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Abstract
This paper proposes a novel and robust approach to the point set registration problem in the presence
of large amounts of noise and outliers. Each of the point sets is represented by a mixture of Gaussians
and the point set registration is treated as a problem of aligning the two mixtures. We derive a closed-
form expression for the L2 distance between two Gaussian mixtures, which in turn leads to a
computationally efficient registration algorithm. This new algorithm has an intuitive interpretation,
is simple to implement and exhibits inherent statistical robustness. Experimental results indicate that
our algorithm achieves very good performance in terms of both robustness and accuracy.

1. Introduction
Point set representations of image data, e.g., feature points, are commonly used in many
applications and the problem of registering point-sets frequently arises in a variety of these
application domains. Extensive studies on the point set registration and related problems can
be found in a rich literature covering both theoretical and practical issues relating to computer
vision and pattern recognition.

Let M,the model set of size nM and S, the scene set of size nS be two point-sets belonging to a
finite-dimensional real vector space Rd. The task of point pattern matching or point-set
registration is either to establish a consistent point-to-point correspondence between two sets
or to recover the spatial transformation which yields the best alignment.

The iterative closest point (ICP) algorithm is one of most common approaches to feature-based
image registration and shape matching problem because of its simplicity and performance.
Nonetheless, it has its own limitations. The non-differentiable cost function associated with
ICP introduces the local convergence problem which requires sufficient overlap between the
data-sets and a close initialization. Also, a naive implementation of ICP is know to be prone
to outliers which prompted several more robust variations [1,2]. Another elegant method is the
partial Hausdorff distance registration [3] which incorporates an underlying robust mechanism
similar to the least median of squares (LMedS) technique in robust regression. However, its
dependence on a single critical point makes it sensitive to noise and the max of the min approach
in the definition is not suitable for performing numerical optimization.

Several significant articles on robust and non-rigid point set matching have been published by
Rangaranjan and collaborators [4,5,6]. The main strength of their work is the ability to jointly
determine the correspondences and non-rigid transformation between two point sets using
deterministic annealing and soft-assign. However, in their work, the stability of the registration
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result is not guaranteed in the case of data with outliers, and hence a good stopping criterion
is required. Other related work reported in literature includes [7] where the outliers need to be
excluded from the shape context computation.

Another interesting class involves methods that align two point sets without establishing the
explicit point correspondence, and thus achieve more robustness to the missing
correspondences and outliers. The idea is to model each of the two point sets by a kernel density
function and then quantify the (dis)similarity between them using an information-theoretic
measure. This (dis)similarity is optimized over a space of coordinate transformations yielding
the desired transformation. For instance, Tsin and Kanade [8] propose a kernel correlation
based point set registration approach where the cost function is proportional to the correlation
of two kernel density estimates. In this paper, we present a method that belongs to the
aforementioned class of approaches. We will present the relationship and differences between
ours and others’ methods in the next section. The main contributions of our paper are: (i) We
suggest the idea of using Gaussian mixture models as a natural and simple way to represent
the given point sets. Then, we treat the problem of point set registration as that of aligning two
Gaussian mixtures. Interestingly, it turns out that both the iterative closest point (ICP) method
[9] and the kernel correlation-based (KC) approach [8] can be interpreted in this framework.
(ii) A closed-form expression for the L2 distance between two Gaussian mixtures is derived,
which in turn leads to a computationally efficient registration algorithm. Our new registration
algorithm has an intuitive interpretation, is simple to implement and exhibits inherent statistical
robustness.

Rest of this paper is organized as follows: in Section 2, we present the main idea of matching
point sets using a mixture model representation and show the relationship with ICP and KC
methods. Section 3 describes the registration algorithms for rigid and non-rigid
transformations. Experimental results with both synthetic data and real data as well as
comparisons with other methods are presented in section 4. Finally, conclusions are drawn in
Section 5.

2. Mixture Models & Point Matching
The main idea of our technique is, to measure the similarity between two finite point sets by
considering their continuous approximations. In this context, one can relate a point set to a
probability density function. Considering the point set as a collection of Dirac Delta functions,
it is natural to think of a finite mixture model as representation of a point set. As the most
frequently used mixture model, a Gaussian mixture is defined as a convex combination of
Gaussian component densities ϕ(x|μi,Σi), where μi is the mean vector and Σi is the covariance
matrix. The probability density function is explicitly given as  where
wi are weights associated with the components. If the number of components, k, is quite large,
then almost any density may be well approximated by this model. In this paper, we use the
Gaussian mixture model to represent the point set explicitly. In a simplified setting, the number
of components is the number of the points in the set. And for each component, the mean vector
is given by the location of each point. Without prior information, we can assume each
component has same weight and each Gaussian is spherical i.e. the covariance is proportional
to identity matrix. If the the orientation and anisotropy information are available, the shape and
orientation of the covariance matrix can be determined accordingly. For example, when the
point set is acquired from an intensity image, additional information can be obtained from the
gradient vectors. For a dense point cloud, a mixture model-based clustering or grouping may
be performed as a preprocessing procedure.

Recent work on point matching using Gaussian mixture models has been proposed by Chui
and Rangarajan [10]; they choose one sparsely distributed point-set as the template density
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modeled by a Gaussian mixture and treat another relatively dense point-set as sample data.
Then the point matching is re-interpreted as a mixture density estimation problem and solved
in an EM-like fashion. Instead of the asymmetric point matching case in [10], we treat the
problem using mixtures in a symmetrical manner. In this way, the two point-sets, model and
scene, are represented by two mixtures of Gaussians. Intuitively, if these two point sets are
aligned properly enough, the two resulting mixtures should be statistically similar to each other.
Consequently, this raises the key problem: How to measure the similarity/closeness between
two Gaussian mixtures?

2.1. L2 Distance between Gaussian Mixtures
Many measures have been proposed to quantify the similarity between two arbitrary probability
distributions. Here we suggest the L2 distance for measuring similarity between Gaussian
mixtures because: (1) The L2 distance is strongly related to the inherently robust estimator
L2E [11]; (2) There is a closed-form expression for the L2 distance between Gaussian mixtures,
which in turn permits efficient implementation of the registration algorithm.

First, to show the robustness property of the L2 distance, we start with the density power
divergence, a family of divergence measures introduced in Basu et al. [12].

Density Power Divergence—Let f and g be density functions, define the divergence dα(f,
g) to be

(1)

In the case of α → 0, we have, d0(f, g) = limα→0 dα(f, g)= ∫ f(z)log{f(z)/g(z)} which gives the
well known Kullback-Leibler (KL) divergence. And the minimizer corresponds to maximum
likelihood estimation (MLE). On the [integraltext] other hand, when α = 1, the divergence
d1(f, g) = ∫ {f(z) — g(z)}2dz becomes exactly the L2 distance between the densities, and the
corresponding estimator is called L2E estimator. For general 0 < α < 1, the class of density
power divergences provides a smooth bridge between the KL divergence and the L2 distance.
Furthermore, this single parameter α controls the trade-off between robustness and asymptotic
efficiency of the parameter estimators which are the minimizers of this family of divergences.
The fact that the L2E is inherently superior to MLE in terms of robustness can be well explained
by viewing the minimum density power divergence estimators as a particular case of M-
estimators [13]. For in-depth discussion on this issue, we refer the reader to [11].

Next, one can easily derive the closed-form expression for the L2 distance between two
mixtures of Gaussians by noting the formula: ∫ ϕ(x|μ1, Σ1)ϕ(x|μ2, Σ2) dx = ϕ (0|μ1—μ2, Σ1 +
Σ2). We emphasize the fact that equation (1) does not have a closed form for 0 < α < 2 except
for the L2 distance at α = 1. Hence, this affords an advantage to the L2 distance since we do
not need the numerical integration or approximation which is a practical limitation not only in
computation time but also for obtaining sufficient accuracy to perform numerical optimization.

2.2. Related Work
In contrast to the closed-form expression for the L2 distance between mixtures, there is no such
one for the KL divergence between two Gaussian mixtures. In the context of image retrieval,
several approaches to approximate the KL-divergence between two mixtures of Gaussians have
been proposed. For instance, an approximation of KL between two mixtures densities was
suggested in [14] as follows :
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(2)

In the simplified version of a Gaussian mixture representation of a given point set, each
component is assumed to be a same spherical Gaussian centered at point location with same
weight, and the term minj(KL(fi ∥gj) corresponds to the minimum Euclidean distance from the
ith point in the set modeled by the mixture f to the point-set modeled by mixture g. Thus the
idea of minimizing the approximated KL divergence between two Gaussian mixtures bears
much resemblance to the popular ICP method [9].

It turns out that the kernel correlation (KC) based point set registration approach introduced
recently by Tsin and Kanade [8] also fits into this framework. In [8] a kernel correlation between
[integraltext] two points xi and xj is defined as KC(xi, xj) = ∫ K(x, xi)K(x, xj)dx where K(x,
xi) is a kernel function centered at the data point xi. Then a cost function which is computed
by summing up kernel correlations over all pairs between two point-sets is minimized to find
the best registration transformation. Actually, by using the Gaussian kernel and relating to the
kernel density estimates (KDE’s), their approach can also be re-interpreted in the mixture
model framework, in that the normalized version of kernel correlation is very similar to the

measure  which be can considered as a “correlation” between densities.
Similarly, a closed-form expression of this measure for Gaussian mixtures can be obtained.
However, in [8] a discrete version of correlation term is chosen to approximate the cost
function, which may affect the accuracy of registration results. Furthermore, their approach
does not allow the orientation and anisotropy information to be used even when they are
available. It is shown in [8] that the KC-based registration can be considered as a robust,
multiply-linked ICP. In independent work by Singh et al. [15], a very similar measure, termed
as kernel density correlation (KDC), is proposed for the purpose of registration and tracking.
They also prove the convergence of the resulting cost function. Not surprisingly, in the spirit
of density estimates, it is easy to see our method shares the same properties on robustness and
convergence with these kernel correlation based methods.

3. Matching Algorithms
Given a point set X = {xi}, one can explicitly construct a mixture of Gaussians

 as described early. Then the matching problem can be modeled as an
optimization problem with the objective function being a metric defined between two mixture
densities and the search space being a parameterized collection of spatial transformations.
Formally, given two finite size point sets, the model set M and the scene set S, our registration
method finds the parameter θ of a transformation T which minimizes the cost function ∫(P (S)
— P (T (M,θ)))2dx In the following, we first describe rigid and affine registration algorithms,
and then discuss the non-rigid extension.

3.1. Rigid and Affine Registration
A rigid transformation can be characterized by a rotation R and a translation t. Thus, given

two point sets modeled by  and , we find a
rotation matrix R and translation vector t which minimize the following distance
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(3)

where  is the transformed distribution. Note ∫ g2 does not
depend on transformation parameters . Furthermore, since the L2 norm of any probability

density function is an invariant under rigid transformation, i.e.  ,we only need to

consider the cross-term in (3) . One can see
that the approach of minimizing L2 distance is equivalent to that of minimizing the “correlation”
between densities described above in the rigid case.

Similarly, an affine transformation can be parameterized by a nonsingular d × d matrix A and
a translation t. In order to take the re-orientation of the covariance matrices into consideration,
it is more convenient to factorize A as A = QS by using polar decomposition. Here Q is an
orthogonal matrix and S is a symmetric positive definite matrix. Then, we have the following
cost function:

(4)

where . Here , but the L2 norm of a Gaussian
mixture is again given by a closed form which makes the computation very efficient. Note that
in both the rigid and affine transformation cases, if each Gaussian is assumed to be spherical,
then we do not need the re-orientation, which simplifies the computation further.

3.2 Non-rigid Registration
When the point sets differ by a non-rigid transform, the point set registration problem becomes
more challenging. Following the approach in [4], we choose the thin-plate spline (TPS) to
represent the non-rigid deformation.

Given n control points x1,…,xn in Rd, a general non-rigid mapping u : Rd → Rd represented
by thin-plate spline can be stated analytically as: u(x) = WU(x) + Ax + t Here Ax + t is the
linear part of u, The nonlinear part is governed by a d × n matrix, W. And U(x) is an n 1 vector
consisting of n basis functions Ui(x)= U(x, xi)= U(∥x—xi∥) where U(r) is the kernel function
of thin-plate spline. For example, if the dimension is 2 (d = 2) and the regularization functional
is defined on the second derivatives of u, we have U(r) = 1/(8π)r2ln(r).

Therefore, the cost function for non-rigid registration can be formulated as an energy functional
in a regularization framework. Specifically, we include two additive terms: the data term,
representing the L2 distance between target and transformed distributions, and the smoothness
term, governed by the bending energy of the thin-plate spline warping. Thus, we get the
following cost function:

(5)

where fu(x) is the distribution representing the transformed point set warped by u(x), the weight
parameter λ is a positive constant and the bending energy Bending(u) is explicitly given by
trace(WKWT ) where K = (Kij), Kij = U(pi,pj) describes the internal structure of the control
point sets. In our experiments, the model point set is used as control points. Other schemes to
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choose control points may also be considered. Note the linear part can be obtained by an initial
affine registration, then an optimization can be performed to find the parameter W. To achieve
a diffeomorphic non-rigid registration, one can use the velocity field [6] instead of the
displacements.

3.3 Numerical Implementation
Note the cost functions defined above are convex in the neighborhood of the optimal
registration and always differentiable. Moreover, the gradients with respect to transformation
parameters can be explicitly derived, permitting fast gradient-based numerical optimization
techniques like the Quasi-Newton method and the Conjugate-Gradient method. We currently
have two implementations of our registration algorithm using the Matlab Optimization toolbox:
one with gradients explicitly computed and one not. Experiments show that both versions work
efficiently and achieve quite accurate results in most cases. However results on datasets with
large non-rigid deformations show the version with gradients converges faster than the one
without gradients.

Another issue we need to consider is in the computation of our cost functions. In general, we
are faced with the problem of an evaluation of the sum of n Gaussians at m points in d-
dimensional space. The work required for a direct evaluation grows in O(nm), which makes
large-scale calculations expensive. Our observations show that when the number of points in
both sets is less than 200, the direct evaluation is sufficiently fast to get the quite good result.
However, if we have more than 300 points in both sets, the direct evaluation becomes
computationally expensive. In this case, a fast numerical scheme, like the fast Gauss Transform
[16] , can be used to overcome this obstacle.

4. Experiments
In this section we present some results on the application of our method to both synthetic and
real data sets.

4.1. Rigid Registration
First, to test the validity of our approach, we perform a set of exact rigid registration
experiments on both synthetic and real data sets without noise and outliers. Some examples
are shown in Figure 1. The top row shows the registration result on a 2D model containing 50
points randomly drawn from aregion [−100, 100] × [−100, 100] and its transformed version
after a 90° rotation. Top left frame contains two un-registered point sets superposed on each
other. Top right frame contains the same point sets after registration using our algorithm. A
3D example is presented in the middle row (with the same arrangement as the top row). In the
bottom row we show an example using a real range data set of a road, which was also used in
Tsin and Kanade’s experiments. After extensive registration experiments with our technique,
we observe a consistently zero error in a large range of rotations (from -120° to 120°) and
translations ([−40, 40] × [−40, 40]). We also tested the KC and the ICP methods, as expected,
both our method and the KC method exhibit a much wider convergence basin/range than the
ICP and both achieve very high accuracy in the noiseless case.

Next, to see how our method behaves in the presence of noise and outliers, we designed the
following procedure to generate corrupted template point set from a model set. For a model
set with n points, we control the degree of corruption by (1) discarding a subset of size (1 —
ρ)n from the model point set, (2) applying a rigid transformation (R,t) to the template, (3)
perturbing the points of the template with noise (of strength ∊), and (4) adding (τ — ρ)n spurious,
uniformly distributed points to the template. Thus, after corruption, a template point set will
have a total of τn points, of which only ρn correspond to points in the model set. Figure 2 shows
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some 2D results using our method. The model and scene points are represented by the ‘+’ and
‘o’ respectively in this figure. The arrangement is the same as before i.e., on the left is the
model and superimposed (unregistered) template; on the right is the registered data after
running our algorithm. We also display the L2-distance between mixtures representing the two
data sets after registration on top of each frame in the right column to indicate the precision of
registration. A 3D example is also presented in Figure 3.

Since ICP is known to be prone to outliers, we only compare our method with the more robust
KC method in terms of the sensitivity of noise and outliers. The comparison is done via a set
of 2D experiments. At each of several noise levels and outlier strengths, we generate five
models and six corrupted templates from each model for a total of 30 pairs at each noise and
outlier strength setting. For each pair, we use our algorithm and the KC method to estimate the
known rigid transformation which was partially responsible for the corruption. Results show
when the noise level is low, both KC and the presented method have strong resistance to
outliers. However, we observe that when the noise level is high, our method exhibits stronger
resistance to outliers than the KC method, as shown in Figure 4.

4.2. Nonrigid Registration
In this part, we present our experiment results on nonrigid registration. Figure 5 demonstrates
some results of our non-rigid point-set registration method applied to a set of 2D corpus
callosum slices with feature points manually extracted by human experts. Our non-rigid method
performs well on the presence of noise and outliers (Figure 5 right column). For purpose of
comparison, we also tested the TPS-RPM program provided in [4] on this data set, and found
that TPS-RPM can correctly register the pair without outliers (Figure 5 top left) but failed to
match the corrupted pair (Figure 5 top right).

5. Conclusions
Point set registration is a problem of pivotal importance that continues to attract considerable
interest. In this work, we present a novel probabilistic modelling framework for point set
registration which unifies some previous work in the field and exhibits better tolerance to
outliers and is more computationally efficient than competing methods. By modeling each of
the point set explicitly using a Gaussian mixture, we develop a robust and efficient registration
based on a closed form expression for the L2 distance between two Gaussian mixtures.
Experiments on both synthetic and real data demonstrate the merits of our method. In our future
work, we plan to study the applicability of mixture of distributions other than Gaussians and
incorporate a diffeomorphic matching of distributions.
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Figure 1.
Results of rigid registration in noiseless case. ‘+’ and ‘o’ indicate the model and scene points
respectively.
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Figure 2.
Tests on sensitivity to noise and outliers. From top to bottom in the left column: data with noise
only; data with outliers (ρ =0.9, τ =1.1) and small noise; data with outliers (ρ = 0.9, τ = 1.1)
and large noise; data corrupted by a large amount of outliers (ρ = 0.8, τ = 1.2). Right column
depicts registration obtained using our algorithm.
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Figure 3.
Robustness test on 3D bunny data. (a) bunny model with 427 points; (b) rotated model slightly
corrupted by outliers (look near the left eye); (c) transformed model by recovered rotation.
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Figure 4.
Robustness to outliers in the presence of large noise. Errors in estimated rigid transform vs.
proportion of outliers ((τ — ρ)/(ρ)) for both our method and KC method.
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Figure 5.
Nonrigid registration of corpus data. Top left: two manually segmented corpus callosum slices;
Top right: same slices with one corrupted by noise and outliers; Middle: slices after affine
registration; Bottom: slices after non-rigid registration.
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