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A b s t r a c t  

In order to carry out a given task in a unstructured environment, a robotic system must 

extract physical and geometric properties about the environment and the objects therein. We are 

interested in the question of what are the necessary elements to  integrate a robotics system that  

would be able t o  carry out a task, i.e pick-up and transport objects in an unknown environment. 

One of the major concerns is to insure adequate data  throughput and fast communication 

between modules within the system, so that haptic tasks can be adequately carried out. We 

also discuss the communication issues involved in the development of such a system. 
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1 INTRODUCTION AND MOTIVATION FOR THIS W O R K  

1 Introduction and Motivation for this work 

In order to carry out a given task in a unstructured environment, a robotic system must extract 

physical and geometric properties about the environment and the objects therein. We are interested 

in the question of what are the necessary elements to integrate a robotics system that would be able 

to carry out a task, i.e move around and transport objects in an unknown environment. These ele- 

ments, which will be considered here are: sensors and their associated data acquisition/treatment 

procedures, manipulators/end-effectors and their control procedures. In a good scientific approach, 

one is looking for the smallest set of physical and geometrical properties, which we call here prim- 

itives, so that other more complex properties could then be described by or composed of these 

primitives. 

The physical properties to be measured by our system are distance, temperature, mass, force, 

position and time. The derived physical properties are then: weight, velocity, acceleration, etc ... 

The geometric properties that we will be using is the subject of a separate work [I]. We just like 

to mention here that we use parametric representation up to second order models both for volume 

and surface as well as for contour. We assume that these geometric primitives are able to describe 

a given object (and its parts, if it contains them). If an object is composed of more than one part, 

it is represented explicitly by a graph. Parts can be in fixed or movable spatial relationship with 

respect to each other. The movable part/whole relationship will yield variable configurations of the 

whole which needs to be recognized. 

Once the primitives are defined, a robotic system also has to be equipped with procedures that 

control data acquisition. These procedures help to ultimately determine where to look or touch as 

well as to extract (compute) the aforementioned primitives from the measurements. 

Inspired by the work of Lederman and Klatzky [2], we name the system's haptic, manipulatory 

and visual procedures as ExpZomtory Procedures (or EP's). In order to test whether the proposed 

primitives are necessary and/or sufficient to describe the environment for object intrinsic mobil- 

ity and manipulation, and whether the EP's are realizable and able to deliver the required data 

primitives, we built a robotic system to serve as a test bed. 

We have been working for a few months building a modular robotic system with special focus 

on its ability to perform haptic tasks. One of the major concerns was to insure adequate data 

throughput and fast communication between modules within the system. Fast communication is 
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especially important for "force control". For example, when sensors in the gripper's fingers are 

sensing large forces (that may very well be too large already) the system has to be able to react 

promptly to avoid a catastrophy (i.e. damage to the object/environment being touched or to the 

end-effector itself). Therefore, if sensor data throughput is not adequate, one is not able to perform 

simple interactions within the environment. 

In what follows, we will describe the architecture of our haptic robotic system. In section 3 we 

discuss the communication issues and the data flow that guarantees a fast control of the manipulator 

and which uses the force/torque information provided by the sensors in the end-effector (gripper). 

2 Architectural Issues 

We begin to describe the system with the top most level of the architecture which we call the 

task level. Either the manipulatory or the haptic task has two basic components differentiated by 

the sensor which is being applied. We differentiate between manipulatory and haptic in that we 

consider manipulatory those actions which involve grasping an object and moving it around. Haptic 

comes into play when one is now concerned with extracting data and other information from the 

object itself, or the environment. As an example of manipulation we have pick and place whereas 

for haptics would be to categorize objects with respect to a given dimension such as size, volume, 

weight, objects with movable parts as oppose to rigid parts, etc ... 

In order to  explore an unstructured and unknown environment containing objects of unknown 

mechanical and material properties, we will be using vision as well haptics and manipulation. Thus 

our system can be naturally sub-divided into Haptic Task and the Visual Task. A top level 

diagram of the architecture is depicted in Figure 1. 

At a higher level, the system is only concerned whether the task is accomplished or not. The 

task is subdivided into sub-tasks, which are further broken down into distinct modules. The main 

sub-tasks are shown in Figure 2 and Figure 3 respectively. Following the inspiration from Lederman 

and Klatzky's work, we have integrated a robotic system to perform the Haptic Task and the 

Visual Task. 

Klatzky and Lederman in their work have identified five fundamental modules: Motoric, Sen- 

sorial, Property, Exploratory Procedures and Object modules. Our robotic architecture, however, 

requires a somewhat different partitioning. The Object Module in their work corresponds to the 
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TASK 

1 VISUAL TASK 1 

Figure 1: Functional Block Diagram 

Haptic Task Description in ours. Our Haptic Properties and EP's are very similar to  theirs. Their 

Motoric Module is mapped into two parts in our system: one is the Arm Controller or robot con- 

troller and the other is the Gripper Controller. Their Sensor Module is in our case the Force/Tcrctile 

and Position Sensor Modules. Physically, the Force/Tactile and Position Sensors are located, one 

on each finger of the Lord Gripper. The Sensor Module together with the Gripper Controller 

Module are combined into Gripper Primitives. 

The motoric tasks are carried out by two disjoint systems: the manipulator (robot) and the 

gripper. In our implementation of the system, we used the PUMA 560 from UNIMATE and its 

associated controller. The gripper is the LORD Experimental Gripper (LEGS). This gripper is a 

parallel jaw gripper, with independent control of each finger. It also has the LTS-200 Force/Torque 

and Tactile sensors on each finger [3]. This sensor is composed of a force/torque sensor which 

provides information force/torque information on each direction X, Y and Z as well as a tactile 

sensor which is composed of a 10 x 16 array of tactile sites. 

The software is composed of several libraries. These libraries are structured with respect to 

servo. sensors and communication. The gripper primitives are composed of other primitives from 

other libraries, but can be (and will be) easily replaced by other end-effector primitives such as Hand 

Primitives. Unlike the human haptic system, where the motoric and sensory system is "given" we 

spent a considerable amount of time in integrating these several sub-systems. The Motoric Module 

is composed of several (in our case two) copies of a Motoric Controller. This has the advantage 

that the software part is flexible and for any specific hand or some other end effector, only the 
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Communications 

Figure 2: The Haptic Task 
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specifics about motors and encoders need to be changed. This is also true for the sensory module. 

In both cases, the modules include the models (geometry, electrical and mechanical properties) of 

the particular motor or sensor respectively. In section 4 we will elaborate more on the details of 

the motoric module and on the haptic EP7s. 

The Visual Task, similarly to  the Haptic Task, is subdivided into modules, which is shown in 

Figure 3. 

As the Haptic Task, the Visual Task is also composed of Visual Properties, which are ex- 

tracted by Visual Exploratory Procedures. These Visual EP7s control the position of the head, 

neck, the focus and vergence of the eyes, opening and closing of aperture (iris), similar to the im- 

plementation of Krotkov [4]. The Visual task also determines what resolution/detail, as well how 

many views and how much data should be acquired and what features need to be extracted. 

Interaction between the Visual Task and the Haptic Task in this implementation at the physical 

level is via Ethernet. The architectural description that follows will be focused on the haptic system 

architecture. 

3 Communication issues in this Architecture 

One cannot truthfully consider performing Haptic Tasks if the Haptic System which is to perform 

the task does not have force control capability. One of the driving motives behind this architecture, 

therefore, was providing the the robotic system with the cability of performing "force control". To 

achieve this force control at  a reasonable "haptic speed", the force/torque sensors on the end effector 

have to provide the force control procedure with fairly large data throughput. Clearly, the loop: 

"sense force - control procedure - manipulator/gripper action" has to happen at a compatible 

haptic speed. In order to fully understand the implications of the aforementioned issues, we first 

present the first architecture that was implemented in order to connected the Lord Gripper and 

the Unimate Puma 560 controller in an attempt to solve the problem. See Figure 4. 

This architecture had the following characteristics: 

In this configuration, the UNIMATE controller was running VAL I1 [5] ,  [6 ] ,  and the Lord 

Gripper controller was running UNIX V. 

VAL I1 allows only position control and did not provide access to the controller hardware like 
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Figure 3: The Visual Task 
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FTT & TactileSensors Motors & Encoders 

PUMA 560 

Parallel (8 bits) 

CONTROLLER 

I 
Serial 

9600 bps VAL I1 
Supervisory 

Mode 

MicroVax 

ULTRIX 

Figure 4: Robot Control using VAL11 
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encoder values and DAC values, hindering modifications/inclusions/substitutions of control 

procedures. Hence, since VAL I1 did not provide force control to begin with, it was not 

possible to  have this control mode. 

The rate of force sensing at the gripper and the corresponding actuation by the manipulator, 

would take hundreds of milliseconds. The problem with large delays is that a small displace- 

ment of the manipulator may generate large forces/moments in the gripped structure/object. 

In this architecture, the robot controller is not able to check for forces in the end effector 

"during" the movement, but only at  the end of the requested move. 

The MicroVax is not able to know forces at the gripper, since the sending of data back 

from the UNIMATE controller would be impossible. Therefore, the MicroVax is not able to  

actually control the manipulatory action. 

Since all the control is performed by programs written in VAL 11, the programming environ- 

ment is very limited, and awkward. Therefore, gripper commands are sent over the 6-bit data 

parallel connection. This was system used by Tsikos [7]. 

As we could see, this organization was not adequate for our application. Therefore, an immediate 

improvement in the architecture was needed, and it is shown in Figure 5. 

It differs from the architecture depicted in Figure 4 only in the introduction of a serial com- 

munication line between the MicroVax and the the Lord Gripper Controller [8]. This serial line 

was added so that the gripper now could receive commands directly from, and send force/torque 

information to the MicroVax. A library of C routines was available in the MicroVax, that included 

commands such as grasp, read position, etc ... This architecture was still inadequate in two impor- 

tant aspects. First, even though it was possible now to control the gripper from the MicroVax, 

the limitations of VAL I1 still persisted. Therefore, it was still impossible to  monitor force/torque 

information from the gripper within the motion time. Second, the force/torque data throughput 

was slow due to the delay of two UNIX systems back to back (LORD Gripper controller and the 

MicroVax). 

The solution for the first problem prompted the controlling of the robot from the MicroVax as 

well. With RCI/RCCL [9], [lo] now available and running on the MicroVax, it was now feasible 

to control both the gripper and the robot from the MicroVax. In order to minimize the second 
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Table 1: VAL-I1 and RCIIRCCL contrasted 

FEATURES 

problem, the serial communication between the MicroVax and the Lord Gripper Controller was 

replaced by a 32 bits parallel communication port. The next architecture, that included these 

modifications is shown in Figure 6. 

As mentioned before, this architecture has the following main characteristics: 

r The serial connection between the LORD box and the MicroVax was replaced by a 32-bit 

parallel communication, 

Document ation 

VAL I1 

r VAL I1 was replaced by RCI/RCCL (Robot Control Interface Robot Control C Library) [lo] 

which enabled the y control the robot from MicroVax. We can summerize the pros and cons 

of VAL I1 versus RCI [ll]: 

RCI/RCCL 

The improvements achieved with these changes were not as much in communications speed as 

it was in flexibility and programmability of the overall system. In terms of speed, we still had the 

LORD Controller running UNIX and its device drivers. Since we did not have access to  the kernel's 

source code, any modifications of the servo code would not be viable. This was a major obstacle, 

since we wanted to implement "force control" at the gripper level. 

Based on this analysis, we designed our system, which is depicted in Figure 7. 
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Figure 6: Robot Control running RCIIRCCL 
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As it can be seen in Figure 7, the gripper controller is now a 286 based microcomputer running 

MS-DOS 3.3. The 286 machine was connected to the LORD Controller bus via an off-the-shelf 

PC-TO-VME bus interface from Bit 3 [12]. This bus interface allowed the VME bus on the Lord 

Controller to be mapped into the PC memory address space. The CPU board on the VME bus 

was removed, so that the PC would become the only bus master. This approach simplified greatly 

the implementation of this new system, since all current amplifiers, encoders interfaces, serial com- 

munication to the sensors, DACS and power supplies were the ones in the LORD Controller. This 

implied, however, in a new implementation for the gripper control software and sensors interface 

software. 

On the other hand the system is now more flexible, since modifications to the gripper control 

software were now a trivial task, involving only the recompilation of the servo routine, and not of an 

entire operating system's kernel. Also, the parallel communication would not suffer from latencies, 

making the access to the sensors7 data more predictable, which is indispensable for force control. 

In summary, this new organization has the advantage of being flexible, predictable, cheaper, 

faster than the previous ones. More than that, because of the guaranteed latency of the parallel 

input, we will be able to work with the manipulator/gripper system in "pseudo-force control" mode, 

that is, we are able to perform exploratory tasks based on force feedback from the gripper sensors, 

which was our goal in building the current system. 

4 HAPTIC EXPLORATORY PROCEDURES 

Exploratory Procedures Design 

We distinguish two categories of Exploratory Procedures, The first one which can extract the 

desired property just by using the handlgripper and its built-in sensors. The second one, which 

needs some extension of the capabilities of the hand by using another tool. 

4.1 Exploratory Procedures using only the handlgripper 

Every such Exploratory Procedure has at least three tasks that translate into commands: 

1. Reach to  the object/surface. This is position controlled, point to point path movement, carried 

out in cartesian coordinate system. The desired position is either a priori given or determined 
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by vision system. 

2. Make static contact. In this command we depend on the contact sensory feedback that 

indicates the the task (contact in this case) has been accomplished. 

3. Carry out the particular Exploratory Procedure. 

What follows is an elaboration of the second task for particular EPs. 

Hardness 

There are two ways how one can implement this EP: 

1. By pressing. This is possible if the mechanical hand can extend its fingers so that the can 

press the surface. This has been reported by Stansfield [13]. 

2. By squeezing. This is when the hand will GRASP and then PRESS. 

In both cases the contact between the finger(s) and the surface must be such that the force 

exerted is normal to the surface. The control is force-feedback based. The outputs are : Force and 

displacement. The range of measurable hardness properties is given by: the sensitivity of the force 

and displacement value at one end, and either the maximum load that the robot can withstand 

without breaking down or the maximum force applied to the material without crashing it. 

A question remains on how to determine the breaking point of the material; perhaps in absence 

of actually breaking the material by the use of some a priori knowledge about materials, like a 

handbook of materials. Hardness, however , depends also on the form factor of the object, so that 

the breaking point will have to be normalized with respect to the sizelshape which in turn can be 

measured from vision (non-contact measurement). 

There are two dimensions that we get as the output properties: soft-to-hard materials plastic to  

elastic materials. The soft to hard dimension is obtained by varying the reactive forces of the ma- 

terial under constant displacement (assume that sizes are the same for all samples). The dimension 

of plastic to elastic can be obtained by applying constant force and observing the displacement and 

its recoverability after removal of the force. Again we assume the same geometry for all samples. 
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Weight 

The weight EP is composed of two parts: 

1. Grasp the object. During the Grasping operation one needs to monitor the Grasping forces 

which must be equal in the opposing fingers. The magnitude is determined by the hardness 

EP. 

2. Lift the object. If the lifting motion is carried out only as parallel to  the force of gravity 

then the control is based on force feedback measured at the wrist. Simultaneously, the forces 

and tactile sensors on the fingers need to be monitored to prevent slip. The output is the 

force readout. 

The derived entity from weight is the density of the material. This can be obtained by measuring 

in addition the geometry of the object. 

4.2 Exploratory Procedures Using Tools 

The second category of Exploratory Procedures is the one where the hand uses another tool in 

order to obtain the desired measurement. We consider two such EPs: One is to extract hardness 

by using a tool to  be grasped by the gripper such as a rod, and the other would be to  measure the 

material's t thermo-diffusivity by applying a the thermo-diffusivity sensor grasped by the gripper. 

Both of these EPs have one additional step, which is to grasp the adequate tool, before one can 

perform the actual exploration. 

Hardness 

Extracting the hardness by means of the rod is basically the same as extraction hardness by using 

direct gripper pressure. The only difference is that the gripper will not be pressing the object 

directly, but through the rod. The other parameters of this EP are then the same as those of 

hardness using direct gripper pressure. 

Thermal Diffusivity 

Thermal-diffusivity of a material can be obtained by making maximal contact of the probe with 

surface of the object. This EP is force feedback controlled (move until contact) and the output is 



5 CONCL USIONS 

temperature variation over time. 

We plan to test each of the above EP's in a series of systematic experiments. For example: 

hardness will be tested by taking several objects made out of different materials such as wood, 

steel, copper, etc ... but with the same geometric properties (shape and dimensions). The results 

we are anticipating are families of curves for the tested objects (materials): soft-to-hard plastic to 

elastic. We then wish to  take samples of several thickness from the different materials and obtain 

similar curves. These curves will be calibration curves for classifying materials with respect to  

hardness and deformability. A similar procedure will be also carried out for thermal diffusivity. 

Finally weight will also measured for different materials/sizes. 

4.3 Integration of Properties 

The studies on human subjects suggest that while a given EP is being carried out, other properties 

are obtained like in the case of grasping, hardness, texture and global shape can also be obtained 

[14]. However the sensitivity or resolution of these other properties is low when compared with 

when they are the primary EP being invoked. The question that we expect to  answer here is 

whether this is the case for robotic systems. From the classification curves, we suspect we should 

be able to predict this unless the current grasping force does not belong to the set of grasping forces 

existent in the curves of rigid vs. elastic/plastic. The grasping force (if we neglect slip) wlll clearly 

be different when two handed grasp is performed. On the other hand the discrimination between 

objects based on small differences in all dimensions or bigger differences in a given dimension is an 

open question. 

5 Conclusions 

The objective of the system we have described is to support the task that is to  explore the unknown 

environment with the purpose of manipulation and mobility. The Task is decomposed in to  Haptic 

and Visual subtasks, that these must interact. In section 3. we have described an evolution of the 

architecture that allows us to carry out the Tasks and subtasks listed in section 4. In section 4. 

we have outlined some of the features that the Haptic and Visual subsystem must extract from the 

environment. The main features of the implemented architecture are: 
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1. A flexible programming environment for interaction between sensing and actuation, 

2. A high throughput inter-module communication necessary for dynamic exploration. 

We wish t o  study how potent vision is in the haptic/vision cooperation scenario. To do so we 

can measure the extra steps that the haptic task takes as visual information degrades. One example 

of such degradation is that one reduces spatial resolution of the visual information up to  the point 

where only the center of gravity is known. 
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