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Abstract

Due to ever increasing precision and automation demands in robotic grinding, the automatic

and robust robotic grinding workstation has become a research hot-spot. This work pro-

poses a grinding workstation constituting of machine vision and an industrial manipulator to

solve the difficulty of positioning rough metal cast objects and automatic grinding. Faced

with the complex characteristics of industrial environment, such as weak contrast, light non-

uniformity and scarcity, a coarse-to-fine two-step localization strategy was used for obtain-

ing the object position. The deep neural network and template matching method were

employed for determining the object position precisely in the presence of ambient light. Sub-

sequently, edge extraction and contour fitting techniques were used to measure the position

of the contour of the object and to locate the main burr on its surface after eliminating the

influence of burr. The grid method was employed for detecting the main burrs, and the offline

grinding trajectory of the industrial manipulator was planned with the guidance of the coordi-

nate transformation method. The system greatly improves the automaticity through the

entire process of loading, grinding and unloading. It can determine the object position and

target the robotic grinding trajectory by the shape of the burr on the surface of an object. The

measurements indicate that this system can work stably and efficiently, and the experimen-

tal results demonstrate the high accuracy and high efficiency of the proposed method.

Meanwhile, it could well overcome the influence of the materials of grinding work pieces,

scratch and rust.

Introduction

Grinding of metal casts has always been a difficult task in industrial applications as it causes a

lot of pollution, consumes a large amount of energy, and poses a high risk in processing. With

the application of an industrial manipulator grinding station for the grinding process, this situ-

ation has been significantly improved. The method of grinding using an industrial manipula-

tor makes full use of the flexibility, high speed and simple programming of the robot [1]. As

one of the main sensing technology of robots, machine vision is popular because of its non-

contact nature and ability to collect a large amount of information [2]. Vision-based grinding

stations can realize automated grinding, reduce labor costs, improve the consistency of the

ground objects and optimize and shorten production cycles [3, 4].
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However, there are still problems when a manipulator is used to grind metal casts: (1) The

feeding process is difficult: the loading of the object is carried out by the operator and fixed to

the specific fixture. Following this, the manipulator completes the task of grasping the object.

However, the casts are irregular in shape, and the weight of some metal castings is above 20 kg.

Thus, the manipulator operation consumes time, and manual operation is not safe; (2) Grasp

positioning is difficult: it is necessary to position and grasp the same region on the object’s sur-

face in the same posture each time. Hence, designers need to design special fixtures for each

product. When the production line needs to switch to objects of different shapes and volumes,

the fixture must be redesigned. This not only consumes labor but also increases the hardware

expenditure [5]; (3) The grinding trajectory of the manipulator and the special equipment are

complicated [6]: the shape and position of burrs are not certain. It is a common practice to pol-

ish the location where burrs may appear on the surface of the object during the grinding pro-

cess. This increases the working time and workload; (4) Manipulator grinding relies on

human teaching: this method is time-consuming and labor-intensive and in order to ensure

accuracy, the worker must be close to the equipment while teaching the trajectory. In the pro-

cess of grinding and debugging, dust and other harmful substances are easily generated, which

are harmful to the health of the worker.

To solve above problems, several studies have been undertaken using industrial manipula-

tors for grinding metal castings. Park [7] proposed a method for industrial manipulators to cut

big casting objects; however, it is difficult when another object needs to be worked on. The

method relies on manual loading and unloading and the processing trajectory relies entirely on

manual teaching. In another study, Gaz [8] proposed a system that uses collaboration between

robots to polish an object with a human operator working in the same area. The system is safe

and flexible; however, the grinding trajectory needs to be taught by a human. There are also

many polishing systems that combine a force sensor and an industrial manipulator [9, 10],

which can improve the grinding quality and reduce the system working time. But these systems

still need substantial involvement of humans during operation. Visual technology is also often

used in robotic grinding. An automatic robotic grinding system based on reverse engineering

has been realized [11]); however, its trajectory is based only on the surface shape of the product

and the burr on the object is not considered. Pandiyan [12] proposed a method based on deep

learning techniques for the detection of the weld seam and its removal; however, this method

has a high rate of misclassification between the weld seam states and the background.

To address the above issues, we propose an automatic grinding workstation based on an

industrial manipulator and vision system which can be used for processing rough metal casts

in this study. The system can robustly complete the positioning and grasping of workpieces

placed on the pallet without manual intervention and can regularize the robot grinding trajec-

tory according to the shape of the workpiece burr to achieve the automatic operation of the

grinding process. A two-step localization strategy has been proposed to obtain the position of

the object in the pallet. This strategy has the advantages of excellent generalization perfor-

mance of the deep neural network and high positioning accuracy of template matching. It can

obtain the position of a blank cast object accurately even in the presence of interruptions. Fol-

lowing this, we propose a grid method to detect the burr position and offline planning of the

industrial manipulator grinding trajectory. The system can stably and quickly position the

objects placed at regular intervals on the pallet. The object’s grinding trajectory can be gener-

ated offline. Our system also has an excellent price/performance ratio.

The main contribution of this paper is summarized as follows.

1. An automatic grinding workstation for rough casts is designed. The workstation can plan

the grinding path according to the main burrs on the workpiece surface.
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2. A strategy for visual detection and positioning for rough casts has been proposed to solve

the problem that the vision system has a complicated background and cannot use a large

size light source in some industrial area. This strategy includes an improved yolov3 detec-

tor, i.e., Den-yolov3 and a modified template matching method. This approach offers favor-

able performance and fast speed for the identification of industrial objects.

3. A grinding trajectory method for industrial robot based on the grid method is proposed.

The automatic grinding path planning of industrial robot based on the vision system is

realized.

Methodology

Hardware architecture and architecture of the proposed method

The grinding station setup is composed of loading cell, grinding cell, unloading cell:

Loading cell: A 2D industrial camera and light are installed in the 6th axis flange of the loading

industrial manipulator. The system realizes the positioning of the workpiece through the

vision system, and the industrial manipulator completes the grasping operation.

Grinding cell: It consists of two industrial manipulators and two grinding machines. They

work together to finish the grinding operation.

Unloading cell: A manipulator is used to realize the unloading and palletizing work.

The workstation is controlled by a PLC control system. Figs 1 and 2 show the system archi-

tecture and workstation layout, respectively.

Fig 1. The system architecture of the grinding station.

https://doi.org/10.1371/journal.pone.0248993.g001
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The object that is to be processed by the workstation is an iron casting. It is uniformly

placed on a pallet with approximately 18 objects per pallet, each with six layers and each sepa-

rated by a partition. The size of the object to be ground is 290 mm × 155 mm, and its weight is

7 kg. The grinding requirement is that there is no burr around the object’s edges. The object to

be ground is shown in Fig 4. During the processing, the staff only needs to place the pallet filled

with rough objects in the loading area. The workstation will finish the grinding of the rough

objects without manual intervention and place the processed objects in the unloading pallet.

The grinding error in this method does not exceed ±0.5 mm.

To accurately and efficiently implement object grinding, combined with the hardware sys-

tem, we designed a workstation automatic grinding strategy, which mainly consists of two

parts: visual positioning and visual inspection (see Fig 3).

Theoretical basis

Visual localization. The visual processing of the grinding workstation mainly includes

two steps: visual localization during the loading process and burr detection during the grind-

ing process.

In this paper, the object has burrs around its edges and the background has the same type

of objects near the object that is to be grasped. The most difficult problem that needs to be

solved is how to locate an object precisely when it does not have a clear contour and is in a

cluttered background (see Fig 4).

A 2D vision system is used to obtain the precise position of the object. In the 2D visual posi-

tioning technique, template matching [13] is a commonly used method for positioning. It uses

a representative part of the object’s image to be identified as a “model” and uses this “model”

to find the object to be identified in the searched image [14]. There are four main reasons why

the template matching method is not useful to obtain the object’s position precisely in an

industrial area:

Fig 2. The layout of the grinding station and unloading robot with vision system.

https://doi.org/10.1371/journal.pone.0248993.g002
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1. In the open industrial environment, the image of an object being captured is easy to get

influenced by ambient light.

2. The surface of the rough metal casts which is used for image processing has scratches and

stains.

3. The burr on the surface of rough metal cast affects the accuracy of the positioning algorithm

4. The rounded transition area of the object surface makes the object contour unstable during

the imaging process.

In this paper, we combined the latest deep learning and classic template matching technol-

ogy to propose a coarse-to-fine visual detection and positioning method. In the coarse posi-

tioning stage, we use the deep neural network to detect the approximate position of the

workpiece. On this basis, we use the template matching method to precisely locate the local

features of the object, thereby achieving the precise positioning of the rough castings with min-

imal external interference.

Coarse step. We use deep learning methods to help make complete use of the features in the

detected target. This makes our detection results more robust than a single template matching

method.

Deep learning has gradually become the mainstream in target detection after 2012 [15]. At

present, many efficient target detection networks have been proposed and applied in the

industrial field, such as yolo [16–19], Faster R-CNN [20], and NAS-FPN [21]. The yolo algo-

rithm was proposed by Redmon et al. After two years of development, it has grown from yolo

to yolov3. The yolov3 algorithm extracts features based on a regression method. It is an end-

to-end training process that directly returns categories and frames on the feature layer, saving

a lot of time wasted in extracting frames.

Fig 3. The strategy of robot workstation.

https://doi.org/10.1371/journal.pone.0248993.g003
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In this paper, we propose an improved yolov3 network for rough positioning of targets.

Standard yolov3 uses Darknet53 network based on residual network structure for feature

extraction and generates three feature maps of 13×13, 26×26 and 52×52, respectively (see Fig 5).

The three size feature maps correspond to large, medium, and small target detection in the picture.

Our work is mainly focused on the following areas:

1. Set up industrial object image dataset: Through the method of image acquisition and

image enhancement, an industrial image-data set containing the object in this study and other

industrial object is established.

Image enhancement is an important method to improve the performance of network rec-

ognition. Image rotation, adjustment of image brightness, image blur, and image noise are

used for data enhancement in this study; an object in dataset is shown in Fig 6.

2. Change yolov3 network structure: 1) The DarkNet network was changed to the DenseNet

network, and a parallel network composed of convolution kernel functions of different scales

was added to the bottom part of the network, thereby enabling the extraction of richer features

in the image. 2) To strengthen the detection of small targets, three size feature maps are used

by yolov3 detector for target detection. Since the size of the measured object is not large, the fea-

ture map for small targets is removed in this method. 3) The standard yolov3 network uses

Fig 4. (a) The object and the region used for detection. (b) The contour of the object is not clear in the image.

https://doi.org/10.1371/journal.pone.0248993.g004
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multiple convolutional networks before outputting the feature map. We introduce the residual

structure in this part. The experiments show that the network that introduces the residual struc-

ture has better recognition ability. Improved yolov3 is named as Den-yolov3 and shown in Fig 7.

3. Using multiple location features for the object position: To reduce the localization failure

caused by recognition errors, we consider multiple local features of the object surface at the

same time, and infer the position of the target object according to the detection results of the

multiple local features.

Two region features namely region I and region II are select to detect the object in this study

(see Fig 4). When the detection is completed, the system calculates the positional relationship

between the features in region I and region II to further improve the success rate of detection.

Den-yolov3 can find the positions of all objects in the image, so when the detection is com-

pleted, we need to count the position information of the detected regions I and II in the image

and select the grasped object.

Fine step. After coarse positioning, the approximate location of the object is obtained. We

can then determine the approximate location of the circular hole area on the object surface.

Localization can be performed in local areas in the picture. Local positioning can improve the

robustness of matching and reduce the workload of matching. The Line-MODmethod [22,

23] is a contour feature-based template matching method and is one of the most convenient

ways to locate objects. Line-2D is a part of Line-MOD with only gradient information from an

image. Its excellent and stable characteristics have attracted wide attention from the industry.

We propose the modified Line-2D method, namely, geometric-multilevel-Line-2D

(GMLINE-2D), to obtain the object position precisely. The GMLINE-2D method combines

geometric model, multilevel matching, and fast ICP registration method into the Line-2D

method. It can obtain the object position quickly and robustly. The main step of the GMLINE-

2D method is as follow:

The first step of GMLINE-2D is to use the geometric method to create a geometric model

for the object feature and generate multiple models map of the geometric model. The feature

we selected to create the model is the contour feature of the object feature region I. Unlike the

Line-MODmethod, which uses the strongest point of the local gradient amplitude as the fea-

ture points of the template, the proposed method uses the feature points on the geometric con-

tour of the object surface as the feature points of the template, which can better reflect the

contour features of the object.

Fig 5. Standard yolov3 network structure.

https://doi.org/10.1371/journal.pone.0248993.g005
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The geometric model includes the main contour information of the object’s feature and it is

free of influence by the scratches or stains on the object surface. Thus, this geometric model is

robust for template matching. However, because of the height of the object and the influence

of ambient light, the object feature in the image shows shape deformation when the object is at

a different place in the visual field. To accurately determine the object position, we create mul-

tiple models with different shapes to do the template matching and then select the best result.

Fig 6. Part of the object in the dataset (from left to right: The original image of the object, image after shading adjustment, the image with Gaussian noise, blurred
image, and rotation image).

https://doi.org/10.1371/journal.pone.0248993.g006
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The model map consists of a precomputer response map and multi-scale models; the precom-

puter response map uses the same step of the Line-mode method [24]. By changing the length

and width values of the geometric contour model, several new geometric models can be used

to create and generate the models map that consists of multi-scale models (see Fig 8).

The second step is to use a multilevel matching method to obtain the object position. Multi-

level matching is a method to improve the speed of template matching. It uses the image pyra-

mid method to build multilevel models. The process is as follows:

Rotate the model m in n degree, and generateM1 (m,. . .,m’) model set. The gradient inten-

sity and angle of the image are calculated. We can get gradient image G1, thenM1 is used to

match G1.

The similarity score is used to measure the similarity between the model and the image to

be matched. Generally, the higher the score, the higher the similarity between the model and

the input image. In this paper, if the similarity score of the match is greater than 60, the match

is successful. We use (4) to calculate the similarity score [24].

εðI; T; cÞ ¼
X

r2P

max

t2RðcþrÞ
jcosðoriðO; rÞ � oriðI; tÞÞj

� �

ð1Þ

Among them, ori(O,r) is the gradient of the position in the model. I is the image to be

matched, and P is the set of positions r to be calculated in the image O, where Rðcþ rÞ ¼

½cþ r � T
2
; cþ r þ T

2
� � ½cþ r � T

2
; cþ r þ T

2
� defines the neighborhood of size T centered at

location c+r in the input image.

We use the Gaussian pyramid to sample G1 and the model, to get G2 andm2, templatem2

is rotated at n � 2 degrees and the model setM2 is generated. Further, the LINE-2D method is

used to matchM2 with G2.

If the matching score in the previous step is greater than 60, the previous step is repeated.

Through the above steps, we can get the multilevel model of the image. Although the multi-

level model is complex in the template establishment process, it can greatly improve the

Fig 7. Den-yolov3 network structure.

https://doi.org/10.1371/journal.pone.0248993.g007
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matching speed and stability in the matching process. The actual measurement can carry out

four times of downsampling.

When we begin multilevel matching, the gradient intensity of the matched image needs to

be obtained, and k is used to filter the image, then the Gauss pyramid is used to generate all

levels of the image to be matched. It matches with the corresponding template set from the

high level (see Fig 9).

After the first level matching template is obtained, the input image needs to be matched

again with the model, which is adjacent to the model map. Thus, we can obtain a model whose

shape is most similar to the object feature shape in the image.

Fig 8. Creating the model map. The model map is created by the local feature of the object. After the local feature is obtained by the Den-yolov3 detector, the geometric
method and Line-MODmethod is used to generate the model map.

https://doi.org/10.1371/journal.pone.0248993.g008

Fig 9. Multilevel matching method (the input image is downsampled to level 4, thenM4 set is used for template matching. This determines the M3 model to be
used and matches again until the level1).

https://doi.org/10.1371/journal.pone.0248993.g009
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The last step is to use the fast ICP algorithm to calculate the difference between the location

template matching result and the contour of the object in the matched image.

Visual inspection. In this work, an offline vision-based robotic trajectory generation system

has been proposed. By using the visual technique, the offline trajectory planning of the industrial

manipulator is performed according to the shape of the burr in each object to be ground.

Detecting the position of the main burrs. There are two kinds of burrs for the object used in

the present work, burrs of the sprue gate, generated by demolding and sprue line burrs, gener-

ated by the flashing of the sprue line during the casting process.

Burr position analysis. Different abrasive tools may have sprue gates located at different

positions. However, they are located only in specific areas on the object’s surface, and thus, the

burr of the sprue gate is located only at certain specific locations on the object. On the other

hand, a flash burr is caused by the aging of the mold, etc., and it may appear on the mold sprue

line of the object. Sprue gate burrs are difficult to grind because of their big size. The focus of

our work is on how to efficiently grind the sprue gate burrs.

Vision system detection can be used for locating the sprue gate burr position. The detection

steps are as follows:

1. After localization, the object has to be placed in a fixture by the industrial manipulator in

the presence of ambient light following which, the contour image of the object is obtained

by the vision system.

2. Multiple isometric lines are used to calculate the gradient of the object’s edge. We can

obtain the edge of the object precisely even though there are flash burrs on the edges of the

object.

The sprue gate burrs are located only at specific positions on the object as the shape of the

injection mold is fixed. After obtaining the four edge lines of the object by combining this

information with the CADmodel of the object, we can obtain the possible region of sprue gate

burrs and calculate its grayscale value. By checking the grayscale value of the possible region of

the sprue gate, we can ensure the position of the sprue gate burrs.

Burr shape detection. After obtaining the positions of the sprue gate burrs, we need to detect

its shape.

The grinding process investigated in the present work uses an industrial manipulator to

grasp the object and grind it using a grinding machine. We set the industrial manipulator to

grinding with the same amount of grinding feed. Before grinding, a manual test is done to

determine the amount of feed,M, per grinding cycle.

First, the grid method is used to check the contour of the object:

1. Meshing: The Zhang’s calibration method is used to obtain the conversion relationship

between pixels and the actual distance [25]. A parallel grid covering a large number of

lengths and widths is formed to cover the casting port at the edge of the object, and the side

length, L, of the mesh is equal to the feed amountM of the industrial manipulator grinding

track. The system detects the sum of the grayscale values,W (x, y), of each line of the grid

and then determines whether the burr is included in the mesh area or not.

Wðx; yÞ < V1; ðburr areaÞ

V1 < Wðx; yÞ < V2; ðburr edge areaÞ ð2Þ

Wðx; yÞ > V2; ðno burr areaÞ
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V1 and V2 are the grayscale threshold of the mesh area, it need to be adjusted according to

the actual situation.

2. Burr position analysis: The system divides each grid into two categories: to be ground and

not to be ground. For example, if a section of the grid does not have a burr, there is no need

to polish that area and vice versa. Each row of the grinding area in the grid should have a

grinding start and a grinding end position. The starting position is the coordinates of the

lower right corner on the grid of the first grid burr area, corresponding to the first burr

boundary area in the grid, in each row of the robot grinding direction. The end position is

the grid of the last grid burr border area of each line without the presence of burr (see

Fig 10).

The grinding start and end positions are the key points of the object to be ground. The

value of the key point P{p1, p2,. . ., pn} of the area to be ground, on the surface of the object in

the image coordinate system, can be obtained. We can obtain the burr shape from the key

points of the area. In the next step, the grinding trajectory for grinding the burrs can be calcu-

lated from the key points.

Vision-based grinding trajectory generation: Using the camera calibration results, the visual

coordinate system {C} can be obtained. Using the straight-line extraction method combined

with RANSAC, the straight line of the two adjacent edges of the object can be accurately

obtained from which the intersection point is obtained. This point is taken as the origin to

establish the object coordinate system {O}.

A user coordinate system {U} can be created using the grinding wheel’s grinding position P.

The positions in {U} in the industrial manipulator base coordinate system {B} are BTP.

Fig 10. The mesh region method is used to segment the burr area of the casting mouth (M is the amount of feed, it calculate by manual test).

https://doi.org/10.1371/journal.pone.0248993.g010
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The object is grasped by the industrial manipulator and placed at the corner point C of the

object (i.e., the origin of the object coordinate system {O}) horizontally at the point P. The val-

ues {T0} of the coordinate system BTF, are taught and recorded

BTP¼
BTF�

FTC ð3Þ

BTP is the point P in the pose of an industrial manipulator base coordinate system. In the

grinding process, C is a point on the surface of the object which moves as the object moves and
FTC is a point in {T0} coordinate system. Thus, there are:

FTC¼
FTO�

OTC ð4Þ

We have:

FTO�
OTC¼

BT�1

F �BTP ð5Þ

FTo ¼ ½BTF�
�1
�BTP � ½OTC�

�1
ð6Þ

OTC is the point C in {O} coordinate system, it can be obtained from the vision system coor-

dinate system. When grinding point position C is changed to C1, we have:

FT2

C1¼
FTO�

OTC1 ð7Þ

Combined with (7), there are

BTF
0¼BTP � ½FTO�

OTC1�
�1

ð8Þ

From this, the new BTF’ can be obtained, which is the grinding position of the point C1 of

the object.

By doing the coordinate transformation, the object’s grinding key point can be transformed

into the position that can be executed by the industrial manipulator.

The visual inspection process generates an offline robotic trajectory based on the shape of

the burr in the object and thus replaces the traditional manual teaching method. The offline

robotic trajectory generation method can improve the production efficiency, reduce the robot

trajectory teaching time of the operators, and enable greater system safety.

Results and discussion

Experimental equipment

In the system, two EFORT ER50-C10 industrial manipulators, having a payload of 50 kg, were

used for loading and unloading and an ABB IRB6700 series industrial manipulator, having a

payload of 150 kg, was used for grinding. A vision system (including one Basler ace–3800

series camera and a 12 mm Basler lens) was mounted at the end of the 6th axis flange of the

loading industrial manipulator. It is to be used for obtaining the position of the object in the

pallet and feed it into loading platforms. The resolution of the camera is 3840×2748, the work-

ing distance of the vision system is about 700mm, and the field of vision is about 500mm �

300mm. Two grinding robots take the object from the loading platforms, respectively and

grind it on the grinding machine. After grinding, the two grinding robots respectively take

parts from the loading table and finish grinding on the grinding machine. After that, the

objects are placed on the unloading platforms, and the unloading robot completes palletizing.

The PC workstation used in the test with CPU:i7, GPU:RTX 2070S, RAM:32G. C++ language
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and opencv libraries is used to programming. Two grinding machines grasp the object from

loading platforms, then use it for grinding. The experimental setup is shown in Fig 11.

Coarse positioning experimental

The dataset which we build in this study includes the training data and test data. The training

data set consists of the original image and the enhanced image, and the testing data contain

200 original image of different objects. The training data are used to train the stand yolov3,

and Den-yolov3 models and test data are used to test the model function. The training data

and the main initialization parameters are shown in Tables 1 and 2. The testing data sets are

used to detect network performance, the result is shown in Table 3.

Recall and precision are used to evaluate the detector performance; the recall is expressed as

follows:

Recall ¼
TP

TPþ FN
ð9Þ

Fig 11. Picture showing the grinding system.

https://doi.org/10.1371/journal.pone.0248993.g011

Table 1. Training dataset.

Index Image augmentation Number

1 Object types 6

2 Original image 300

3 Image rotation 5400

4 Brightness transformation 600

5 Image blur 300

6 Gaussian noise 300

7 Total image 6900

https://doi.org/10.1371/journal.pone.0248993.t001
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The precision is expressed as follows:

Precision ¼
TP

TP þ FP
ð10Þ

TP is to predict positive class as a positive class number, FP is to predict negative classes to

positive classes, and FN is to predict positive classes to negative classes. Both stand-yolov3 and

Den-yolov3 are trained 300 times. From Table 3 we can find that the recalls of the two detec-

tors are the same, but Den-yolov3 shows higher precision.

FPS reflects the detection speed of the network. The Table 4 shows the size and FPS of

stand-yolov3 and Den-yolov3. Form Table 4, we can see that Den-yolov3 has better detection

speed and smaller size than stand yolov3. This is because Den-yolov3 removes the small target

detection channel in yolov3, which makes it have a smaller size model and faster detection

speed.

To determine the object position, we took 300 images of the workpiece to be captured in

the working environment and selected 200 as the training set and 100 as the test set. The Den-

yolov3 and the standard yolov3 mentioned in this paper were used for comparison. Accuracy

is the ratio of the number of correct classifications to the total sample. Table 5 shows the

Table 2. Initialization parameters of the two networks.

Index Parameters Value

1 Decay 0.0005

2 Momentum 0.9

3 Learning rate 0.0001

4 Batch 6

5 Image size 416�416

6 Subdivision 4

https://doi.org/10.1371/journal.pone.0248993.t002

Table 3. Test result of stand yolov3 and Den-yolov3.

objects Stand-yolov3 Den-yolov3

Object1 Recall 100% 100%

Precision 0.476% 71.42%

Total object Recall 0.776 0.712

Precision 0.901% 0.832%

https://doi.org/10.1371/journal.pone.0248993.t003

Table 4. Initialization parameters of the two networks.

Method Model size(MB) FPS

Yolov3 235 14.02

Den-yolov3 104 14.3

https://doi.org/10.1371/journal.pone.0248993.t004

Table 5. Accuracy of stand yolov3 and Den-yolov3.

Method 100 times 300times

Stand yolov3(Accuracy) 0.78% 100%

Den-yolov3(Accuracy) 0.99% 100%

https://doi.org/10.1371/journal.pone.0248993.t005
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accuracy of the two method for 100 and 300 times of training. From Table 5 we can find that

Den-yolov3 is better for the object in this study.

Fig 12 shows that the loss function of our method decreases rapidly, and the detection suc-

cess rate is higher under the same training times. This is because, compared with the standard

yolov3 algorithm, the Den-yolov3 algorithm has fewer feature maps, so the loss function

decreases quickly. The improved network introduces a parallel network, DenseNet network

purchase, and residual network, so it can obtain better recognition results under the same iter-

ative training situation.

It can be seen from the Fig 13 that Den-yolov3 has better recognition effect than yolov3

under the same training times. Fig 14 shows that the detect result of Den-yolov3 to the object

in this study.

Experimental results of fine positioning

The object was placed in a fixed position and the industrial manipulator was used to get 50

images in different positions. The single LINE–2D method and the GMLINE-2D method were

used to process the images and record the matching score. Following this, the GMLINE-2D

method was used to calculate the object grasp pose for the 70 images. Since the object was

fixed, the grasp pose would be similar. The results thus obtained are plotted in Fig 13, and the

numerical values are given in Table 6.

From Fig 15, it can be seen that the GMLINE-2D matching score is high and robust as com-

pared to the Line-2D method, which indicates that the GMLINE-2D is more robust.

GMLINE-2D uses multiple models to match the local features of the object, and selects the

highest similarity score as the final matching result. Compared with Line-2D, which only use

one model. Thus, it can obtain better similarity score.

Fig 12. The loss function of stand yolov3 and Den-yolov3.

https://doi.org/10.1371/journal.pone.0248993.g012
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From Table 6, it can be seen that the errors in the X and Y values of the grasp position are

less than 2 mm and the c axes grasp value is less than 1˚; these errors are sufficiently small for a

rough object grasp.

Fig 16 shows the matching comparison between Line-MOD and our method. It can be seen

from the figure that Line-MOD only uses a small number of feature points on the object sur-

face. The proposed method in this study makes full use of the contour information of the

object and has a good matching effect.

Fig 17 is the result of the gradient feature approximation between the template and the

input image feature area after several iterations using the ICP algorithm. We choose the area of

the hole on the surface of the object as the matching feature. From the registration results, we

Fig 13. The test result of Den-yolov3 and stand yolov3: (a) Den-yolov3 test result. (b) yolov3 test result.

https://doi.org/10.1371/journal.pone.0248993.g013

PLOS ONE A Robotic Grinding Station Based on an Industrial Manipulator and Vision System

PLOSONE | https://doi.org/10.1371/journal.pone.0248993 March 24, 2021 17 / 22

https://doi.org/10.1371/journal.pone.0248993.g013
https://doi.org/10.1371/journal.pone.0248993


can find that even if there is a matching error due to interference in the image feature area, the

ICP algorithm can still improve the image matching accuracy based on the positioning of the

matching algorithm.

The grinding station combines the burr detection and trajectory planning functions of the

vision system. From the combined applications of visual positioning, RANSAC line fitting,

grid burr detection, and coordinate transformation, the automation of the grinding system is

greatly improved. On the one hand, the workstation completes the robot positioning and

grasping of the rough object under complex background conditions. On the other hand, the

system realizes accurate online detection of the burr of the casting nozzle on the surface of the

object, and based on the detection result; the industrial manipulator trajectory is generated off-

line. The grinding process is unmanned, which optimizes the working efficiency of the robot

polishing and improves the safety factor of the workstation. A comparison showing the object

before and after grinding is shown in Fig 18:

Fig 14. The object in this study test result of Den-yolov3.

https://doi.org/10.1371/journal.pone.0248993.g014

Table 6. GMLINE-2D calculate result.

images x/mm y/mm c/˚

1 362.74 –282.37 92.5

2 363.53 –282.43 92.7

3 363.21 –282.24 92.4

4 362.64 –283.11 93.2

5 362.66 –282.53 92.5

6 362.26 –281.88 92.2

7 361.87 –282.32 92.3

8 363.24 –282.28 92.7

9 361.98 –283.15 93.4

. . . . . . . . . . . .

70 362.18 –283.07 92.4

average error ±2 ±2 ±1

https://doi.org/10.1371/journal.pone.0248993.t006
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Fig 15. Results of Line2Dmethod result and GMLINE-2D.

https://doi.org/10.1371/journal.pone.0248993.g015

Fig 16. Line-MOD and GMLINE-2Dmatching result.

https://doi.org/10.1371/journal.pone.0248993.g016
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Conclusion

This paper proposes an industrial manipulator grinding station based on the vision system for

robotic grasping guidance and automatic planning of the grinding trajectory. The workstation

realizes the automation of the entire process from automatic loading to grinding. A novel

coarse-to-fine vision position strategy which consists of an improved deep neural network

detector and uses the industrial object recognition along with the modified Line-MODmethod

for precise positioning, is proposed. This strategy can locate the rough casting position pre-

cisely and robustly. This study also proposes a method based on the grid method for industrial

manipulator grinding trajectory. By extracting the edge gradient of the object and combining

this information with the RANSAC straight line fitting method to obtain the position of the

Fig 17. Fast ICP registration for a feature area (X and Y coordinates are in pixels). (a) the point after GMLINE-2D, (b) first time iterative, (c) second time iterative,
(d) last time iterative.

https://doi.org/10.1371/journal.pone.0248993.g017

Fig 18. Picture showing the object before (left) and after (right) grinding (the burr on the workpiece surface is cleanly
removed).

https://doi.org/10.1371/journal.pone.0248993.g018
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burr, the grinding position can be generated. Combined with the industrial manipulator con-

trol logic, the workstation can complete the automated production of a blank object from the

pallet to the grinding and placing processes.

The robot grinding station has the advantages of high grasping precision and good consis-

tency in the quality of grinding the workpiece. At the same time, the workstation can complete

the work that originally required 3–4 per unit working time for carrying out the process manu-

ally. The system also reduces labor during the production and debugging process. The less

amount of intervention time required in this setup increases the safety of the staff. In the

future, we will further improve the function of the proposed algorithm, further improve the

detection accuracy and detection speed of the detection network, and consider adding rotation

detection function in the network.
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