
����������
�������

Citation: Rizk, H.; Elmogy, A.;

Yamaguchi, H. A Robust and

Accurate Indoor Localization Using

Learning-Based Fusion of Wi-Fi RTT

and RSSI. Sensors 2022, 22, 2700.

https://doi.org/10.3390/s22072700

Academic Editor: David Plets

Received: 24 February 2022

Accepted: 30 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Robust and Accurate Indoor Localization Using
Learning-Based Fusion of Wi-Fi RTT and RSSI

Hamada Rizk 1,2, Ahmed Elmogy 3,4,* and Hirozumi Yamaguchi 2

1 Computers & Control Engineering Deptartment, Tanta University, Tanta 31527, Egypt;
hamada_rizk@f-eng.tanta.edu.eg

2 Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan;
hamada_rizk,h-yamagu@ist.osaka-u.ac.jp

3 Faculty of Computer Engineering & Sciences, Prince Sattam Ibn Abdelaziz University,
Al-Kharj 16273, Saudi Arabia

4 Faculty of Engineering, Tanta University, Tanta 31527, Egypt
* Correspondence: a.elmogy@psau.edu.sa

Abstract: Great attention has been paid to indoor localization due to its wide range of associated
applications and services. Fingerprinting and time-based localization techniques are among the
most popular approaches in the field due to their promising performance. However, fingerprinting
techniques usually suffer from signal fluctuations and interference, which yields unstable local-
ization performance. On the other hand, the accuracy of time-based techniques is highly affected
by multipath propagation errors and non-line-of-sight transmissions. To combat these challenges,
this paper presents a hybrid deep-learning-based indoor localization system called RRLoc which
fuses fingerprinting and time-based techniques with a view of combining their advantages. RRLoc
leverages a novel approach for fusing received signal strength indication (RSSI) and round-trip time
(RTT) measurements and extracting high-level features using deep canonical correlation analysis. The
extracted features are then used in training a localization model for facilitating the location estimation
process. Different modules are incorporated to improve the deep model’s generalization against
overtraining and noise. The experimental results obtained at two different indoor environments show
that RRLoc improves localization accuracy by at least 267% and 496% compared to the state-of-the-art
fingerprinting and ranging-based-multilateration techniques, respectively.

Keywords: indoor localization; deep learning; fingerprinting; round-trip time; canonical correlation
analysis

1. Introduction

User location becomes one of the most valuable contexts in human-centric environ-
ments. This context can be used to enhance a wide range of applications and services
such as tracking, navigation, healthcare, emergency, etc. [1–3]. For instance, an improved
localization accuracy, which reduces emergency response time by one minute, saves over
10,000 lives annually in the USA alone [4]. Since people spend most of their time indoors,
immense attention has been paid to indoor localization. Despite the fact that GPS is the
standard localization system, it cannot be leveraged in indoor settings. This is due to
the high levels of signal interference and reflection [5] that block the line of sight to the
reference satellites. Therefore, indoor localization has been an active research topic to find
a ubiquitous and accurate alternatives to GPS in indoor settings [6–9].

Various technologies have been investigated, including Wi-Fi, radio frequency iden-
tification (RFID) , Bluetooth, ultrawideband (UWB), cellular, zigbee, IMU, etc. [10–13].
Each technology has its own advantages which support its adoption in specific types of
applications. Wi-Fi has been widely adopted due to its ubiquitous coverage and the support
of the IEEE 802.11 standard by the majority of mobile devices [8,14–22].
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Various localization techniques have been proposed to overcome the challenges related
to indoor localization. These techniques include multilateration, fingerprinting, angle of
arrival, and time-based techniques [23,24]. Fingerprinting and time-based techniques are
the most researched ones in the field. Fingerprinting [25–27] is widely adopted due to
its relatively good performance especially with deep learning. Fingerprinting technique
builds a fingerprint database that involve signatures of Wi-Fi signals collected at different
reference locations covering the area of interest. The fingerprint database is then used to de-
fine a model that can be used to estimate the user location, given the received signals at the
run-time. Specifically, the defined model can be classified as deterministic [3] or probabilis-
tic [28], or even as a machine-learning-based model [29]. Probabilistic solutions in general
have better ability to mitigate the inherent random noise of wireless signals compared
to deterministic solutions [24]. However, probabilistic solutions usually assume access
points (APs)-independency to avoid a dimensionality problem [30], which is practically
incorrect and also leads to information loss [24]. Therefore, deep learning has been widely
adopted to learn the underlying joint distribution of signals received from the installed
APs, leading to a superior localization performance. While many researchers have also
examined fingerprinting techniques as a solution for localization issues, these techniques
usually suffer from RSSI fluctuations and signal interference due to their sensitivity to
obstacles, multipath fading, and indoor radio noise and/or hardware.

To overcome the above fingerprinting challenges, time-based techniques have been
investigated. These techniques determine the distance of a mobile unit (e.g., phone) to APs
using the measurement of the signal’s propagation time and the known signal’s velocity.
Different approaches have been proposed for measuring the propagation time, including
time of arrival (ToA) [31,32], time difference of arrival (TDoA) [33], and RTT [34]. The
problem with ToA and TDoA is that they require a precise time synchronization of all
devices. In contrast, RTT uses one clock to measure the time needed for the signal to
travel to a destination node and return, and thus the synchronization problem is mitigated.
Unlike RSSI-based approaches, RTT is more resilient to the challenges of cluttered indoor
environments, including multipath interference, signal attenuation, transmission power
variation, and radio interference. The fine time measurement (FTM) protocol, which can
measure the RTT between the mobile phone and the APs, has recently been introduced by
the IEEE 802.11-2016 standard. This protocol has increasing support from commercial APs
and consumers’ mobile phones, making time-based techniques a promising solution for
enabling practical indoor localization.

Nevertheless, RTT does not eliminate the significant indoor localization errors due to
multipath propagation and latency as well as non-line-of-sight transmissions. Thus, signals
traverse longer indirect paths, resulting in longer travel distance estimation (distance
overestimation) [17]. To mitigate this issue, some solutions were proposed based on
map matching or filtering [34]. However, they only slightly improve the localization
performance [17].

In this paper, we present RRLoc: a hybrid fingerprinting-based indoor localization
system that combines the advantages of both RSSI-based and time-based techniques. Specif-
ically, the system constructs a fingerprint map of both RSSI and RTT at different discrete
reference points in the area of interest. Then, the fused fingerprints are utilized for training
a deep-learning-based classifier to track the user’s location.

This approach enables RRLoc to overcome the shortcomings associated with each
modality. Nevertheless, fusing the RSSI and RTT to obtain a discriminative signature that
facilitates the location estimation process is challenging, since they represent different
modalities that are intrinsically dissimilar in nature. Thus, the error of the modality joint
combination usually confuses/deceives the localization model, leading to more errors than
those of each individual modality [14]. Therefore, RRLoc proposed a novel fusion and
feature extraction method that automatically projects the two modalities into hyperspace
where their correlation is maximum. To obtain that space, RRLoc employs a deep version of
canonical correlation analysis (DCCA) [35,36] that yields a coordinated representation of the
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input modalities. The DCCA is trained to maximize the correlation between different RSSI
and RTT, leading to separable representations facilitating user location estimation. In this
vein, the developed hybrid model can cope with the localization challenges such as NLOS
(non-line of sight), interference, clock synchronization, and signal attenuation. Unlike
data integration methods [14], which tend to leverage information from one modality to
improve the other, the proposed fusion method incorporates both modalities in a combined
analysis, thus allowing for true interaction between them that maximizes their benefit.

The proposed system leverages the power of deep learning [4,29] in learning complex
mapping functions to boost the robustness of the localization system. Furthermore, we
ensure the system’s generalization by training models on different types of noisy signals
during the location estimation stage. Additionally, RRLoc is able to avert the overfitting that
may occur during the training phase by incorporating several regularization techniques.

We implemented and evaluated RRLoc using different Android phones on two dif-
ferent cluttered environments, a large environment of an area of 629 m2 and a small one
of 141 m2. Seven commercial Google Wi-Fi APs were installed in each environment that
already included other traditional non-RTT-enabled APs that could act as an added source
of interference. Our results show that RRLoc achieved a submeter localization accuracy
for both indoor environments with a median localization error of 0.42 m and 0.32 m for
the two environments, respectively. These results reveal an improvement over the tradi-
tional RSSI fingerprinting accuracy by at least 267% and outperform the ranging-based
multilateration localization approach accuracy by at least 496%. This accuracy was main-
tained under heterogeneous devices which qualified RRLoc as a robust and accurate indoor
localization technique.

The contribution of this paper is threefold. First, we present a novel deep-learning-
based indoor localization system exploiting the availability of the FTM protocol on con-
sumer devices. Second, a novel data-driven-based fusion and feature learning method
is designed for extracting a correlated representation of RTT and RSSI. Third, we train a
robust localization model to enable pinpointing the user in the continuous space. We exper-
imentally evaluate the performance of the proposed system, demonstrating its capability to
localize with fine-grained accuracy.

The rest of this paper is structured as follows. Section 2 discusses the most relevant
work of the proposed system. Section 3 provides a brief introduction to the IEEE802.11-2016
FTM protocol and the canonical correlation analysis approach. In Section 4, we provide a
general overview of the RRLoc system architecture and present its different components.
In Section 5, the modules of the RRLoc are introduced in details. Section 6 evaluates the
different parameters of the system and shows its overall performance compared to the
other approaches. Finally, Section 7 concludes the paper and discusses future work.

2. Related Work

Towards constructing smart buildings, many researchers have considered the problem
of indoor localization. GPS has been known as an excellent technology used for localization,
but it is not suitable for indoor positioning because indoor environments have great loss
in signal propagation. Thus, many other sensors and technologies have been examined.
Examples include Bluetooth, ultrasound, RFID, etc. However, the use of these sensors
and technologies is restricted due to their limited energy, high cost, and/or constrained
bandwidth. On the other hand, Wi-Fi technology has been recently given considerable
attention with the great and continuous use of smart phones in almost all life activities.
Thus, many Wi-Fi-based systems can be easily developed with reasonable cost as no
special infrastructure is needed. The RSSI and time-based techniques are among the most
applicable Wi-Fi techniques. Some discussions about these techniques and their relevance
to our work are introduced in this section.
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2.1. RSSI-Based Techniques

RSSI-based localization works by estimating the distance between two nodes and
measuring their received signal strength. The RSSI positioning techniques are burdened
by their poor accuracy that is due to many reasons such as NLOS, fading, noise data,
etc. [37,38]. The simplicity of RSSI techniques has motivated many researchers to work
on mitigating these issues. The RSSI-fingerprinting technique is one of the successful
techniques toward this goal [25–27]. Fingerprinting localization approaches are common
examples of probabilistic localization techniques. The RSSI-fingerprinting systems work on
determining object location using two stages: offline and online phases. In the offline phase,
the fingerprints of objects (objects’ RSSI) are measured at predefined reference positions
to build a fingerprint database. These fingerprints will be used in the online phase to
estimate the objects’ positions at new locations. Different features can be implemented as
system fingerprints. Correspondingly, channel state information (CSI) techniques work on
providing detailed information about the signal information between two communicated
nodes. Both the RSSI and CSI localization approaches are highly affected by the changes
in the power of Wi-Fi nodes which are very common. The heterogeneity of the used
Wi-Fi devices may also degrade their performance. Although fingerprinting approaches
are extensively used in developing good indoor localization systems overcoming the
abovementioned challenges, the associated fingerprints/signatures are sensitive to signal
interference, diffraction, and fading. In addition, to achieve efficient localization with
fingerprinting, a homogeneous distribution of APs is highly recommended.

2.2. Time-Based Techniques

Alternatively, the time-based approaches are popularly used for indoor localization.
They work to determine the objects’ positions based on time measurements and the known
velocity of the transmitted signal. The ToA [31,32], TDoA [33], and RTT [34] are among the
most popular techniques used for this purpose.The ToA technique works by measuring
the time the signal takes to reach the receiver station (timestamp). In order to obtain
accurate time estimation, a strict synchronization between the two sides is necessary [31,32].
The TDoA techniques work by transmitting signals from three or more stations and then
measuring the difference between the signals propagation times, which are then used to
estimate the user location. Again, this requires a type of time synchronization but with
transmitters only, unlike the ToA technique [33]. The ToA, and TDoA techniques are
considered one-way measurement techniques.

On the other hand, RTT is a two-way measurement technique that works by measuring
the round-trip time, which is the time the signal takes to travel from the transmitter to the
receiver and back. The most important advantage of the RTT technique over the ToA and TDoA
techniques is that it does not require synchronization between the transmitter and receiver as
only one clock is used. However, traditional multilateration systems that incorporate the RTT
measurements suffer from poor accuracy due to NLOS and multipath effects [34].

Numerous Wi-Fi-RTT approaches have been developed to mitigate the effect of NLOS
and multipath effects. In [39] for example, a real-time ranging Wi-Fi-RTT model was
developed to reduce the error caused by multipath, and NLOS effects. In addition, in [40],
the authors proposed a calibration model that works by eliminating the transmitter RTT
range offset and thus improving accuracy. In [41], a Wi-Fi FTM geomagnetic positioning
approach was proposed to mitigate the effect of NLOS. An enhanced mind evolutionary
algorithm (EMEA) was incorporated in the developed approach to ensure the localization
accuracy, whereas in [42], a Wi-Fi-RTT-based approach was developed by line-of-sight
identification and range calibration. Some other works depend on identifying the NLOS
and multipath signals and categorizing them to low- and high-quality signals using support
vector machines [43].

For the sake of obtaining better positioning accuracy, a RTT-RSSI technique was
proposed in [9]. This hybrid technique uses a new and simple multilateration model that
combines RTT and RSSI techniques to improve the localization accuracy. However, this
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cannot be continually achieved since some signal attenuation may occur due to NLOS
conditions. In addition, in [14], a hybrid RTT-RSSI fingerprinting localization approach
was proposed. However, the deduced results show that the proposed approach is not able
to achieve the expected accuracy as the correlation between the different modalities is not
taken into consideration.

In this paper, a novel hybrid RTT-RSSI fingerprinting approach is presented. The in-
troduced model is able to cope with the localization challenges mentioned above. The deep
learning is incorporated in the designed model to increase its robustness and generalization.
The details of the presented approach are given below.

3. Background
3.1. Round-Trip Time (RTT)

The round-trip time is a time-based technique mainly used for calculating distance.
It is used in the current study to measure the distance between two Wi-Fi stations:in our
case, the user’s mobile device and AP. The great advantage of using the RTT technique
is its ability to measure the distance between two stations without necessitating explicit
synchronization. It is worth noting that synchronization is one of the most important
challenges of time-based localization. The RTT technique has been supported recently by
the development of the FTM protocol in IEEE 802.11-2016.

The user’s mobile device (the initiator) starts the process by sending a Wi-Fi signal
to the AP (the receiver) to check its availability. The receiver confirms its availability by
sending an acknowledge signal. A two-way communication is thus started between the
two stations to measure the distance. This communication can be repeated several times
for the sake of obtaining a more accurate distance estimation. The RTT distance estimation
is performed for all APs lying in the range of the mobile device. Another feature of using
the RTT technique is its ability to compute the distance at the edge side and thus the user’s
privacy is well preserved.

As shown in Figure 1, the process starts by sending a FTM request from the mobile
device to the access point to see if it is available or not. The access point replies by the
ACK signal if it is available and then the mobile device can compute the round-trip time
by sending multiple FTM packets. The processing time at the mobile device side can be
computed as follows:

Tp = t3 − t2 (1)

 

ACK 

FTM (0,0) 

t2 

Access point (receiver) Mobile device (sender) 

FTM request 

ACK 

t1 

t4 

t3 

. 

. 

. 

 

Figure 1. FTM protocol.
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The round-trip time (RTT) can be computed as:

RTT = t4 − t1 − Tp (2)

The distance (D) between the mobile device and the access point can be computed as:

D =
1
2

RTT× C (3)

where C is light speed which equals 3× 105 km/s.
It is noteworthy that the mobile device performs RTT ranging to all RTT-capable APs

in the vicinity. Different from multilateration approaches [17,44,45], RRLoc harnesses the
collected RTT values (via the FTM protocol) as fingerprints (signatures for each location) as
described in the following section.

3.2. Canonical Correlation Analysis

In this section, we provide a brief background on the traditional canonical correlation
analysis (CCA) on which the DCCA is built. The details of our DCCA algorithm are given
in Section 5.

CCA [35,36] is a standard highly versatile statistical method for finding common
correlation for two multivariate sets of variables (vectors) having the same situations. In
particular, CCA linearly projects the input sets into another lower-dimensional space in
which these sets are maximally correlated. This helps in studying the strength of the
relationship between two quantitative variables and how they are related. An appealing
property of CCA for prediction tasks is that if there is noise in either set, the learned
representations should not contain that noise in the new space.

More formally, assume S = [s1, s2, ..., sN ] ∈ Rdx×N and Y = [r1, r2, ..., rN ] ∈ Rdy×N are
two different multivariate variable sets of N samples and feature space of dimensions dx
and dy, respectively. The goal of CCA is to find K pairs of linear projections (canonical
vectors) Ws = [ws,1, ws,2, ..., ws,K] ∈ Rdx×K and Wr = [wr,1, wr,2, ..., wr,K] ∈ Rdy×K, so that
the correlations between WT

s S and WT
r R are maximized. Specifically, CCA aims at finding

the projection matrix that maximizes the correlation coefficient α between WT
s S and WT

r R as:

α(WT
s S, WT

r R) =
WT

s SRTWr

WT
s SSTWsWT

r RRTWr
(4)

That is, we want to find:

(W∗1 , W∗2 ) = argmax
Ws ,Wr

WT
s SRTWr

WT
s SSTWsWT

r RRTWr
(5)

Since α is scaling-invariant, we can rewrite the correlation as:

(W∗1 , W∗2 ) = argmax
Ws ,Wr

WT
s SRTWr (6)

s.t. WT
s SSTWs = 1, WT

r RRTWr = 1

To find the optimum solution for Equation (6), one has to solve the general eigenvalue
problem of the form [46]:[

0 Σsr
Σrs 0

][
Ws
Wr

]
= λ

[
Σ̂ss 0
0 Σ̂rr

][
Ws
Wr

]
(7)

where Σ̂ss, Σ̂rr are the covariance matrices. Σsr and Σrs are defined as: Σsr = 1
N SRT and

Σrs =
1
N RST .
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By solving Equation (7), we obtain K eigenvectors
{
[Ws,k; Wr,k]

}K
k=1 and the corre-

sponding Kth eigenvalue that is equal to the correlation coefficient in Equation (4). There-
fore, the aimed projection matrix W is the set of obtained eigenvectors.

In this paper, we adopt a deep-learning-based version of CCA, denoted DCCA [47],
that can be viewed as a nonlinear extension of the traditional CCA.

4. System Overview

Figure 2 shows the RRLoc system architecture. RRLoc works in two stages: an offline
calibration and training stage and an online localization stage. During the calibration
stage, Wi-Fi data is collected at predefined reference points that uniformly cover the area of
interest (This data can be transparently collected without the burden of site surveying using
our earlier work in [48]). Typically, the collected data constitutes the fingerprints of each
reference point involving the RTT and RSSI measurements from the overheard APs. This
fingerprint map is constructed using the Fingerprint Recorder App running on a mobile
phone and leverages the Android RTT API [49] to scan for RTT and RSSI readings. The
collected fingerprint map is uploaded to an online running service for further processing.
The preprocessor module is used to construct pairs of fixed size vectors (i.e., RSSI and RTT
vectors) that are simultaneously captured from the APs overheard in the area of interest.
Each pair of vectors is then forwarded to the feature extractor module to extract high-level
location discriminative features. Specifically, this module learns the complex nonlinear
transformation of the original low-level features to a new feature space where the RSSI
and RTT projections are highly correlated as described in Section 5.2. Then, the obtained
features are fed to the localization model creator module that is responsible for training
a localization model for estimating the location of the mobile device. The output of this
calibration stage is two trained models (i.e., the deep canonical correlation analysis model
and the localization model) that are stored for later retrieval in the online stage.

Fingerprint
Recorder

Model 
Creator

Scan 
Collector Location 

Tracker

Feature Extractor

Features

Offline

Online

Pre-processor

Pre-processor

RSSI

RTT

Feature Extractor

Figure 2. RRLoc system architecture.

During the online phase, users are tracked in real-time. When carrying their mobile
phones at unknown locations, the phones scan for the APs in the vicinity. Each scan
includes the RSSI and RTT from the overheard APs which are forwarded to the RRLoc
server. This data is first handled by the preprocessor module to form the pairs of unified
length vectors. Thereafter, these pairs are fed to the trained DCCA model to extract the
desired features. Finally, the location estimation model feeds the extracted features to the
localization model trained in the calibration stage to estimate the most probable reference
locations where the user may be located. Based on these probabilities, the system obtains
the user’s location in the continuous spatial space.
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5. The RRLoc System

Figure 2 shows the different modules of the RRLoc system. In the balance of this
section, we describe the details of each module. Table 1 summarizes the notations used in
this section.

Table 1. Notations used in the paper.

Notation Description

q The total number of access points covering the area of interest.
m The number of access points detected in an arbitrary scan ≤ q.
n The total number of scans collected in the area of interest (i.e. at all locations).
l The total number of reference location in the area of interest.
s RSSI measurement vector which is composed of q entries, each of them represents

the RSSI corresponding to one AP.
r RTT measurement vector which is composed of q entries, each of them represents

the RTT corresponding to one AP.
w Matrix of weights.
b Vector of biases.
z The extracted feature vector as generated from the DCCA.
θ The model parameters.
v The size of the extracted feature vector.

5.1. The Preprocessor Module

The preprocessor module is responsible for mapping the RTT and RSSI measurements
to a pair of fixed-length feature vectors. Each entry in the feature vector represents a
measurement from an AP such that an AP entity in the RTT vector has a corresponding
value in the RSSI vector. It is worth noting that all the installed APs cannot be overheard at
every scan due to the range. Thus, only a subset of the APs may be detected in an arbitrary
scan leading to variable-length feature vectors. To resolve this issue, nonheard APs in a
specific scan are substituted by the RTT value of 0.2× 10−3 ms, which is equivalent to a
60 m distance. This value is larger than any RTT value for the APs in the scanning range.
Similarly, the RSSI value of −100 dBm is assigned to any unheard AP as it is lower than
all RSSI values received from within the range of APs in the collected scans. Thus, a short
RTT/low RSSI value is assigned to any AP lying far away from the mobile device carried
by the user. It is also observed that when the mobile device is very close to an arbitrary AP,
a negative distance is reported by the Android API [49]. This can be explained due to the
internal configuration and calibration of the Wi-Fi cards or the multipath compensation
algorithms that process the measurements in firmware before the driver receives them.
RTT may also suffer from some latency when used with fast moving mobile devices.
The presence of such negative values (former case) or latency (latter case) usually leads
to a significant drop in the performance of traditional multilateration approaches [17].
However, this event cannot affect the RRLoc’s performance as it is a fingerprinting-based
technique, and such negative values or delay can be considered a strong signature of
particular locations.

Finally, normalization is employed to rescale the input values of each modality to be
in the range between [0, 1]. Normalization has been empirically verified to speed up model
convergence during training [50].

5.2. The Feature Extractor Module

This module aims to transform the preprocessed RSSI feature vectors and the corre-
sponding RTT vectors to a latent space in which they are highly correlated. This is a more
flexible feature-based fusion approach of different modalities given their spatial depen-
dency while avoiding spurious measurements. In other words, both the RTT and RSSI of
an arbitrary AP are different representations of how far the mobile device is from that AP.
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Therefore, projecting the two modalities into another hyperspace where intercorrelation is
maximum leads to more separable location signatures and thus better localization.

To discover that latent space, we adopt DCCA [47] . Traditional techniques, e.g., [14]
obtain a joint multimodal representation by concatenating the individual RSSI and RTT
vectors. Despite the simplicity of that approach, it loses essential information about the
correlation (i.e., spatial dependency) between the input modalities. Moreover, compared
to a single modality, the joint representation usually leads to a worse performance due to
the presence of different types of noise and latency associated with data of varying nature.
Compared to the classical CCA [35,36], which linearly transforms the input views into
highly correlated projections, the DCCA solves the same objective function by realizing
more powerful nonlinear projections in a new latent space using deep neural networks.
These projections are learned via the gradient descent technique. The intuition behind
leveraging the deep version of CCA is the ability of the deep neural network to learn com-
plex relations from such noisy Wi-Fi data automatically. Unlike traditional deep-learning
methods that are trained to maximize the likelihood of target class (location) given the
RSSI scan alone [29] or the RTT scans alone [34], RRLoc combines both modalities using the
correlation-based objective function of the DCCA. This empowers the system robustness
and learning ability compared to just concatenating the noisy raw measurements that may
deceive the localization model (as evaluated in Section 6.2.3).

Figure 3 shows the schematic structure of the proposed DCCA feature extraction
model. As shown in the figure, the DCCA consists of two independent deep neural
networks (DNNs), one for each type of measurements (RSSI and RTT). Each DNN consists
of cascaded fully connected layers. The input layer of the DNN A and DNN B are the RSSI
and RTT vectors which are captured simultaneously by the mobile device. These DNNs
are then trained to encode these inputs to a fixed-size subspace where the corresponding
output vectors (zA and zB) are maximally correlated. Specifically, let SA be a set of RSSI
input vectors, SB is the corresponding set of RTT vectors which are collected simultaneously
at the same set of reference points. These modalities are fed to the DCCA twin networks to
obtain the aimed latent representations that leverage the advantages of both modalities.
For instance, the output of the first layer of network A is hA

1 = σ(WA
1 S + bA

1 ), where σ
is a nonlinear activation function (e.g., logistic Sigmoid) applied component-wise, WA

1
is a matrix of weights and bA

1 is a vector of biases. The output of each layer is used to
calculate the output of the next layer until the final layer d whose output is calculated
based on the output of the previous layer hd−1 as fA(SA) = σ(WA

d hd−1 + bA
d ) which is the

intended latent representation (z), i.e., the spatially correlated feature vector. Similarly,
the representation obtained by the second DNN of g layers is fB(SB) = σ(WB

g hg−1 + bB
g )

with different parameters WB
g , bB

g and g. The objective of the DCCA is to jointly learn the
parameters θA and θB for both neural networks such that the correlation between zA and
zB is maximum. Therefore, the objective function of the DCCA is defined as follows:

(θ∗A, θ∗B) = argmax
(θA ,θB)

Corr( fA(SA; θA), fB(SB; θB)) (8)

To achieve this, we compute the correlation and its gradient with respect to the output
layers. Then the back-propagation is used to update the parameters of both networks. This
process is repeated until convergence is obtained (Given that, in general, optimization of
deep models may not achieve the best performance if the model parameters are initial-
ized randomly. Therefore, we adopt the Xavier initialization approach in [51] for better
initialization of the feature extraction module).

After the training of the twin networks, the transformed feature vectors zA and zB
become in the coordinated hyperspace. Then, these vectors are fed to the localization model
as input for weighting with respect to their contribution in the location recognition process
(as discussed in Section 5.3).
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Figure 3. The network structure of the DCCA-based feature extraction module. It consists of two
deep networks learned so that the output layers (topmost layer of each network) are maximally
correlated. A correlation layer is stacked on top of a fully connected layer to calculate the correlation
between the views.

5.3. Location Estimation Module

This module is responsible for utilizing the correlation features (z) extracted from the
DCCA network to train the localization model and find its optimal parameters. The trained
model is used in the online phase by the online location predictor module.

Figure 4 shows the structure of the considered deep neural network for localization.
Specifically, RRLoc adopts a fully connected feed forward neural network. The hierarchical
representation of RRLoc is obtained by cascaded hidden layers of nonlinear processing
units. The rectified linear unit (ReLU) (the state of the art of nonlinearity) is used as the
activation/transfer function for the hidden layers due to its sparsity and immunity to
vanishing gradient problems [52].

lx

ly

zA

zB

Figure 4. The network structure of the location estimator module. Crossed neurons represent dropped
out units to avoid overfitting during training.

The input layer of the network is a vector z of length v which is obtained from the
feature extraction module (described in Section 5.2). The network is trained to operate as
a regression model having an output layer consisting of two neurons (corresponding to
the 2D spatial coordinates (lx, ly). Therefore, the selected network can be classified as a
many-to-one, i.e. the model will learn a function that maps the latent representation z of
the RSSI and RTT to an output location.

One advantage of designing the localization model to operate as a regressor rather
than a classifier is the requirement to estimate the user location in the continuous space.
Classification models can only estimate the user locations at one of the predefined few
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discrete reference points. This usually leads to a bad user experience as the predicted
locations will be spaced out even with a very accurate model. To ensure the required
smooth tracking of the users in the continuous spatial space (RRLoc can locate the user
anywhere, even on locations different from reference points.), RRLoc models the localization
process as a deep-learning-based regressor that is trained to estimate the user location
coordinates in the environment (even the nonsurveyed ones). We utilized the Adam
optimizer [53] and mean square error (MSE) as a loss function.

DNN are known to have a tendency to overfit the training data, reducing their pre-
dictive skill [54]. Therefore, we utilize two regularization techniques: First, we use dropout
to probabilistically exclude neurons and their connections from activation and weight
updates while training a network. Second, we leverage early stopping so that training would
terminate once the validation set no longer obtains performance improvements [55].

5.4. Online Phase

The goal of this phase is to track the users’ locations in the environment of interest.
Initially, each user device captures the RSSI and RTT from the detectable APs in the
environment, and forward the scan to our running service to preprocess and extract the
coordinated feature vectors from the trained DCCA, as described in Section 5.2. These
vectors are then fed to the trained localization model to obtain a location estimate in the
continuous space.

6. Evaluation

In this section, the data collection setup and tools used are described first. Then, we
show how the system performs by varying the different system parameters. Finally, we
compare the performance of RRLoc to the state-of-the-art techniques.

6.1. Collection Setup and Tools

For analyzing and evaluating the RRLoc system performance, we deployed the system
in two realistic indoor testbeds. Table 2 summarizes the characteristics of the two testbeds.
The first one, denoted as “Lab”, is a full floor in our university campus which spans an
area of 629 m2 and contains nine rooms of different sizes and a long corridor as shown in
Figure 5. The second testbed, denoted “Office”, as shown in Figure 6 is an administrative
building of 141 m2 area consisting of a large meeting room, a long corridor, and five rooms.
We used a wireless network setup of seven Google Wi-Fi APs uniformly distributed to
cover the whole area of interest in both testbeds. The area of interest in both testbeds was
uniformly discretized into different reference points distributed over the area one meter
apart from each other. (We evaluate the effect of changing the spacing between reference
points later in this section.) The Lab testbed had 143 different reference locations, while the
second testbed included 76 locations. Each reference location was ensured to be covered by
at least one Google Wi-Fi AP.

Data were collected with an Android application installed on different Android phones
including Google Pixel XL and a Pixel 2XL. The application continuously scanned for
the nearby APs. To facilitate ground-truth profiling, our data collector application ran
synchronously on all mobile devices with one device dedicated to controlling ground-
truth collection for all devices. The user input the coordinates of his current location
(ground-truth) and launched the data collection process. At each reference location, at
least 100 samples were captured in 3 min for training purposes. Hold-out test sets were
collected independently, including 21 and 30 locations (different from the training points)
in the Office testbed and the Lab testbed, respectively. This was completed over several
days during working hours (to consider the time variation of signals indoors).
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Training point 
Testing point 

Figure 5. Layout of Lab testbed. Blue and red circles represent training and testing points, respectively.

Figure 6. Layout of the Office testbed.

Table 2. Summary of the testbeds considered in evaluating RRLoc.

Criteria Lab Testbed Office Testbed

Area (m2) 17×37 4.5×31.5
Number of training points 143 76
Number of testing points 30 21
Spacing of seed points (m) 1 1
Building Material Brick Brick& Wood
Number of APs 7 7
Total fingerprinting time (hrs:mins) ∼08:39 ∼04:51
Training time (hrs:mins) ∼01:05 ∼ 0:43

6.2. Effect of Changing RRLoc Parameters

In this section, we study the impact of the different system parameters including the
deep model’s hyperparameters on the RRLoc performance and how much they enable
learning the nonlinear transformations for achieving the maximum correlation between
all modalities and thus better localization accuracy. These parameters include the number
of layers, the effect of the feature extraction method, and the size of the feature vector. In
the following subsections, we show the effect of varying these parameters only on the
Lab testbed for clarity of presentation. However, we present how RRLoc performs in both
testbeds in Subsection 6.3.1. Table 3 summarizes the default values of system parameters
that are used throughout the evaluation section.
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Table 3. Default parameters values used in the evaluation.

Parameter Range Default

Learning rate 0.0001–0.2 0.001
Number of hidden neurons 20–1000 300
Batch size 1-Dataset size 128
Number of layers 1–30 3
Early Stopping Patience (epochs) 1–10 40
Number of samples per reference
point

20–100 100

Number of epochs Automatic by Early stopping
Used devices Google Pixel XL, Google Pixel 2XL
Number of users 3
Update rate (scan/sec) 2

6.2.1. Number of Layers in the Network

Figure 7 shows the effect of changing the number of layers on RRLoc performance. As
shown, the more hidden layers to consider, the better the accuracy (i.e., less localization
error) RRLoc can achieve until it reaches an optimal value at three layers. This can be
justified due to two reasons. First, increasing the number of layers increases the distributed
learning ability of the localization model. In this vein, the model has enhanced computing
power enabling the better fitting of the underlying function (without underfitting). Second,
as few as three layers are enough to allow the localization model to learn the user location
from the latent extracted features. It is worth noting that the extracted features obtained by
the DCCA radically simplify the classification problem. Beyond three layers, the model
tends to overfit the training data, reducing its flexibility and thus its accuracy. As a result,
three layers is set as the default number of layers in the RRLoc model to achieve a balance
between underfitting and overfitting.
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Figure 7. Effect of changing the number of layers on RRLoc localization error.

6.2.2. Dropout Percentage

The effect of increasing the percentage of dropout is shown in Figure 8. It can be
observed from the figure that at a rate of 0.1 dropout, the best performance of RRLoc is
achieved (even better than the case of no dropout). This confirms the significant regulariza-
tion role of dropout in boosting the network learning to generalize rather than overfit the
training data.
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Figure 8. Effect of changing the dropout rate on RRLoc localization error.

6.2.3. Feature Extraction Method

In this section, we study the influence of the different feature extraction techniques on
the overall system performance. Figure 9 compares the effect of using DCCA for extracting
discriminative features to either using joint representation (i.e., concatenated RSSI and RTT
features) or feature projection using the classic CCA [36]. The figure confirms the favorable
performance of the DCCA of RRLoc as compared to both the joint representation and classic
CCA. Specifically, RRLoc gives an improvement of 83%, and 186% in estimating the correct
user location as compared to the joint representation and classic CCA, respectively. This
can be explained by noting that the classifier tries to learn the underlying distribution of
the input and map it to the output. However, in the case of the joint representation, the
classifier is supplied with mixed input of two different distributions, which generally yields
an information loss of the correlation between the two modalities. On the other hand,
the classical CCA assumes that a linear transformation of the inputs improves correlation
between RTT and RSSI in the new space, which is not always the case in practice due to
the propagation challenges in indoor environments. These results highlight the efficacy of
using the DCCA in capturing the nonlinear correlated signatures of the two Wi-Fi input
modalities, facilitating the accurate tracking of the user location.
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Figure 9. Effect of feature extraction module on RRLoc performance.

6.2.4. Feature Vector Length

Figure 10 shows the location estimation accuracy of RRLoc as a function of the latent
space dimension size obtained by the DCCA network. It is clear from the figure that increas-
ing the size (dimensions) of the latent feature vector z improves the RRLoc performance.
The figure also shows that a feature vector z of five dimensions yields the best performance.
Beyond five dimensions, a performance deterioration is observed. This can be explained as
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the additional dimensions usually include undesired artifacts that reduce the correlation
between the input modalities.
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Figure 10. Effect of changing the feature vector length on RRLoc accuracy.

6.2.5. Impact of Each Modality

Figure 11 shows the performance of the RRLoc system when an individual modality is
used as well as the hybrid RSSI-RTT version. The figure shows the favorable performance
of RTT compared to the RSSI. This can be justified by noting that the RSSI readings are more
noisy compared to RTT due to its higher sensitivity to multipath effect. The combination of
RSSI and RTT yields an improvement in the median accuracy by 289% and 129% compared
to RSSI-only and RTT-only, respectively. This is due to leveraging the advantages of both
modalities leading to a remarkable enhancement of the RRLoc accuracy in all percentiles.
Specifically, the RSSI measurements boost the RRLoc performance compared to using the
RTT counterpart alone in cases of the absence of a direct line-of-sight transmission, while
RTT maintains the system robustness in case of noisy and fluctuating RSSI signals. These
results validate the gain of such combination on the system performance.
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Figure 11. Effect of varying the considered modality on RRLoc performance.

6.2.6. Effect of Access Points Density

Figure 12 shows the impact of varying the number of access points in use on the
median localization error and response time (i.e., average time per location estimate). This
experiment is performed by removing APs from the feature vector randomly. The figure
shows that increasing the APs installed in the area of interest yields a better localization
accuracy. This can be explained by noting that increasing the number of APs leads to richer
feature vectors to accommodate the blocking that might occur to any connection between
the transmitter and any receiver at the run time.
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Figure 12. Effect of changing the number of access points on RRLoc performance.

6.2.7. Effect of Fingerprint Points Density

In this section, we study the effect of the density of fingerprint points in the area of
interest on the RRLoc performance. Figure 13 shows that increasing the density (shorter
spacing between points) of the fingerprint points leads to better localization accuracy.
However, unlike traditional RSSI-based systems [29,48,56], increasing the spacing between
fingerprint points leads to a slight decrease in the performance of RRLoc. In particular, the
RRLoc localization accuracy loses just 32 cm by doubling the fingerprint spacing from 1 m
to 2 m. This confirms the RRLoc’s ability to operate at lower fingerprint densities, leading
to a drastic saving of time and effort associated with the data collection process.
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Figure 13. Effect of varying the spacing between reference points on RRLoc performance.

6.3. Comparative Evaluation

In this section, the performance of RRLoc is compared to three Wi-Fi-based localization
systems: WiNar [14], WiDeep [29] and ranging-based system [17]. WiNar [14] leverages a
deterministic approach that matches the captured RTT measurements to the prerecorded
fingerprint map to estimate the user’s location. WiNar leverages the RSSI to weigh the
estimated locations. On the other hand, WiDeep [29] builds a RSSI-based localization
system using the deep denoising autoencoder neural network. The ranging-based system
in [17] uses the multilateration approach based on the RTT for enabling indoor localiza-
tion while detecting NLOS. All techniques have been evaluated on the same data for a
fair comparison.

6.3.1. Localization Accuracy

Figures 14 and 15 show the CDF of localization error of the different techniques in the
two testbeds. Figure 14 shows that RRLoc gives an improvement in median error obtained
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in the Office testbed by 129%, 267%, and 632% compared to the WiNar [14], WiDeep [29]
and ranging-based [17] systems, respectively. On the other hand, the performance of the
different systems in the Lab testbed (i.e. the larger testbed) is shown in Figure 15. The
results depicted in the figure show that RRLoc outperforms WiNar [14], WiDeep [29] and
ranging-based [17] systems by 45%, 337% and 469%, respectively. In summary, as shown in
Tables 4 and 5, RRLoc improves all the percentiles upon the other system in both testbeds.
This can be explained by noting that the concatenation-based approach of WiNar loses the
correlation information between RSSI and RTT measurements. Moreover, the deterministic
matching method adopted by WiNar cannot cope with the noisy measurements of both
modalities. WiDeep leverages only RSSI measurements to train a powerful deep-learning
model for localization purposes. Nevertheless, the accuracy of this approach depends on
the quality of the captured signals, which are generally noisy in cluttered environments.
The performance of a ranging-based multilateration system usually suffers from NLOS
problems leading to coarse-grained accuracy. Different from these systems, RRLoc leverages
the flexibility of the proposed DCCA-based approach to maximize the benefits of RSSI-RTT
fusion. Additionally, RRLoc considers the spatial dependency between the two modalities
through a powerful deep neural network that learns robust location-discriminative features
given the inherent noise in each modality. This highlights the promise of RRLoc as the next
generation of robust Wi-Fi-based positioning system.
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Figure 14. Comparison of CDFs of different systems in the Office testbed.
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Table 4. The localization error percentiles in Office testbed.

Technique Average
25th 50th 75th

Maximum
Percentile Percentile Percentile

RRLoc 0.51 m 0.19 m 0.32 m 0.79 m 1.70 m
WiNar [14] 0.89 m (−72%) 0.34 m (−82%) 0.73 m (−129%) 1.20 m (−53%) 2.99 m (−76%)
WiDeep [29] 1.46 m (−183%) 0.58 m (−208%) 1.17 m (−267%) 1.97 m (−151%) 4.49 m (−164%)
Ranging [17] 2.59 m (−401%) 1.44 m (−664%) 2.34 m (−632%) 3.68 m (−368%) 4.92 m (−189%)

Table 5. The localization error percentilesin the Lab testbed.

Technique Average
25th 50th 75th

Maximum
Percentile Percentile Percentile

RRLoc 0.59 m 0.12 m 0.42 m 1.08 m 1.83 m
WiNar [14] 0.99 m (−69%) 0.19 m (−51%) 0.61 m (−45%) 1.77 m (−63%) 3.0 m (−64%)
WiDeep [29] 1.92 m (−226%) 1.06 m (−753%) 1.84 m (−337%) 2.69 m (−149%) 6.00 m (−228%)
Ranging [17] 2.86 m (−384%) 1.46 m (−1077%) 2.51 m (−496%) 3.85 m (−255%) 7.38 m (−304%)

6.3.2. Time per Location Estimate

We used a a Lenovo Thinkpad X1 laptop running a 2.2 GHz Intel i7-8750H processor
with 64 GB RAM, and a Nividia GTX1050Ti 4GB GPU for evaluating the running time of
the different systems. Figure 16 shows the results. The figure shows that as RRLoc and
WiDeep [29] are deep-learning-based systems, they need to pass the input through all
the layers of the network to calculate a location estimate. This takes more time than the
traditional deterministic method used in WiNar [14] and ranging-based [17]. On the other
hand, RRLoc has running time that is remarkably less than WiDeep [29]. This is due to
the fewer number of layers and neurons and, by extension, less calculations compared to
WiDeep [29]. Nonetheless, all systems allow real-time tracking of the user which can be
further enhanced (if needed) by parallelization.
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Figure 16. Comparison of run time of the different systems.

6.3.3. Device Heterogeneity

In this section, we investigate the system robustness to device heterogeneity, where one
device is dedicated to capturing training data, and the other is used for testing. Figure 17
shows the system performance when varying the testing devices in the two testbeds, i.e.,
in the case of testing with Pixel XL, the training device is Pixel 2XL and vice versa. The
figure shows that RRLoc achieves a consistent performance in all cases for the two devices
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which is slightly better in the case of Pixel 2XL. This can be justified as different phones, in
general, vary in hardware factors, e.g., form factors, chips, antenna locations, leading to
a variation of the measured RSSI. The combined effect of these factors can be considered
to be an offset that affects only the RSSI depending on the phone as addressed in [57–59].
However, hardware diversity has a negligible effect on RTT measurements [34]. The fusion
of RSSI and RTT has shown to be effective in mitigating the effect of hardware diversity,
leading to a more robust localization performance. It is worth mentioning that currently
few devices support RTT scanning. However, the number of models of supported devices
is increasing [49].
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Figure 17. Effect of varying the testing device on RRLoc performance in the two testbeds.

7. Conclusions

We presented RRLoc, a hybrid deep-learning-based indoor localization system which
fuses fingerprinting and time-based techniques to combine the merits of both techniques. A
novel approach is adopted for fusing RSSI and RTT measurements and extracting high-level
features using deep canonical correlation analysis. The proposed RRLoc showed great
capabilities in overcoming the challenges of these techniques in indoor environments even
with the use of heterogeneous devices. Different modules are incorporated to improve
the deep model’s generalization against overtraining and noise. The proposed system is
evaluated in two different environments (office and lab). The RRLoc system achieved a
submeter localization accuracy for both indoor environments with a median localization
error of 0.42m and 0.32m respectively. RRLoc is able to improve upon all the percentiles
of the other systems in both environments when using the coordinated representation of
RTT and RSSI data. In the future, we plan to deploy RRLoc at scale and automate the data
collection process to lessen the fingerprinting burden.
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