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Abstract— This article proposes an algebraic method to fault
diagnosis for uncertain linear systems. The main advantage
of this new approach is to realize fault diagnosis only from
knowledge of input and output measurements without identi-
fying explicitly model parameters. Using tools and results of
algebraic identification and pseudospectra analysis, the issues
of robustness of the proposed approach compared to the
model order and noise measurement are examined. Numerical
examples are provided and discussed to illustrate the efficiency
of the proposed fault diagnosis method.

I. INTRODUCTION

Fault diagnosis methods include some actions imple-

mented in order to detect, isolate and identify any abnormal

phenomenon on a system.

In [3], [7] and references therein the classical approaches

using analytical information are depicted. They allow robust

fault diagnosis in the presence of unknown entries and

parametric uncertainties. These methods depend not only

on structural knowledge of the system, but also require

knowledge of system parameters that can be more or less

accurate.

The algebraic approach to fault diagnosis presented in [11]

deals with actuator and sensor additive faults and requires

only the knowledge of the system order. This article is

devoted to analyse the robustness of this approach with

respect to the model order and measurement noises.

Throughout the paper, we adopt a distributional formula-

tion, as in [1]. It permits us to obtain explicit expressions in

time domain, for the development of the approach.

The paper is organized as follows. In section 2, we fix

some notations used in this paper. Different assumptions on

the system structure and the fault signal structures are needed

to solve the fault diagnosis problem. Section 3 is devoted to

the outline of the approach discussed in this paper. In section

4, the question of the robustness, with respect to system

order, is addressed. Finally, the question of the robustness,

with respect to measurement noise, is the object of section

5 before the conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION

In order to better understand the aim of this paper, let us
begin with recall the outline of the proposed approach in
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[11]. This approach is performed in a distributional frame-
work using usual definitions and basic properties described
in [12]. First, recall some definitions and results from the
distribution theory and fix the notations we shall use in the
sequel. Let f be a locally measurable function on an open
set of R denoted by K. We define the regular distribution
Tf , for all smooth functions φ with compact support in K,
by

< Tf , φ >=

∫

f(τ )φ(τ )dτ

Derivation, delay and integration can be formed from the
convolution product y(1) = δ(1) ⋆ y, y(t − τ) = δτ ⋆ y,
∫ t

0 y(τ)dτ = H ⋆ y and more generally

∫ t

0

· · ·

∫

︸ ︷︷ ︸

p times

y(τ )dτp = H ⋆ · · · ⋆ H
︸ ︷︷ ︸

p times

⋆y = H
⋆p

⋆ y

where δ is Dirac distribution, δτ is Dirac distribution

with delay τ and H is the unit step function (Heaviside

distribution). The distribution theory extends the concept

of derivation to all integrable functions. If function f is

continuous except at point x with a finite jump sx, the

associated distribution derivative is given by Ṫf = ḟ − sxδx,

where ḟ is the usual derivative of function f (defined over

R r {x}). The next Theorem [12] is the main result from

which the proposed fault diagnosis algorithm is developed.

Theorem 2.1: If a distribution T has a compact support

Supp(T ) and a finite order m, the product φT = 0 whenever

the smooth function φ and all its derivatives of order ≤ m

vanish on Supp(T ).

According to this theorem, it follows tkδ(n) = 0 ∀k > n

because the support and order of Dirac δn are {0} and n

respectively and dn

dtn
[tk]t=0 = 0 ∀k > n. For k ≤ n, we

obtain

tkδ(n) = (−1)k
n!

(n− k)!
δ(n− k) (1)

The systems under consideration are those whose control

signal ur(t) and output signal yr(t) satisfy a differential

equation described by

{

ẋ(t) = Ax(t) +Bur(t), x(t0) = x0

yr(t) = Cx(t) +Dur(t)
(2)

where x ∈ R
n, ur ∈ R

nu and yr ∈ R
ny are respectively the

state vector, vector of real inputs (the actuator outputs) and

the vector of real outputs provided by the system. System

matrices A, B, C, D and initial condition x0 are unknown

a priori.
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The system (2) can be brought, in distributional frame-

work, into a set of MISO (multi inputs single output) models

P ⋆ yrj −

nu
∑

i=1

hji ⋆ uri = φj : j = 1, · · · , ny (3)

where P and hji are differential polynomial functions given

by

P = anδ
(n) + an−1δ

(n−1) + · · ·+ a0δ (4a)

hji = bjin δ
(n) + b

ji
n−1δ

(n−1) + · · ·+ b
ji
0 δ (4b)

with scalars ak, b
ji
k related to the system parameters, φj a

linear combination of Dirac distribution derivatives of order

less or equal than n − 1 containing the contribution of the

initial conditions.

In the presence of actuator faults and sensor faults modeled

respectively by causal functions fai
(i = 1, · · · , nu) and fsj

(j = 1, · · · , ny), then the control input u(t) computed by the

controller and the measured output y(t) are given in terms

of real variables and fault signals as follows :

uri = ui + fai
, i = 1, · · · , nu (5a)

yrj = yj − fsj , j = 1, · · · , ny (5b)

The faulty system is then modeled by

P ⋆ yj −

nu
∑

i=1

hji ⋆ ui = P ⋆ fsj +

nu
∑

i=1

hji ⋆ fai
+ φj (6)

j = 1, · · · , ny

We deal with fault signals modeled by structured functions

[5]. The main fault signals found in literature (abrupt, ramp,

intermittent faults) can be modeled as structured signals [7].

If faults fai
and fsj are structured, then there exists two

differential polynomials Γai
and Γsj such that

Γai
fai

= Γsjfsj = 0 (7)

For example the delayed Dirac δτ and the delayed Heaviside

step function H(t− τ) are structured and

[t− τ ]δτ = [(t− τ)
d

dt
]H(t− τ) = 0 (8)

III. FAULT DIAGNOSIS

Consider the simple case where the fault to be detected is

a bias on the actuator λ, then

faλ
= laλ

H(t− τaλ
) (9)

where τaλ
denoted the time occurrence and laλ

the magni-

tude of the bias fault. We have

hj,λ⋆faλ
= laλ

[bnδ
(n−1)
τaλ

+· · ·+b1δτaλ
+b0H(t−τaλ

)] (10)

where bi = b
j,λ
i , i = 0, · · · , n.

According to theorem (2.1), we obtain the equalities

[(t− τaλ
)n+1 d

dt
]hj,λ ⋆ faλ

= 0 and tnφj = 0 (11)

The faulty system is given by (6) by setting fsj = 0 and

fai
= 0 if i 6= λ :

P⋆yj−

nu
∑

i=1

hj,i⋆ui = hj,λ⋆faλ
+φj : j = 1, · · · , ny (12)

To eliminate the singularities appearing in the faulty model,

let us just multiply equation (12) by

Γ = tn+1(t− τaλ
)n+1 d

dt
(13)

which can be rewritten as follows

Γ = βn+2Γn+2 − βn+1Γn+1 − · · · − β1Γ1 (14)

where

Γk = tn+k d

dt
(15a)

βk = −(−τaλ
)n+2−k (n+ 1)!

(k − 1)!(n+ 2− k)!
(15b)

k = 1, · · · , n+ 2
The multiplication of (12) by Γ provides the equalities

Γ[P ⋆ yj −

nu
∑

i=1

hji ⋆ ui] = 0 : j = 1, · · · , ny (16)

For t ≤ τaλ
, equality (16) is satisfied in spite of τaλ

(τaλ
is

not identifiable before fault occurrence) because, in this case

tn+1[P ⋆ yj −

nu
∑

i=1

hji ⋆ ui] = 0 : j = 1, · · · , ny (17)

However, for t > τaλ
, application of successive integrations

allows to generate m redundancy relations wich can be

rearranged to obtain the spectral equality on which the

diagnosis task will be based

[Aj,n+2 − βn+1Aj,n+1 − ...− β1Aj,1]X = 0 (18)

where the line µ of matrix Aj,ν ∈ R
m×(n+1)(nu+1) (com-

pletely defined according to measured signals u and y) and

vector X are respectively given by
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(19)

By taking p ≥ n+ 1, integrations ensure the elimination of

all derivatives (numerically less robust than integrations).

Then parameter βi (i = 1, ..., n + 1) can be estimated

by computing the generalised eigenvalues of a couple of
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matrices (BAj,n+2, BAj,i) where B is a non-zero matrix

verifying :

BAj,n+2 6= 0 and BAj,k = 0, ∀k 6= i (20)

The computation of this matrix B can be achieved by QR

factorization. To proceed like that, just take the number of

redundancy relations m > n(n + 1)(nu + 1). The matrices

couple (BAj,n+2, BAj,i) has more than one generalised

eigenvalue. When the fault occurs, one of these generalised

eigenvalues becomes stationary. After estimating components

of vector β, we may, according to them, estimate τaλ
. For

example, by means of (15b) we have

τaλ
=
βn+1

n+ 1
(21)

which can be estimated also as generalised eigenvalue of

the matrices couple (BAj,n+2, (n + 1)BAj,n+1) where the

nonzero matrix B verified conditions (20) with i = n + 1.

Note θ the associated generalised eigenvector, normalized

with θ(nu−λ+1)(n+1)+1 = 1. Thanks to (1), (9) and (12) we

obtain the equality

[tn+1(t−τaλ
)n
d

dt
][P⋆yj−

nu
∑

i=1

hji⋆ui] = ±bλ,nlaλ
τn+1
aλ

n!δτaλ

(22)

The estimation of laλ
can be achieved, based on (22) and

τaλ
estimation, by

p!

[Aj,n+1(:, 1) +
n−1
∑

k=0

Cn
k (−τaλ

)Aj,k+1(:, 1)]θ

τn+1
aλ

n!(t− τaλ
)p

(23)

In this equality as in the following, if it does not confusion,

we use the same notations for exact values and estimates.

Like any diagnosis algorithm, the decision is based on the

time evolution of estimates. Fault faλ
is detected and iso-

lated when estimates of τaλ
and laλ

simultaneously become

stationary. Let consider the case n = 2, nu = 1 and ny = 2.

The corresponding spectral equalities are

[A1,4 − 3τaλ
A1,3 + 3τ2aλ

A1,2 − τ3aλ
A1,1]X = 0 (24a)

[A2,4 − 3τaλ
A2,3 + 3τ2aλ

A2,2 − τ3aλ
A2,1]X = 0 (24b)

rewritten as
[

[

A1,4 −3A1,3

]

− τ2aλ

[

−3A1,2 A1,1

]

]

Θ = 0
[

[

A2,4 −3A2,3

]

− τ2aλ

[

−3A2,2 A2,1

]

]

Θ = 0

where Θ =
[

XT τaλ
XT

]T
.

τ2aλ
is estimated as a generalised eigenvalue of matrices

couples

([ A1,4 −3A1,3 ], [ −3A1,2 A1,1 ]) (25)

and

([ A2,4 −3A2,3 ], [ −3A2,2 A2,1 ]) (26)

Figures (1) and (2) illustrate graphically the simulation

results in noise-free case. The loop is closed according a

PI controller. The actuator fault occurs at time τa1
= 1 and

is characterized by constant magnitude la1
= −0.8 on the

actuator. When the estimated quantities are outliers, that is

to say clearly far from the stationarity (e. g. fluctuations),

we consider that fault has not occurred and set the values

estimated at zero. As we can see on figures (2(a)) and (2(b)),

independently of the output considered, the simulated fault

is well detected since the estimates of τaλ
and laλ

become

stationary just after the fault occurrence, around the exact

values.

0 1 2 3 4 5
0

1

2

(a) Control input

0 1 2 3 4 5
0

1

2

3

4

5

y
1

y
2

(b) Output

Fig. 1. System with two outputs and one input, in presence of an actuator
bias
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(a) τa1
(top) and la1

(down) deduced from y1
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0

1

2

0 1 2 3 4 5
−1

−0.8

0

0.5

τ
a

l
a

(b) τa1
(top) and la1

(down) deduced from y2

Fig. 2. Temporal evolution of estimates

Note that, based on temporal evolution of τaλ
estimation,

we can define a residual signal as in classical approaches as

follows :

r(t) =

{

1 if τ̇aλ
= 0 and τaλ

6= 0

0 otherwise
(27)
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This signal is zero when there is no fault and it is equal to

1 when a fault occurs.

The above algorithm can be applied for all types of faults

modelled by structured signals.

The case of sensor faults can be treated identically to the

case of actuator faults. However, in contrast of the case of

actuator faults, a sensor fault fsj detection is accomplished

from yj only. This makes easier the isolation of the faulty

sensor.

In the following, without loss of generality, we focus

our study on single input single output systems modeled

by differential equations of order n given in distributional

framework by

any
(n) + · · ·+ a0y = φ0 + bu (28)

where φ0 contains contribution of initial conditions.

The approach presented in this section is developed under

the assumption that the exact order of the system is known

and that no noise corrupt the signals. Before reviewing the

questions of robustness, with respect to the model order and

measurement noises, the proposed approach is extended in

the next section in order to take into account some a priori

information.

IV. ROBUSTNESS WITH RESPECT TO SYSTEM ORDER

One of the most important parameters useful to apply

the algorithm developed in section (III) is the order of the

system. This section is devoted to the study of the algorithm

behavior in the case of system over-modeling or system

under-modeling of the considered system. Note that many

methods are available in system identification framework to

determine the system order [8].

Let N be the real order of the system under consideration

and n the order of the associate model. Under the assumption

of the occurrence of an actuator fault fa and a sensor fault

fs, the faulty system (
∑

) and model (M ) can be represented

as

(
∑

) : αNy
(N) + · · ·+ α0y = βu+ ψ0

+ βfa + αNf
(N)
s + ...+ α0fs (29)

(M) : any
(n) + · · ·+ a0y = bu+ φ0 + E

+ bfa + anf
(n)
s + ...+ a0fs (30)

Initial conditions are included in ψ0 and φ0 which are

distributions [12] with common support {0} and order,

respectively, N − 1 and n− 1.

ψ0 =

N
∑

k=1

αk

k−1
∑

i=0

y(i)(0)δ(k−i−1) (31)

φ0 =

n
∑

k=1

ak

k−1
∑

i=0

y(i)(0)δ(k−i−1) (32)

E contains modeling error such that (29) and (30) are

consistent.

A. Over-modeling

In the case of an exact modeling (n = N and E = 0),

we obtain an efficient algorithm to diagnose actuator and

sensor faults. The same performance can be expected when

the model order n is greater than system order N (over-

modeling). Indeed, in this case, it is easy to see that

• the modeling error E is zero,

• the annihilator of φ0, fa and f
(n)
s (in (30)) cancels also

the terms ψ0, fa and f
(N)
s (in (29)),

• estimates of aN ,...,a0 and b given by the approach are

exactly the estimates of the system parameters αN ,...,α0

and β respectively.

Thus the steps of the proposed approach led to a problem

of type (18). In order to illustrate this, let us consider a first

order input-output system. A second order model is used to

detect and identify an actuator fault modeled by fa(t) =
H(t − 1). The faulty system (

∑

) and model (M ) can be

represented as

(
∑

) : α1y
(1) + α0y = βu+ α1y(0)δ + βH(t− τa)

(M) : a2y
(2) + a1y

(1) + a0y = bu+ a2y(0)δ̇ +

(a2ẏ(0) + a1y(0))δ + bH(t− τa)

The estimation of τa (fault occurrence time) and la (magni-

tude), based on model (33), is represented on figure (3).

0 1 2 3 4 5

1  

1.5

1 2 3 4 5
−0.5

0

0.8

1

Fig. 3. estimation of τa (top) and la (down)

B. Under-modeling

When the order of the system is under estimated, i.e N >

n, the associated equation (18) does not hold. Instead, we

will have rather

[Ak − βk−1Ak−1 − ...− β1A1]X = R 6= 0 (33)

The jth element (j = 1, ...,m) of residual vector R is given
by

N∑

k=n+1

αk

∫ t

0
...

∫

︸ ︷︷ ︸

p+j times

Γ
(

(−y+fs)
(k)+

k−(n+1)
∑

i=0

y(i)(0)δ(k−1−i)
)

dτp+j

(34)

Indeed, annihilator Γ of φ0, fa and f
(n)
s (in (30)) satisfies

Γf (i)
s = 0, ∀i ≤ n and Γψ0 =

N
∑

k=n+1

k−(n+1)
∑

i=0

y(i)(0)δ(k−1−i)
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The residual vector is function of some initial conditions

and derivatives of high order of y and fs (in the case of

sensor fault). When the difference of order is important, or

when the parameters of high indices, appearing in (34) are

not negligible compared to the parameters of low indices,

then the proposed method may not identify the fault. These

remarks are illustrated through figures (4) and (5). The first

one is obtained with the system

0.3ÿ + 4.2ẏ + 9y = 9u

and the second one with

4ÿ + 4.2ẏ + 9y = 9u

These systems are characterized by the same static gain

(equal to 1) and poles (−2.64 ; −11.35) and (−0.52+1.4i ;

−0.52−1.4i) respectively. Both are corrupted by an actuator

fault fa = −H(t − 1.5). Using a first order model, we see

on figure (4) that the estimates do not become stationary, but

fluctuate around the true values, contrary to the case of over-

modeling. Nevertheless, because of their low fluctuations,

we can conclude to the occurrence of an actuator fault with

magnitude (constant) la ≃ −1 at time τa ≃ 1.5.

On the other side, as we can see on figure (5) none of

the generalised eigenvalues obtained with 1st order model

admits a behavior close to the stationarity. These results are

not useful to conclude to the occurrence or not of a fault.

0 1.5 2 3 4 5
0

0.5

1

1.5

2

0 1.5 2 3 4 5
−1.5

−1

−0.5

0

Fig. 4. Estimation of τa (top) and la (down) obtained with model 0.3ÿ+
4.2ẏ + 9y = 9u

0 1 2 3 4 5 6

1.5

3  

Fig. 5. Temporal evolution of all generalised eigenvalues obtained with
model 4ÿ + 4.2ẏ + 9y = 9u

Given the results of the study in this section, it is of interest

to consider a higher order (but not too at risk of obtaining

sparse matrices) to generate signals on which faults diagnosis

is based.

V. ROBUSTNESS WITH RESPECT TO MEASUREMENT

NOISES

The question of robustness of the proposed approach with

respect to high frequency measurement noises is addressed

in this section.

In addition to faults fa and fs, measurement y is assumed

to be corrupted by an unstructured perturbation noted π. The

generation of redundancy relations leads to

[(Ak−∆Ak)−βk−1(Ak−1−∆Ak−1)−...−β1(A1−∆A1)]X = 0
(35)

where matrices Ai are expressed in terms of known signals

u and y, while matrices ∆Ai are linked to perturbation π.

The robustness analysis is based on

• the analysis of the filters generating elements of matri-

ces Ai and

• the properties of pseudospectra of matrix pencil A2 −
λA1 noted Λ(A2, A1).

Studies of these two points are made in sections below.

A. Analysis of the filters generating matrices Ai

By considering annihilator Γ from which we obtained

equation (18) and based on properties

1) (Cauchy)
∫ t

0
...
∫

f(τ)dτp =
∫ t

0
(t−τ)p−1

(p−1)! f(τ)dτ

2) tkδ(n) =
∑inf(k,n)

j=0 Ck
j (−1)j n!

(n−j)! [t
k−jy](n−j)

3) (Newton) (t− τ)k =
∑k

j=0(−1)jCk
j t

k−jτ j

matrices Ai are reduced to the expression

Ai(j, µ) =

∫ t

0

fi,j,µ(t− τ)y(τ)dτ, µ = 1, ..., n+ 1

Ai(j, n+ 2) =

∫ t

0

gi,j(t− τ)u(τ)dτ

where fi,j,µ and gi,j are polynomial functions of appropriate

degrees and depending on the assumptions of the diagnosis

problem.

The transfer matrix between e =

[

u

y

]

and Ai(j, :),

considered as linear filter, has impulse response

h(t) =











0 fi,j,1(t)
...

...

0 fi,j,n+1(t)
gi,j(t) 0











(36)

This transfer matrix corresponds to a low-pass filter (accord-

ing to the polynomial form of fi,j,µ and gi,j), i.e. only low

frequencies pass and high frequencies (noise) are signifi-

cantly attenuated. One can find the performance evaluation of

this filter in discrete time domain in [6], where the authors

approximate the integral using a trapezoidal discretization

regularly spaced.

The choice of the annihilator Γ is not unique. We obtain

a filter of the same nature as previously by considering the

differential operator given for w ∈ R
+ by

Γexp = e−wtΓ

The development of the proposed approach is not based on

statistical-noise properties. When a priori knowledge of these

properties is available, it can be taken into account to choose

filter parameters (fi,j,1, gi,j , w, · · · ) in order to improve the

robustness with respect to measurement noises.
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B. ǫ-pseudospectra of matrix pencils A− λB

The steps of our approach lead to a study of generalized

eigenvalue of a couple of matrices (A,B). In practice, the

elements of these matrices are obtained by measurements,

thus corrupted by error :

A = Ã+ ǫ∆A, B = B̃ + ǫ∆B (37)

where matrices A and B are expressed in terms of input

signal u and output signal y, while matrices ∆A and ∆B
are linked to perturbation (or noise). In such situations, quan-

titative information obtained from only the spectra analysis

of the matrices couple (A, B) may be false. Also, note

that traditional methods of solving generalized eigenvalues

problem do not often give a solution. The robustness analysis

can also be based on the properties of ǫ-pseudospectra of

matrix pencils A− λB ([2] and [13]).

For two matrices A and B in R
m×n, λ is said to be a ǫ-

pseudo eigenvalue of the matrices couple (A,B), if it exists

a vector ν 6= 0 (the associating pseudo eigenvector) such that

||(A− λB)ν|| ≤ ǫ (38)

The set of ǫ-eigenvalues of (A,B) is called ǫ-pseudospectra

of (A,B) and it is noted Λǫ(A,B). When the norm in (38)

is the Euclidean norm, then

Λǫ(A,B) = {λ ∈ R : σmin(A− λB) ≤ ǫ} (39)

where σmin(M) means the smallest singular value of matrix

M .

Let consider again the example of a bias diagnosis on a 1st

order system. The input and output signals are represented

on figures (6) and (7). A centered gaussian white noise with

variance 0.01 is added to the output y before generating the

two matrices A2 and A1. The input u is also corrupted by

the noise since the system is simulated in closed-loop using

a PI controller. Figure (8) shows the graphical results of the

estimations (of τa and la) given by the proposed algorithms.
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Fig. 6. Input signal u
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Fig. 7. Output signal y

Analysis of these figures confirms the robustness of the

proposed approach regarding to additive noise with rapid

fluctuations. One can find in [4], [9] and [10] other theo-

retical reasons explaining the robustness to noise.
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Fig. 8. Temporal evolution of τa (top) and la (down) estimations obtained

with Γexp = [e−0.3tt3 d
dt
]− τa[e−0.3tt2 d

dt
]

VI. CONCLUSION

This paper has dealt with an algebraic approach to fault

diagnosis as part of a new deterministic theory of estimation,

based the functional calculus. We focus our study on the

diagnosis of actuator and sensor faults in a class of uncertain

linear continuous dynamic systems. Algorithms for detection,

isolation and identification of faults are based on structural

properties of the system and fault signals. The main advan-

tage of this approach is that the system parameters can be

unknown and we do not need to estimate them explicitly.

Simulation results show that the proposed approach gives

good results for fault diagnosis of uncertain linear systems.

Because of the cancellation of the contribution of initial con-

ditions and quick computations (due to explicit expressions),

a local diagnosis can be made possible. This would also allow

to extend the approach to systems evolving slowly over time.

The analysis of robustness respect to the structure of faults

will be future work.
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