator, Speech
Synthesizer, and Behavior Controller. The first three modules
are implemented as one program, and the other two modules
are connected with the program via a network.

III. ROBOT AUDITION SUBSYSTEM

This section describes our two key ideas for achieving
robot audition – preprocessing and missing-feature-theory-
based integration. Related work is also mentioned.

A. Preprocessing for Automatic Speech Recognition

A common approach to achieving noise-robust ASR is
the use of an acoustic model for ASR trained with noise
adaptation techniques [13]. However, it is suitable neither for
dealing with unknown noise that is not included in training
speech data nor for recognizing extremely noisy speech
captured by a robot-embedded microphone. To improve the
SNR of the input speech signals before performing ASR,
SSL and SSS were introduced.

For SSL, we adopted a frequency-domain adaptive BF
method, MUltiple SIgnal Classification (MUSIC)[14]. It has
good performance in the real world because a sharp local
peak corresponding to a sound source direction is obtained
from the MUSIC spectrum in comparison with other BF
methods. In our implementation, impulse responses which
were measured at the intervals of 5 degrees were used to
calculate a correlation matrix.

SSS consists of GSS and the multi-channel post-filter.
GSS is originally proposed proposed by Parra et al. [15] as
a kind of Blind Source Separation (BSS). It relaxes BSS’s
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limitations such as a permutation and a scaling problem
by introducing “geometric constraints” obtained from the
locations of microphones and sound sources obtained from
SSL. We modified the GSS so as to provide faster adaptation
using stochastic gradient and shorter time frame estimation.
It improved 10.3 dB in signal-to-noise ratio on average for
separation of three simultaneous speech signals [16]. The
multi-channel post-filter [16] is used to enhance the output of
GSS. It is based on the optimal estimator originally proposed
by Ephraim and Malah [17]. Their method is a kind of
spectral subtraction [18], but it generates less distortion be-
cause it takes temporal and spectral continuities into account.
This method is extended to enable support of multi-channel
signals so that they can estimate both stationary and non-
stationary noise, while most post-filters address the reduction
of a type of noise, stationary background noise [19], [20].
For further reduction of spectral distortion caused by sound
source separation, we add noise to multi-channel post-filtered
speech, because an additive noise plays a roll to blur the
distortions, that is, to avoid the fragmentation. We exploit
covering a distortion in any frequency band by adding white
noise, a kind of broad-band noise, to noise-suppressed speech
signals.

B. Missing-Feature-Theory (MFT) Based Integration

Several robot audition systems with preprocessing and
ASR have been reported so far [6], [8]. Those systems
just combined preprocessing with ASR and focused on the
improvement of SNR and real-time processing. Two critical
issues remain; what kinds of preprocessing are required
for ASR, and how does ASR use the characteristics of
preprocessing besides using an acoustic model with multi-
condition training. We exploited an interfacing scheme be-
tween preprocessing and ASR based on MFT.

MFT uses missing feature masks (MFMs) in a spectro-
temporal map to improve ASR. Each MFM specifies whether
a spectral value for a frequency bin at a specific time frame
is reliable or not. Unreliable acoustic features caused by
errors in preprocessing are masked out using MFMs, and
only reliable ones are used for a likelihood calculation in
the ASR decoder.

Most conventional ASR systems use Mel-Frequency Cep-
stral Coefficient (MFCC) as an acoustic feature, but noises
and distortions which are concentrated in some areas in
the spectro-temporal space are spread to all coefficients in
MFCC. In general, Cepstrum based acoustic features like
MFCC are not suitable for MFT-ASR. Acoustic Feature
Extraction, therefore, calculates Mel-Scale Log Spectrum
(MSLS) [21] as an acoustic feature.

Automatic MFM generation estimates MFMs by using in-
formation about the amount of noise present in a frequency
band provided by the multi-channel post-filter. Since our
acoustic feature vector consists of 48 spectral-related acous-
tic features, the missing feature mask is a vector of 48
corresponding features. Each element of a vector represents
the reliability of each acoustic feature in binary format (1
for reliable, and 0 for unreliable).

sent-start sent-end

start shout-janken

deal
call

shout-draw

request

yes-no

Sent-Start Sent-End
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Deal
Call

Shout-Draw
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Fig. 2. Network Grammar Model

MFT-ASR outputs a sequence of phonemes from acoustic
features of separated speech and the corresponding MFMs
which are sent by Speech Recognition Client. For MFT-
ASR, we used Multiband Julian [22], which is based on
the Japanese real-time large vocabulary speech recognition
engine Julian [23]. It supports various HMM types such
as shared-state triphones and tied-mixture models. Network
grammar is supported for a language model. It works as a
standalone or client-server application. To run as a server,
we modified the system to be able to communicate acoustic
features and MFM via a network.

C. Parameter Selection

Parameter Selection selects an appropriate parameter set
for a current state by using results of SSL. There are 13
parameters in the robot audition subsystem, which concern
the performance of SSS and MFT-ASR. We optimized pa-
rameter values by using Genetic Algorithm because they are
mutually-dependent. It was reported that the optimization
improved 10 – 20 pts in a word correct rate of isolated word
recognition for two and three simultaneous speeches [24].

IV. DIALOG SUBSYSTEM

This section describes the dialog subsystem for RPS
sound games. In an RPS sound game, each player says one
of the three words instead of using gestures. The robot,
then, decides the winner only by using information obtained
from simultaneous speeches. Therefore, the referee system
requires simultaneous speech recognition. The dialog sub-
system is implemented as a system-initiative speech dialog
system, since it assumes limited vocabulary in each dialog
state. Generally, this kind of dialog system supports only
one user, but our system allows multiple users to cope with
simultaneous speeches.

A language model for MFT-ASR is defined as net-
work grammar to support an RPS referee task shown in
Fig. 2. “Request” means a trigger speech command such as
“Let’s start rock-paper-scissors” or “Restart”. “Call”, “Start”,
“Shout-RPS” are nodes to deal with in-play commands
such as “rock-paper-scissors, Rock.”, “rock-paper-scissors,
Paper.”, and “rock-paper-scissors, Scissors.” “Shout-Draw” is
also used for an in-play command after a drawn case occurs.
“Yes-No” is a node for a yes-no reply.

Speech Understander generates four kinds of speech re-
quests shown in Tab. Ia) from recognition results of sepa-
rated speeches sent by the robot audition subsystem. Since
multiple players usually speak at the same time in the RPS
game, it is necessary for the dialog system to detect a set
of recognition results for speeches uttered simultaneously.
A speech recognition result is sent to Speech Understander
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TABLE I
REQUEST, STATE, AND OUTPUT FOR DIALOG SUBSYSTEM

a) Dialog Requests
Request Description

Start a request when a game-start command is detected
Draw a request when a draw occurs
Finish a request when the winner was found
End a request when a game-end command is detected

b) Dialog States
Status Description
Wait waiting for a start trigger command from a player
Play waiting for a speech mixture of rock, paper, and/or scissors
Draw Play after a draw.
Cont waiting for a reply to a question if the players want to start

the next game

c) Dialog Outputs
Output Description

Call Urge each player to say one of three words
Next Call after a drawn case

Result Inform the players of the winner with gestures and speech.
For gestures, ASIMO turns its face to and points its hand to
the winner by using a winner direction obtained from sound
source localization. For speech, ASIMO answers the winner’s
choice like “the player who said rock is the winner.”

End Just finish the game without any gesture and speech

Wait

Start

Cont

DrawFinish/
Result

Start/
Call

End/End Finish/Result

Draw/Next

Draw/
NextStart/Call

Fig. 3. Dialog State Transition

only when the speech end is detected. Thus, it detects such
a recognition result set for simultaneous speeches based on
speech end time information.

The detailed algorithm is as follows:
1) After it receives a speech recognition result, it waits for

the next speech recognition result for a stand-by time
period, that is, 1 second by default.

2) When the next result arrives within 1 second, it waits for
the next stand-by time period. Because the possibility
that simultaneous speech occurs is getting lower, the
stand-by time period becomes shorter.

Dialog Manager controls dialog state transition according
to the requests. Four dialog states are defined as Tab. Ib),
and state transition based on DFA is shown in Fig. 3. When
Dialog Manager receives a dialog request, controls dialog
states, and produces dialog outputs defined as Tab. Ic).

Action Generator generates gesture commands for Behav-
ior Control, and send speech text to Speech Synthesizer via
a network. Behavior Control and Speech Synthesizer actually
control ASIMO’s behaviors.

V. EVALUATION

We evaluated the robot audition system in terms of the
following two points:

1) Recognition performance of simultaneous speech,
2) Performance of referee for RPS sound games.

TABLE II
WORD ERROR RATES FOR 1 – 3 SIMULTANEOUS SPEECHES (%)

# of interval experimental conditions
speakers (deg) C1 C2 C3 C4 C5 C6

1 - 6.5 6.5 16.5 15.5 10.0 18.0
2 30 100 73.5 65.5 64.5 27.0 14.8

60 100 71.3 51.8 58.5 17.8 14.5
90 100 67.0 55.3 59.0 17.3 16.0

3 30 100 94.5 98.0 93.5 72.5 23.0
60 100 94.5 88.0 70.0 34.5 15.0
90 100 91.5 82.5 65.5 18.5 18.0

A. Recognition of Simultaneous Speech

We, first, evaluated the performance of the robot audition
subsystem through isolated word recognition of one, two,
and three simultaneous speeches. In this experiment, a 4 m
× 5 m room with 0.3–0.4 seconds reverberation time (RT20)
was used.

Three kinds of test data sets, that is, a single speech dataset
(T1), a two-simultaneous-speech dataset (T2), and a three-
simultaneous-speech dataset (T3), were recorded with the
8-ch microphone array in the room by using loudspeakers
(Genelec 1029A) when ASIMO was turned on. The distance
between each loudspeaker and the center of the robot was
1.5 m. In case of T1, a loudspeaker was set to the front
(center) direction of ASIMO. For T2, one loudspeaker was
fixed to the front direction, and the direction of the other
loudspeaker was selected from 30, 60, and 90 degrees. For
T3, one loudspeaker was fixed to the front direction of the
robot. The locations of the left and right loudspeakers from
the center loudspeaker varied from ±30 to ±90 degrees at
intervals of 30 degrees. As a speech dataset, 5 male and
5 female ATR phonemically-balanced word-sets were used.
Each test dataset consists of 200 combinations of words
which were randomly selected from the ATR datasets. Note
that a word combination can include the same words uttered
by the same speakers.

By using the test data, the system performed simultaneous
speech recognition with the following six conditions:
C1 The input from the left-front microphone was used

without any processing and MFT using a clean acoustic
model.

C2 Only GSS was used as preprocessing. The clean acous-
tic model was used.

C3 GSS and Post-filter were used as preprocessing, but the
MFT function was not. The clean acoustic model was
used.

C4 The same condition as (3) was used except for the use
of the MFT function with automatically generated
MFM.

C5 The acoustic model trained with white-noise-added
speech (WNA acoustic model) was used. Except for
this, the condition was the same as (4).

C6 The same condition was used except for the use of a
priori MFM created by clean speech. Since this mask
is ideal, we consider its result as the potential upper
limit of our system.

The clean acoustic model was trained with Japanese
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TABLE III
RESULT OF TWO-SPEAKER TASK (ROCK-PAPER-SCISSORS GAMES)

speaker judgment task completion
Mr.A Mr.B #success/ success #success/ completion
(deg.) (deg.) #judgments rate (%) #tasks rate(%)

0 -30 11/15 73.3 6/10 60
0 -60 9/11 81.8 8/10 80
0 -90 9/12 75.0 8/10 80
0 -120 11/13 84.6 8/10 80
0 -150 6/14 42.9 2/10 20
0 -180 8/11 72.7 7/10 70

30 -30 17/18 94.4 9/10 90
60 -60 7/12 58.3 5/10 50
90 -90 12/16 75.0 6/10 60

120 -120 15/17 88.2 8/10 80
150 -150 17/18 94.4 9/10 90

average 112/157 71.3 76/110 69.1

speaker judgment task completion
Mr.C Mr.D #success/ success #success/ completion

(deg.) (deg.) #judgments rate (%) #tasks rate(%)
0 -30 12/16 75.0 6/10 60
0 -60 10/11 90.9 9/10 90
0 -90 9/13 69.2 6/10 60
0 -120 17/21 90.0 6/10 60
0 -150 10/14 71.4 6/10 60
0 -180 9/11 81.8 8/10 80

30 -30 14/19 73.7 5/10 50
60 -60 11/13 84.6 8/10 80
90 -90 8/11 72.7 7/10 70

120 -120 11/12 91.7 9/10 90
150 -150 10/11 90.9 9/10 90

average 121/152 79.6 79/110 71.8

total 233/309 75.4 155/220 70.5

Newspaper Article Sentences (JNAS) corpus which includes
60-hour speech data spoken by 306 male and female speak-
ers. Thus, the test was speaker- and word-open. The WNA
acoustic model was trained with the JNAS speech data
to which white noise was added by 40 dB of peak power.
Each of these acoustic models were trained as 3-state and
4-mixture triphone HMM, because 4-mixture HMM had the
best performance among 1, 2, 4, 8, and 16-mixture HMMs.

The word error rates for the front speaker in T1 – T3
are summarized in Tab. II. MFT-ASR with Automatic MFM
Generation (C4, C5) outperformed the normal ASR (C1–
C3). The WNA acoustic model(C5) performed the best for
MFT-ASR. We think that this is because our added white
noise smoothed distortion caused by preprocessing, and the
system was able to regard white-noise-added preprocessed
speech as white-noise-added clean speech. Since the WNA
acoustic model does not require prior training, it is the most
appropriate acoustic model for robot audition. Performance
at the 30-degree interval was poor in particular for T3,
because there were two interfering sources for the front
speech. The fact that A priori mask showed quite high
performance may suggest many possibilities that still remain
to improve the algorithms of MFM generation.

B. Performance of a Referee for Rock-Paper-Scissors Games

We evaluated the performance of a referee when the
number of players is two, i.e., a two simultaneous speech

case. The same room was used for the previous experiments.
Two pairs of male players, that is, Mr.A & B and Mr.C &
D attended our experiments. For each pair, 11 sets of RPS
sound games were conducted. For the first 6 sets, Mr. A or
C was fixed to stand at the front direction, and the others
were changed from −30 deg. to −180 deg. at 30 degree
intervals. For the last 5 sets, players stood from ±30 deg.
to ±150 deg. at 30 degree intervals. Each set consists of
10 RPS sound games. ASIMO was located at the center of
the room, and every player stood 1.5 m away from ASIMO.
Fig. 4 shows a sequence of snapshots for a RPS sound game
with three players. In this case, a unique winner existed.
Needless to say, the system was able to handle drawn cases.
For evaluation, we used two measures – a judgment success
rate and a task completion rate. The judgment success rate
J is defined as “# of success judgments / # of judgment
opportunities”. The task completion rate T is defined as “# of
success winner judgment / # of RPS sound games”. They are
different when a drawn case is included in RPS sound games.
J is used for performance evaluation of speech recognition
rather than that of RPS task. T is opposite.

Tab. III shows the results of this experiment. On average,
a judgment success rate is 75%, and a task completion rate
is 70%. J is almost the same as the performance of the two-
speaker-case in Tab. II in spite of small sized vocabulary
(three words). We found two reasons for this. One is that
lengths of three words were not long enough for ASR.
Actually, they are “gu:”,”choki”, and “pa:” according to
Japanese pronunciation. The other is that the system often
failed in finding simultaneous speech parts. In RPS sound
games, the system had to perform voice activity detection for
simultaneous speech, while the system was able to assume
that each input included simultaneous speech in Tab. II.
Mr.A & B are experts of this system because they are
developers, while Mr.C & D had no experience of a speech
dialog system and automatic speech recognition. However,
the system performance of Mr.C & D was better. This means
that the performance is independent from who players are.
We could not find any tendency on the difference between
the results of the 11 sets. Thus, the performance is irrelevant
to the locations of players. This shows that ASIMO was able
to decide the winner properly even when players are out of
sight, while the players have to be in sight in a referee task
for a normal RPS game.

VI. CONCLUSION

We reported a referee robot for rock-paper-scissors sound
games. This task requires simultaneous speech recognition
which is essential to cope with real-world auditory scenes.
The referee system consists of a robot audition subsystem
that recognizes noisy speech contaminated by simultaneous
speech, and dialog subsystem focusing on RPS sound games.
The referee system was implemented with Honda ASIMO,
and we attained over a 70% task completion rate even when
players have no experience with this kind of system. Thus,
we can say that robot audition is practically effective. In
this paper, we focused on a referee task for RPS sound

3473



a) U2:Let’s play rock-paper-scissors. b) A: I will be a referee. c) A: Is everybody ready?

d) U1-U3: rock-paper-scissors... e) U1: paper, U2: paper, U3: scissors f) A: U3 won.
Fig. 4. Snapshots of rock-paper-scissors game (A: ASIMO, U1:left user, U2:center user, U3: right user)

games. However, our approach would be effective for robots
to construct other dialog tasks which requires simultaneous
speech recognition and noisy speech recognition such as
auctions, other multi-party games, and so on.
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