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We propose a novel adaptive damping algorithm for the self-consistent field (SCF) iterations
of Kohn-Sham density-functional theory, using a backtracking line search to automatically adjust
the damping in each SCF step. This line search is based on a theoretically sound, accurate and
inexpensive model for the energy as a function of the damping parameter. In contrast to usual
SCF schemes, the resulting algorithm is fully automatic and does not require the user to select
a damping. We successfully apply it to a wide range of challenging systems, including elongated
supercells, surfaces and transition-metal alloys.

I. INTRODUCTION

Ab initio simulation methods are standard practice
for predicting the chemical and physical properties of
molecules and materials. At the level of simulating elec-
tronic structure the majority of approaches are either
directly based upon Kohn-Sham density-functional the-
ory (DFT) or Hartree-Fock (HF) or use these techniques
as starting points for more accurate post-DFT or post-
HF developments. Both HF and DFT ground states are
commonly found by solving the self-consistent field (SCF)
equations, which for both type of methods are very sim-
ilar in structure. Being thus fundamental to electronic-
structure simulations substantial effort has been devoted
in the past to develop efficient and widely applicable SCF
algorithms. We refer to Woods et al. 1 and Lehtola et al. 2

for recent reviews on this subject.

However, the advent of both cheap computational
power as well as the introduction of data-driven ap-
proaches to materials modelling has caused simulation
practice to change noticeably. In particular in domains
such as catalysis or battery research where experiments
are expensive or time-consuming, it is now standard prac-
tice to perform systematic computations on thousands to
millions of compounds. The aim of such high-throughput
calculations is to either (i) generate data for training
sophisticated surrogate models or to (ii) directly screen
complete design spaces for relevant compounds. The de-
velopment of such data-driven strategies has already ac-
celerated research in these fields and enabled the discov-
ery of novel semiconductors, electrocatalysts, materials
for hydrogen storage or for Li-ion batteries3–5.

Compared to the early years where the aim was to per-
form a small number of computations on hand-picked sys-
tems, high-throughput screening approaches have much
stronger requirements. In particular the key bottleneck
is the required human time to set up and supervise com-
putations. To minimize manual effort state-of-the-art
high-throughput frameworks6–8 provide a set of heuris-
tics which automatically select computational parame-
ters based on prior experience. In case of a failing calcu-
lation such heuristics may also be employed for param-

eter adjustment and automatic rescheduling. While this
empirical approach manages to take care of the major-
ity of failures automatically, it is far from perfect. First,
state-of-the-art heuristic approaches cannot capture all
cases, and keeping in mind the large absolute number
of calculations already a 1% fraction of cases that re-
quire human attention easily equals hundreds to thou-
sands of calculations. This causes idle time and severely
limits the overall throughput of a study. Second, any fail-
ing calculation, whether automatically caught by a high-
throughput framework or not, needs to be redone, im-
plying wasted computational resources that contributes
to the already noteworthy environmental footprint of su-
percomputing9,10. The objectives for improving the algo-
rithms employed in high-throughput workflows is there-
fore to increase the inherent reliability as well as re-
duce the number of parameters, which need to be cho-
sen. Ideally each building block of a simulation workflow
would be entirely black-box and automatically self-adapt
to each simulated system. To some extent this amounts
to taking the existing empirical wisdom already imple-
mented in existing high-throughput frameworks and con-
verting it into simulation algorithms with convergence
guarantees using a mixture of both mathematical and
physical arguments.

With this objective in mind, this work will focus on
improving the robustness of self-consistent field (SCF)
algorithms, as mentioned above one of the most funda-
mental components of electronic-structure simulations.
Our main motivation and application are DFT simula-
tions discretized in plane wave or “large” basis sets, for
which it is only feasible to store and compute with or-
bitals, densities and potentials, and not the full density
matrix or Fock matrix. In this setting, the standard SCF
approach are damped, preconditioned self-consistent it-
erations. Using an approach based on potential-mixing
the next SCF iterate is found as

Vnext = Vin + αP−1(Vout − Vin), (1)

where Vin and Vout are the input and output potentials to
a simple SCF step, α is a fixed damping parameter and
P is a preconditioner. It is well-known that simple SCF
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iterations (where P is the identity) can converge poorly
for many systems due to a number of instabilities11. Ex-
amples are the large-wavelength divergence due to the
Coulomb operator leading to the “charge-sloshing” be-
havior in metals or the effect of strongly localized states
near the Fermi level, e.g. due to surface states or d- or
f -orbitals. To accelerate the convergence of the SCF iter-
ation despite these instabilities, one typically aims to em-
ploy a preconditioner P matching the underlying system.
Despite some recent progress towards cheap self-adapting
preconditioning strategies11 for the charge-sloshing-type
instabilities, choosing a matching preconditioner is still
not a straightforward task for other types of instabilities.
For example currently no cheap preconditioner is avail-
able to treat the instabilities due to strongly localized
states near the Fermi level, such that in such systems
using a suboptimal preconditioning strategy is unavoid-
able. While convergence acceleration techniques are usu-
ally crucial in such cases, these also complicate the choice
of an appropriate damping parameter α to achieve the
fastest and most reliable convergence. As we will detail in
a series of example calculations on some transition metal
systems the interplay of mismatching preconditioner and
convergence acceleration can lead to a very unsystematic
pattern between the chosen damping parameter α and
obtaining a successful or failing calculation. Especially
for such cases finding a good combination of precondi-
tioning strategy and damping parameter can require sub-
stantial trial and error.

As an alternative approach to a fixed damping selected
by a user a priori Cancès and Le Bris suggested the op-
timal damping algorithm (ODA)12,13. In this algorithm
the damping parameter is obtained automatically by per-
forming a line search along the update suggested by a
simple SCF step. Following this strategy, the ODA en-
sures a monotonic decrease of the energy, which leads
to strong convergence guarantees. This can be improved
using the history to improve convergence, such as in the
EDIIS method14, or trust-region strategies15,16. These
approaches are successfully employed for SCF calcula-
tions on atom-centered basis sets, where an explicit rep-
resentation of the density matrix is possible. However,
their use with plane-wave DFT methods, where only or-
bitals, densities and potentials are ever stored, does not
appear to be straightforward, in particular in conjunction
with accelerated methods.

Another development towards finding an DFT ground
state in a mathematically guaranteed fashion are ap-
proaches based on a direct minimization of the DFT en-
ergy as a function of the orbitals and occupations, not
using the self-consistency principle (see Reference 17 for
a mathematical comparison). Although direct minimiza-
tion methods are often quite efficient for gapped systems,
their use for metals requires a minimization over occupa-
tion numbers18,19, which is potentially costly and unsta-
ble. For this reason such approaches seem to be less used
than the SCF schemes in solid-state physics.

In the realm of self-consistent iterations, variable-step

methods have been successfully used20,21 to increase ro-
bustness. These methods are based on a minimization
of the residual. Although this often proves efficient in
practice, this has a number of disadvantages. First, the
residual might go up then down on the way to a solution
making it rather hard to design a linesearch algorithm.
Second, this forces an algorithm to select an appropriate
notion of a residual norm, with results potentially sen-
sitive to this choice. Third, there is the possibility of
getting stuck in local minima of the residual, or a sad-
dle point of the energy. By contrast, we aim to find a
scheme ensuring energy decrease as an important ingredi-
ent to ensure robustness. Indeed, under mild conditions,
a scheme that decreases the energy monotonically is guar-
anteed to converge to a solution of the Kohn-Sham equa-
tions (see Theorems 1 and 2 below). This is in contrast to
residual-based schemes, which afford no such guarantee.
The very good practical performance of these schemes,
despite the lack of global theoretical guarantees, is an
interesting direction for future research.

Our goal in this work is to design a mixing scheme that
(a) is applicable to plane-wave DFT, and involves only
quantities such as densities and potentials; (b) is based
on an energy minimization, to ensure robustness; (c) is
based on the self-consistent iterations; (d) is compati-
ble with acceleration and preconditioning. Our scheme
is based on a minimal modification of the damped pre-
conditioned iterations (1). Similar to the ODA approach
we employ a line search procedure to choose the damp-
ing parameter automatically. Our algorithm builds upon
ideas of the potential-based algorithm of Gonze 22 to con-
struct an efficient SCF algorithm. In combination with
Anderson acceleration on challenging systems we show
our adaptive damping scheme to be less sensitive than
the approach based on a fixed damping parameter. In
contrast to the fixed damping approach the scheme does
not require a manual damping selection from the user.

The outline of the paper is as follows. Section II
presents the mathematical analysis of the self-consistent
field iterations justifying our algorithmic developments.
In particular it presents a justification for global conver-
gence of the SCF iterations. The proofs for the results
presented in this section are given in the appendix. Sec-
tion III discusses the adaptive damping algorithm itself
followed by numerical tests (Section IV) to illustrate and
contrast cost and performance compared to the standard
fixed-damping approach. Concluding remarks and some
outlook to future work is given in Section V.

II. ANALYSIS

A. Preliminaries

We use similar notation to those in Cancès et al. 17 , ex-
tend the analysis in that paper to the finite-temperature
case23, and introduce the potential mixing algorithm. We
work in the grand-canonical ensemble: we fix a chemical
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potential (or Fermi level) µ and an inverse temperature
β. In particular, the number of electrons is not fixed.
This is for mathematical convenience: fixing the number
of electrons N instead of µ does not change our results.
We assume that space has been discretized in a finite-
dimensional orthogonal basis (typically, plane-waves) of
size Nb, and will not treat either spin or Brillouin zone
sampling explicitly for notational simplicity, although of
course the formalism can be extended easily. In this sec-
tion we will work with the formalism of density matrices,
self-adjoint operators P satisfying 0 ≤ P ≤ 1. Such op-
erators can be diagonalized as

P =

Nb∑
i=1

fi|φi〉〈φi|. (2)

The numbers 0 ≤ fi ≤ 1 are the occupation numbers, and
φi are the orbitals. Either density matrices or the set of
occupation numbers and orbitals can be taken as the pri-
mary unknowns in the self-consistency problem. Density
matrices are impractical numerically in plane-wave ba-
sis sets, since they are Nb ×Nb; however, they are very
convenient to formulate and analyze algorithms. Accord-
ingly, we will use them in this theoretical section, but
implement the resulting algorithms using orbitals only.

We work on the sets

H = {H ∈ RNb×Nb , HT = H} (3)

P = {P ∈ H, 0 < P < 1} (4)

of Hamiltonians and density matrices, equipped with
the standard Frobenius metric. Here and in the fol-
lowing, inequalities between matrices are understood
in the sense of symmetric matrices. The closure
P = {P ∈ H, 0 ≤ P ≤ 1} is compact. Let E0 be a twice
continuously differentiable function on P: we aim to solve
the problem

min
P∈P
E0(P ). (5)

Let

HKS(P ) = ∇E0(P ) (6)

be its gradient, and

K(P ) = d2E0(P ) = d∇E0(P ) (7)

be its Hessian. We will denote in bold “super-operators”
or “four-point operators”, operators from H to H. Let s
be the fermionic entropy

s(p) = −(p log p+ (1− p) log(1− p)), (8)

with derivatives

s′(p) = log

(
1− p
p

)
, s′′(p) = − 1

p(1− p)
. (9)

Let

E(P ) = E0(P )− 1

β
Tr(s(P ))− µTrP. (10)

be the free energy of a density matrix, where here and
in the following we use functional calculus implicitly to
define s(P ) ∈ H. E diverges on the boundary of P,
whose closure is compact, and therefore E has at least
one minimizer in P. The first-order optimality condition
∇E(P ) = 0 gives

HKS(P )− µ− 1

β
s′(P ) = 0, (11)

and therefore

P = fFD(HKS(P )), (12)

where we define the Fermi-Dirac map fFD by

fFD(H) =
1

1 + eβ(H−µ)
. (13)

Here we have used the equation s′(fFD(ε)) = β(ε − µ),
which will also be useful in the following. Although we
use the Fermi-Dirac smearing function for concreteness,
our results apply just as well to Gaussian smearing for
instance; however, they don’t apply to schemes with non-
monotonous occupations such as the Methfessel-Paxton
scheme24.

B. The dual energy

Reformulating the ideas in Gonze 22 , we now define a
“dual” energy

I(H) = E(fFD(H)). (14)

Since the map fFD is a bijection from H to P, we have

min
H∈H

I(H) = min
P∈P
E(P ). (15)

This is analogous to convex duality since the unknown in
this formulation is now H = ∇E(P ).

We can compute the derivative χ0 = dfFD of fFD (see
Lemma 1 in the Appendix for details):

χ0

(
Nb∑
i=1

εi|φi〉〈φi|

)
· δH

=

Nb∑
i=1

Nb∑
j=1

fFD(εi)− fFD(εj)

εi − εj
〈φi, δHφj〉|φi〉〈φj |

(16)
The linear map χ0 is a “four-point” generalization of
the independent-particle polarizability. It describes the
change to the density matrix of a system of independent
electrons to a change in Fock matrix.
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We then have

∇I(H) = χ0(H)∇E(fFD(H))

= χ0(H)
(
HKS(fFD(H))− µ− 1

β
s′(fFD(H))

)
= χ0(H)(HKS(fFD(H))−H)

(17)
where again we used s′(fFD(ε)) = β(ε− µ).

The Hessian of I is a complicated object due to
the derivative of χ0(H). However, at a solution of
HKS(fFD(H∗)) = H∗, this term vanishes, and we have
the simple result

d2I(H∗) = −χ0(H∗)(1−K(H∗)χ0(H∗)) (18)

To better understand this object, we compute the Hes-
sian of E . From ∇E(P ) = HKS(P )− 1

β s
′(P )− µ we get

d2E(P ) · δP = K(HKS(P )) · δP

− 1

β

Nb∑
i=1

Nb∑
j=1

s′(pi)− s′(pj)
pi − pj

〈φi, δPφj〉|φi〉〈φj |.

(19)
Defining

Ω

(
Nb∑
i=1

εi|φi〉〈φi|

)
· δP

= −
Nb∑
i=1

Nb∑
j=1

εi − εj
fFD(εi)− fFD(εj)

〈φi, δPφj〉|φi〉〈φj |

(20)
we get

d2E(P ) = K(HKS(P )) + Ω(f−1FD(P )). (21)

The point of this formula is to recognize now that
Ω(H) = −χ0(H)−1. This links the Hessians of E and
I: at a fixed point H∗ = HKS(fFD(H∗)),

d2E(fFD(H∗)) = Ω(H∗)d
2I(H∗)Ω(H∗). (22)

Since Ω is self-adjoint and positive definite, both Hes-
sians have the same inertia (number of negative eigen-
values).

C. Hamiltonian mixing

The very simplest Hamiltonian mixing algorithm is

Hn+1 = HKS(fFD(Hn)). (23)

As already recognized in Reference 22, (17) makes it pos-
sible to reinterpret this simple algorithm in a new light:
it is a gradient descent algorithm on I with step 1, pre-
conditioned by χ0(Hn)−1. It is natural to use a smaller
stepsize to try to ensure convergence, and indeed this is
guaranteed to work:

Theorem 1. Let H0 ∈ H. There is α0 > 0 such that,
for all 0 < α < α0, the algorithm

Hn+1 = Hn + α(HKS(fFD(Hn))−Hn) (24)

satisfies HKS(fFD(Hn)) − Hn → 0. If furthermore E
is analytic, Hn converges to a solution of the equation
HKS(fFD(H)) = H.

Adaptive-step schemes can also ensure guaranteed con-
vergence:

Theorem 2. Fix H0 ∈ H, and constants 0 < αmax < 1,
0 < c < 1, 0 < τ < 1. Consider the algorithm

Hn+1 = Hn + αn(HKS(fFD(Hn))−Hn) (25)

where αn is chosen in the following way: starting from
αmax, decrease αmax by a factor τ while the Armijo line
search condition

I(Hn + αn(HKS(fFD(Hn))−Hn))

≤ I(Hn)− αnc〈Ω(fFD(Hn))∇I(Hn),∇I(Hn)〉
(26)

is not verified. Then this algorithm satisfies
HKS(fFD(Hn)) − Hn → 0. If furthermore E is an-
alytic, Hn converges to a solution of the equation
HKS(fFD(H)) = H.

The proofs of both these statements are found in the
Appendix.

The adaptive-step scheme above however suffers from
two important drawbacks. First, it is costly (requiring
several SCF steps per iteration). Second, it is imcompat-
ible with preconditioned or accelerated schemes because,
in contrast to the SCF direction, there is no guarantee in
these cases that the chosen direction is a descent direc-
tion to the energy. This would make a straightforward
implementation of the above algorithm uncompetitive for
“easy” systems, and therefore motivates the search for a
compromise algorithm that tries to recover some robust-
ness properties while not sacrificing performance.

D. Potential mixing

We now specialize the above discussion to our
case of interest of semi-local density-functional the-
ory (DFT) models. We introduce the operators
diag : RNb×Nb → RNb and diagm : RNb → RNb×Nb . The
diag operator takes the diagonal (in real space) of a den-
sity matrix, yielding a density. The diagm operator con-
structs a Fock matrix contribution with a given local po-
tential. Both operators are adjoint of each other. With
these notations, the energy function takes the form

E0(P ) = Tr(H0P ) + g (diag(P )) , (27)

where H0 is a given operator (the core Hamiltonian)
and g is a nonlinear function (the Hartree-exchange-
correlation energy). For these models the gradient of
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E0(P ) (the Fock matrix) depends on diag(P ) (the den-
sity) only:

HKS(P ) = H0 + diagm(V (diag(P ))), (28)

with the potential

V (ρ) = ∇g(ρ) ∈ RNb . (29)

Based on (13) and the definition of the density we define
the potential-to-density mapping

ρ(V ) = diag(fFD(H0 + diagm(V ))), (30)

which allows to solve the self-consistency problem (12)
by iteration in the potential V only:

Vn+1 = Vn + αδVn, (31)

where we defined the search direction

δVn = V (ρ(Vn))− Vn. (32)

The corresponding energy functional minimized by this
fixed-point problem is

I(V ) = E(fFD(H0 + diagm(V ))). (33)

Compared to an algorithm based on Kohn-Sham Hamil-
tonians as suggested in Section II C this formulation has
the advantage that only vector-sized potentials Vn in-
stead of matrix-sized quantities need to be handled.

The analysis of the previous sections carries forward
straightforwardly to the potential mixing setting. In par-
ticular one identifies as the analogue of K the Hessian of
g, i.e. the (two-point) Hartree-exchange-correlation ker-
nel K, and as the analogue of χ0 the derivative of V (ρ),
which is the independent-particle susceptibility χ0. The
latter becomes apparent by comparing (16) to the Adler-
Wiser formula for χ0

25,26

χ0(V ) =

Nb∑
i=1

Nb∑
j=1

fFD(εi)− fFD(εj)

εi − εj
|φ∗iφj〉〈φ∗iφj | (34)

in which (εi, φi) denotes the eigenpairs of H0+diagm(V ).
Both K and χ0 arise naturally when considering the Ja-
cobian matrix

Jα = 1− α
(
1−K(V∗)χ0(V∗)

)
(35)

of the potential-mixing SCF iteration (31) near a fixed
point V∗. If the eigenvalues of Jα are between −1 and 1
the potential-mixing SCF iterations converge. By anal-
ogy with Hamiltonian mixing, Theorem 1 guarantees that
global convergence can always be ensured by selecting
α small enough. In this respect our results from Sec-
tion II C strengthen a number of previous results17,22,27,
which established local convergence for sufficiently small
α.

E. Improving the search direction δVn:
Preconditioning and acceleration

The Jacobian matrix (35) involves the dielectric ma-
trix ε(V ) = 1 − K(V )χ0(V ), which can become badly
conditioned for many systems. In such cases, a very
small step must be employed to ensure stability (small-
est eigenvalue of Jα larger than −1), which slows down
convergence (largest eigenvalue of Jα very close to 1) to
a level too slow to be practical. A solution is to improve
the search direction δVn to ensure faster convergence1.
This is usually achieved by a combination of techniques
jointly referred to as “mixing”, which amend δVn using
both preconditioning as well as convergence acceleration.

Employing a preconditioned search direction

δVn = P−1[V (ρ(Vn))− Vn] (36)

in a damped SCF iteration, the corresponding Jacobian
becomes

Jα = 1− αP−1ε(V ). (37)

Provided that the inverse P−1 approximates the inverse
dielectric matrix ε−1 sufficiently well, the spectrum of
P−1ε is close to 1, so that a larger damping α and and
faster iteration is possible. While suitable cheap precon-
ditioners P are not yet known for all sources of bad condi-
tioning in SCF iterations, a number of successful strate-
gies have been suggested. Examples include Kerker mix-
ing28 to improve SCF convergence in metals or LDOS-
based mixing11 to tackle heterogeneous metal-vacuum or
metal-insulator systems. For a more detailed discussion
on this matter we refer the reader to Reference 11.

An additional possibility to speed up convergence
is to use black-box convergence accelerators. These
techniques build up a history of the previous iterates
V1, . . . , Vn as well as the previous preconditioned residu-
als P−1R1, . . . , P

−1Rn (with Rn = V (ρ(Vn)) − Vn) and
use this information to obtain the next search direction
δVn. The most frequently used acceleration technique in
this context is variously known as Pulay/DIIS/Anderson
mixing/acceleration, which we will refer to as Anderson
acceleration. This method obtains the search direction
as a linear combination

δVn = P−1Rn

+
1

α

n−1∑
i=1

βi
(
Vi + αP−1Ri − Vn − αP−1Rn

) (38)

where the expansion coefficients βi are found by mini-
mizing ∥∥∥∥∥P−1Rn +

n−1∑
i=1

βi
(
P−1Ri − P−1Rn

)∥∥∥∥∥ . (39)

In practice, it is impractical to keep a potentially large
number of past iterates, and only the last 10 iterates are
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taken into account. Furthermore, the associated linear
least squares problem can become ill-conditioned29. We
use the simple strategy of discarding past iterates to en-
sure a maximal conditioning of 106.

This method is known to be equivalent to a multise-
cant Broyden method. In the linear regime and with in-
finite history Anderson acceleration is further equivalent
to the well-known GMRES method to solve linear equa-
tions. For details see Reference30 and References therein.
Provided that nonlinear effects are negligible, Anderson
acceleration typically inherits the favorable convergence
properties of Krylov methods31, explaining their frequent
use in the DFT context. However, especially at the be-
ginning of the SCF iterations or when treating systems
that feature many close SCF minima, nonlinear effects
can become important. In such cases the behavior of
Anderson is more complex and mathematically not yet
fully understood. In particular the dependence of the
convergence behavior on numerical parameters such as
the chosen damping can become less regular and harder
to interpret, as we will see in our numerical examples in
Sections IV B and IV C.

III. ADAPTIVE DAMPING ALGORITHM

Up to now we have assumed that the step size α is
constant, reflecting common practice in plane-wave DFT
computations. We now describe the main contribution
of this paper, an algorithm to adapt this step size to in-
crease robustness and minimize user intervention into the
convergence process. At step n of the algorithm, given a
trial potential Vn, we compute the search direction δVn
through (38), and look for a step αn to take as

Vn+1 = Vn + αnδVn (40)

Note that the definition of δVn itself in (38) depends on
a stepsize α; since our scheme will adapt αn to δVn, we
cannot just take α = αn in (38), and so we use for α a
trial damping α̃ (to be discussed in Section III C).

To select αn, we could try to minimize I(Vn+1), or
employ an Armijo line-search strategy. However, each
evaluation of I is very costly, and it is therefore desir-
able to obtain efficient approximate schemes. The energy
I(V + αδVn), can be expanded as

I(Vn + αδVn) = I(Vn) + α〈χ0(Vn)Rn, δVn〉

+
1

2
α2〈δVn, d2I(Vn) · δVn〉+O(α3‖δVn‖3),

(41)
where we have used ∇I(Vn) = χ0(Vn)Rn. This approx-
imation is good for small dampings α and/or close to
the solution, when δVn is small. The object d2I is com-
plicated and expensive to compute in general. However,
close to a fixed point, we can use the expression (18) to
write d2I(Vn) ≈ χ0(Vn)(1−K(Vn))χ0(Vn). We can then

approximate the terms in (41), leading to the model

ϕn(α) = I(Vn) + α 〈Rn, χ0(Vn)δVn〉

− 1

2
α2
〈
χ0(Vn)δVn,

[
1−K(Vn)χ0(Vn)

]
δVn

〉 (42)

for the energy, where we have used the self-adjointness of
χ0(Vn) to make it act only on δVn. To compute the coeffi-
cients in this model, we still need to compute χ0(Vn)δVn,
a costly operation. However, for all α we have to first
order

αχ0(Vn)δVn = ρ(Vn + αδVn)− ρ(Vn) +O(α2‖δVn‖2).
(43)

Note that if we set Vn+1 = Vn+αnδVn and then proceed
along the iterative algorithm, we will have to compute
ρ(Vn+1) in any case. An approximation to the coefficients
of the model ϕn can therefore be constructed without any
extra diagonalization.

This is the basis of the adaptive damping scheme de-
scribed in Algorithm 1. Since ρ(Vn) is already known
(it is needed to construct δVn), the only expensive step
in this algorithm is the computation of ρ(Vn+1), which
occurs only once per loop iteration. In particular, when
set to always accept Vn+1, this algorithm reduces to the
standard damped SCF algorithm. Notice that the algo-
rithm only allows αn to shrink between iterations. As a
result (i) the model ϕn provides better and better damp-
ing predictions and (ii) keeping in mind our analysis of
Section II C the proposed tentative steps Vn+1 become
more likely to be accepted.

Algorithm 1 Adaptive damping algorithm

Input: Current iterate Vn, search direction δVn, trial damp-
ing α̃

Output: Damping αn, next iterate Vn+1

1: αn ← α̃
2: loop
3: Make tentative step Vn+1 = Vn + αnδVn
4: Compute ρ(Vn+1), I(Vn+1) (the expensive step)
5: if accept Vn+1 (see Section III A) then
6: break
7: else
8: Build the coefficients of the model ϕn
9: if model ϕn is good (see Section III B) then

10: αn ← argminα ϕn(α)
11: Scale αn to ensure |αn| is strictly decreasing
12: else
13: αn ← αn

2
14: end if
15: end if
16: end loop

We complete the description of the algorithm by spec-
ifying some practical points: when to accept a step, how
to determine whether a model is good, how to select the
initial trial step α̃ and how to integrate adaptive damping
with Anderson acceleration.
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A. Step acceptance

We accept the step as soon as the proposed next iterate
Vn+1 = Vn + αnδVn satisfies

I(Vn+1) < I(Vn) or
∥∥P−1Rn+1

∥∥ < ∥∥P−1Rn∥∥ ,
(44)

i.e. if either the energy or the preconditioned residual de-
creases. Although accepting steps higher in energy may
decrease the robustness of the algorithm, we found in
practice that accepting steps that decrease the residual
helps keeping the method effective in the later stages of
convergence, when the Anderson acceleration is able to
take efficient steps that may slightly increase the energy
but are not worth reverting.

B. Quality of the model ϕn

Our model ϕn makes various assumptions that might
not hold in practice, especially far from convergence.
However, by comparing the actual energy I(Vn+αnδVn)
to the prediction ϕn(αn), we can inexpensively check the
quality of the model. We do this by computing the ratio

rn =
|I(Vn + αnδVn)− ϕn(αn)|
|I(Vn + αnδVn)− I(Vn)|

, (45)

which should be small if the model is accurate. We deem
the model good enough if

rn < 0.1 and ϕn has a minimum. (46)

Notice that the minimizer of ϕn may not necessarily be
positive. For particularly accurate models (rn < 0.01)
we additionally allow backward steps (i.e. αn < 0), which
turned out to overall improve convergence in our tests.

C. Choice of the trial step α̃

To ensure that as many as possible SCF steps only re-
quire a single line search step, we dynamically adjust α̃
between two subsequent SCF steps. A natural approach
is to reuse the adaptively determined damping αn as the
α̃ in the next line search, which effectively shrinks α̃ be-
tween SCF steps. However, the algorithm may need small
values of α̃ in the initial stages of convergence, and keep-
ing these small values for too long limits the eventual
convergence rate. To counteract the decreasing trend,
we allow α̃ to increase if a line search was immediately
successful (i.e. αn = α̃). In this case we again use the
model ϕn. If it is sufficiently good (as described in Sec-
tion III B), we set

α̃← max
(
α̃, 1.1 · argmin

α
ϕn(α)

)
. (47)

Otherwise α̃ is left unchanged.

As an additional measure, to prevent the SCF from
stagnating we enforce α̃ to not undershoot a minimal
trial damping α̃min. We used mostly α̃min = 0.2 as a
baseline, and report varying this parameter in the nu-
merical experiments.

With this dynamic adjustment of α̃, we checked that its
initial value α̃0, i.e. the value used in the first SCF step,
has little influence on the overall convergence behavior.
However, in well-behaved cases, too small values for this
parameter lead to an unnecessary slowdown of the first
few SCF steps. We therefore settled on α̃0 = 0.8 similar
to standard recommendations for the default damping32.

IV. NUMERICAL TESTS

The adaptive damping algorithm described in Section
III was compared against a conventional preconditioned
damped potential-mixing SCF scheme featuring only a
fixed damping. For this we employed three kinds of
test problems. The first are calculations on aluminium
systems of various size including cases with an unsuit-
able computational setup, i.e. where charge sloshing is
not prevented by employing the Kerker preconditioner.
These are discussed in more detail in Section IV A. The
second, discussed in Section IV B, is a gallium arsenide
system which we previously found to feature strongly
nonlinear behavior in the initial SCF steps11. Lastly in
section Section IV C we will consider Heusler systems and
other transition-metal compounds, which are generally
found to be difficult to converge.

For our tests we used the implementation of the
adaptive damping algorithm available in the density-
functional toolkit (DFTK)33,34, a flexible open-source
Julia package for plane-wave density-functional theory
simulations. For all calculations we used Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional35 as
implemented in the libxc36 library, and Goedecker-Teter-
Hutter pseudopotentials37. Depending on the system, a
kinetic energy cutoff between 20 and 45 Hartree as well
as an unshifted Monkhorst-Pack with a maximal k-point
spacing of at most 0.14 inverse Bohrs was used. For the
Heusler systems this was reduced to at most 0.08 inverse
Bohrs. With the exception of the gallium arsenide system
a Gaussian smearing scheme with width of 0.001 Hartree
was employed. For the systems containing transition-
metal elements collinear spin polarization was allowed
and the initial guess was constructed assuming ferromag-
netic spin ordering except when otherwise noted. Notice,
that this initial guess is generally not close to the final
spin ordering, see Section IV C for discussion regarding
this choice. The full computational details for each sys-
tem (including the employed structures) as well as in-
structions how to reproduce all results of this paper can
be found in our repository of supporting information38.

Table I summarizes the required number of Hamilto-
nian diagonalizations to converge the SCF energy to an
error of 10−10 Hartree for various fixed dampings α as
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System Precond. fixed damping α adaptive

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 damping

Al8 supercell Kerkera × 58 37 27 21 16 13 11 12 18 17

Al8 supercell Nonea × 52 × × × × × × × × 24

Al40 supercell Kerker 19 15 14 12 11 12 12 12 12 12 12

Al40 supercell None 38 40 40 39 44 50 49 × 76 × 44

Al40 surface Kerker × × × × × × × × × × ×
Al40 surface None 46 48 50 49 51 60 61 66 89 × 49

Ga20As20 supercell None 26 33 40 42 45 44 70 70 65 76 26

CoFeMnGa Kerker × × × × 28 21 24 28 22 22 30

Fe2CrGa Kerker × × × 27 × × 19 25 × 22 39

Fe2MnAl Kerker × 48 × × × 20 21 17 16 15 34

FeNiF6 Kerker × × × × × × × 23 22 21 24

Mn2RuGa Kerker × × × × 37 24 23 22 23 23 36

Mn3Si Kerker × × × × 26 30 22 20 × × ×
Mn3Si (AFM)b Kerker × × 58 29 31 30 20 22 26 28 35

Cr19 defect Kerker × × × 74 46 48 46 41 47 53 48

Fe28W8 multilayer Kerker 32 34 37 34 38 43 41 48 × × 37
awithout Anderson acceleration
binitial guess with antiferromagnetic spin ordering

TABLE I. Number of Hamiltonian diagonalizations required to obtain convergence in the energy to 10−10 with a cross (×)
denoting a failure to converge within 100 diagonalizations. Except where otherwise noted Anderson acceleration has been
employed and for the transition-metal systems (third/fourth group of compounds) a ferromagnetic initial guess has been
used. On supercells atomic positions were slightly randomised. Computational details are given in the text. Notice that the
transition-metal systems may not converge to the same SCF solution for each calculation.

well as the adaptive damping algorithm. We carefully
verified the obtained solutions to be stationary points by
monitoring the SCF residual Rn. Note that for the adap-
tive damping procedure the number of SCF steps is not
identical to the number of Hamiltonian diagonalizations,
since multiple tentative steps might be required until a
step is accepted. Since iterative diagonalization overall
dominates the cost of the SCF procedure, the number
of diagonalizations provides a better metric to compare
between the cost of both damping strategies.

A. Inadequate preconditioning: Aluminum

To investigate the influence of the choice of a subopti-
mal preconditioner on the convergence for both the fixed
damping and adaptive damping strategies we considered
three aluminium test systems: two elongated bulk su-
percells with 8 or 40 atoms as well as a surface with 40
atoms and a portion of vacuum of identical size. For the
elongated supercells both the initial guess as well as the
atomic positions were slightly rattled.

The results are summarized in the first segment of Ta-
ble I. For the small Al8 system, where Anderson accel-
eration was not used, representative convergence curves
are shown in Figure 1. Due to the well-known charge-
sloshing behavior, SCF iterations on such metallic sys-
tems are ill-conditioned. Without preconditioning small

fixed damping values α are thus required to obtain con-
vergence, with only a small window of damping values be-
ing able to achieve a convergence within 100 Hamiltonian
applications. On the other hand in combination with the
matching Kerker preconditioning strategy28 large fixed
damping values generally converge more quickly.

In contrast the adaptive damping strategy is much
less sensitive to the choice of the minimal trial damping
α̃min. Moreover, it leads to a much improved convergence
for the case without suitable preconditioning while still
maintaining similar costs if Kerker mixing is employed.

These observations carry over to cases including An-
derson acceleration and larger aluminium systems, see
Figure 2 for a representative computation on an alu-
minium surface. Notice that Kerker mixing is extremely
badly suited for the large aluminium surface, such that
convergence is not obtained in 100 Hamiltonian for any
of the damping strategies, see Reference 11 for a better
preconditioner in such inhomogeneous systems. Overall
employing adaptive damping therefore makes the reliabil-
ity and efficiency of the SCF less dependent on the choice
of the preconditioning strategy, while not requiring the
user to manually select a damping parameter.
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FIG. 1. SCF convergence for a randomized aluminium su-
percell (8 atoms) without Anderson acceleration and using
simple mixing (top) as well as Kerker mixing(bottom). The
adaptive scheme converges robustly even in the unprecondi-
tioned case, without requiring the manual selection of a step.

FIG. 2. SCF convergence without preconditioning for an
elongated supercell of an aluminium surface with 40 alu-
minium atom and a vacuum portion of equal size. A fixed
step of α = 0.1 was optimal here, but the adaptive scheme
gets very close performance without manual stepsize selection.

FIG. 3. Elongated gallium arsenide supercell (20 gallium and
20 arsenide atoms) with slightly randomized atomic positions.
For all cases, simple mixing and Anderson acceleration are
employed.

B. Strong nonlinear effects: Gallium arsenide

In previous work we identified elongated supercells of
gallium arsenide with slightly perturbed atomic positions
to be a simple system that still exhibits strong nonlinear
effects when the SCF is far from convergence11. In the
convergence profiles of these systems this manifests by
the error shooting up abruptly with Anderson failing to
quickly recover. In Figure 3, for example, the error in-
creases steeply between Hamiltonian diagonalizations 3
and 6 for the fixed-damping approaches with stepsizes
beyond 0.1. It should be noted that this behavior is an
artefact of the interplay of Anderson acceleration and
damped SCF iterations on these systems, which is not
observed in case Anderson acceleration is not employed.
For more details see the discussion of the gallium arsenide
case in Ref. 11.

For the calculations employing a fixed damping strat-
egy only small damping values of α = 0.1 are able to
prevent this behavior. Already slightly larger damping
values noticably increase the number of Hamiltonian di-
agonalizations required to reach convergence (compare
Table I), and thus a careful selection of the damping
value is in order for such systems. In contrast the pro-
posed adaptive damping strategy with our baseline min-
imal trial damping of α̃min = 0.2 automatically detects
the unsuitable Anderson steps and downscales them. As
a result an optimal or near-optimal cost is obtained with-
out any manual parameter tuning. For comparison, we
also display in Figure 3 the results with a large value of
α̃min = 0.5, which prevents the damping algorithm to
avoid the nonlinear effects.
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FIG. 4. Convergence of the Fe2CrGa Heusler alloy with
Kerker mixing without Anderson acceleration (top) and with
Anderson acceleration (bottom). Notice that the SCF cal-
culations do not necessarily converge to the same local SCF
minimum.

C. Challenging transition-metal compounds

In this section we discuss two types of transition-metal
systems. First, we consider a selection of smaller prim-
itive unit cells, including the mixed iron-nickel fluoride
FeNiF6 as well a number of Heusler-type alloy struc-
tures, see the third group of Table I. These structures
were found found in the course of high-throughput com-
putations to be difficult to converge39. Moving to larger
systems we considered an elongated chromium supercell
with a single vacancy defect as well as a layered iron-
tungsten system, see the fourth group of Table I. Both
test cases were taken from previous studies20,40 on SCF
algorithms.

In particular the Heusler compounds are known to ex-
hibit rich and unusual magnetic and electronic proper-
ties. From our test set, for example, Fe2MnAl shows
halfmetallic behaviour, i.e. a vanishing density of states
at the Fermi level in only the minority spin channel41.
Other compounds, such as Mn2RuGa or CoFeMnGa
show an involved pattern of ferromagnetic and antifer-
romagnetic coupling of the neighboring transition-metal

sites42,43. Such effects are closely linked to the d-orbitals
forming localized states near the Fermi level44,45 and im-
ply that there are a multiple accessible spin configura-
tions, which are close in energy. Unfortunately these
two properties also make Heusler compounds difficult to
converge using standard methods. First, localized states
near the Fermi level are a source of ill-conditioning for
the SCF fixed-point problem11, with no cheap and widely
applicable preconditioning strategy being available. Sec-
ond, the abundance of multiple spin configurations im-
plies a more involved SCF energy landscape with multi-
ple SCF minima. On such a landscape convergence may
easily “hesitate” between different local minima or sta-
tionary points. Furthermore the setup of an appropriate
initial guess, which ideally guides the SCF towards the
final spin ordering requires human expertise and is hard
to automatise in the high-throughput setting. Albeit not
fully appropriate for the systems we consider, we followed
the guess setup, which has also been used in the afore-
mentioned high-throughput procedure39, namely to start
the calculations with an initial guess based on ferromag-
netic (FM) spin ordering.

As a result in our tests, calculations on Heusler sys-
tems without Anderson acceleration require very small
fixed damping values below 0.1 even if the Kerker precon-
ditioner is used, see Figure 4 (a). The adaptive damping
strategy improves the convergence behavior and in agree-
ment with our previous results partially corrects for the
mismatch in preconditioner and initial guess. Still, con-
vergence is extremely slow.

An acceptable convergence is only accessible in com-
bination with Anderson acceleration. However, the
Anderson-accelerated fixed-damping SCF is very suscep-
tible to the chosen damping α, see Figure 4 (b). In par-
ticular the lowest-energy SCF minimum is only found
within 100 Hamiltonian diagonalizations for α = 0.4,
α = 0.7, α = 0.8 and α = 1.0. Other fixed damping
values initially converge, but then convergence stagnates
and the error only reduces very slowly beyond around 30
diagonalizations.

We investigated the source of this pathological behav-
ior by restarting the iterations after stagnation. This did
not noticeably alter the behavior, eliminating the possi-
bility that the history of the iterates within the Anderson
acceleration scheme somehow “jam” the SCF into stag-
nation in the strongly nonlinear regime — as can happen
for instance in nonlinear conjugate gradient methods46.
Another possibility is that the iterations somehow got
into a particularly rough region of SCF energy landscape
between multiple stationary points, which is simply hard
to escape. However, this is not the case either. For in-
stance on the Fe2CrGa system with a fixed damping of
0.3, the restarted iterations did converge quickly using an
Anderson scheme with a small maximal conditioning of
102 for the linear least squares problem. It would there-
fore appear that this phenomenon is due to inadequate
regularization of the least squares problem. We expect
more sophisticated techniques for controlling the Ander-
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FIG. 5. Convergence of the Mn3Si Heusler compound with
Kerker mixing and Anderson acceleration and starting from
a ferromagnetically ordered initial guess. Small dampings are
susceptible to stagnation induced by Anderson instabilities.

son history30 to be worth investigating for such systems
in the future.

Because of this stagnation issue we found Anderson-
accelerated SCF iterations to become unreliable for our
transition-metal test systems: for fixed damping values
below α = 0.5, hardly any calculation converges. No-
tably, due to the non-trivial interplay with the Anderson
scheme, this result is the exact opposite to our theoret-
ical developments on damped SCF iterations in Section
II C, which suggested to reduce the damping to achieve
reliable convergence.

Overall the transition-metal cases emphasize the diffi-
culty in manually choosing an appropriate fixed damping.
For a number of cases the window of converging damping
values is rather narrow, e.g. consider Fe2CrGa, FeNiF6

or Mn3Si (with the FM guess) and in our tests only a
single damping value of α = 0.8 fortitiously manages to
converge all systems.

In contrast the proposed adaptive damping strategy
with our baseline value of α̃min = 0.2 is less suscepti-
ble to the stagnation issue. Across the unit cells and
extended transition-metal systems we considered we ob-
served only a convergence failure in one test case, namely
the Mn3Si Heusler alloy with the FM guess, see Figure 5.
For some test cases, adaptive damping did cause a notice-
able computational overhead: in extreme cases (such as
Fe2CrGa or Fe2MnAl) the number of required Hamilto-
nian diagonalizations almost doubles. However, it should
be emphasized that no user adjustments were needed
to obtain these results, even though adaptive damping
has been constructed on the here invalid principle that
smaller damping increases reliability.

Yet even on cases where Anderson instabilities cause
non-convergence of the adaptive scheme, fine-tuning is
possible. Increasing the minimal trial damping from
α̃min = 0.2 to α̃min = 0.5, for example, increases the
minimal step size and thus lowers the risk of Ander-

son stagnation. For all transition-metal cases we con-
sidered α̃min = 0.5 strictly reduces the number of diag-
onalizations required to reach convergence compared to
α̃min = 0.2, see for example Figure 4 (b). Moreover this
parameter adjustment even resolves the convergence is-
sues of Mn3Si, see Figure 5. If manual intervention is
possible another option is to incorporating prior knowl-
edge of the final ground state electronic structure into
the initial guess. For the Mn3Si case, for example, an im-
proved initial guess based on an antiferromagnetic spin
ordering (AFM) between adjacent manganese layers sim-
plifies the SCF problem, such that both a larger range
of fixed damping values as well as the adaptive damping
strategy give rise to converging calculations.

V. CONCLUSION

We proposed a new linesearch strategy for SCF com-
putations, based on an efficient approximate model for
the energy as a function of the damping. Our algorithm
follows four general principles: (a) the algorithm should
need no manual intervention from the user; (b) it should
be combinable with known effective mixing techniques
such as preconditioning and Anderson acceleration; (c)
in “easy” cases where convergence with a fixed damping
is satisfactory it should not slow down too much; and
(d) it should be possible to relate it to schemes with
proved convergence guarantees. We demonstrated that
our proposed scheme fulfills all these objectives. With
our default parameter choice of α̃min = 0.2 the resulting
adaptively damped SCF algorithm is able to converge all
of the “easy” cases faster or almost as fast as the fixed-
damping method with the best damping. Simultaneously
it is more robust than the fixed-damping method on the
“hard” cases we considered, such as elongated bulk met-
als and metal surfaces without proper preconditioning or
Heusler-type transition-metal alloys. In particular the
latter kind of systems feature a very irregular conver-
gence behavior with respect to the damping parameter,
making a robust manual damping selection very challeng-
ing. In practice the classification between “easy” and
“hard” cases may well depend on the considered system
and the details of the computational setup, e.g. the em-
ployed mixing and acceleration techniques. However, our
scheme makes no assumptions about the details how a
proposed SCF step has been obtained. We therefore be-
lieve adaptive damping to be a black-box stabilisation
technique for SCF iterations, which applies beyond the
Anderson-accelerated setting we have considered here.

Still, our results on these “hard” cases also highlight
poorly-understood limitations of the commonly used An-
derson acceleration process. For example, despite fol-
lowing standard recommendations to increase Anderson
robustness, we frequently observe SCF iterations to stag-
nate. A more thorough understanding of this effect would
be an interesting direction for future research.

Our scheme was applied to semilocal density function-



12

als in a plane-wave basis set. It is not specific to plane-
wave basis sets, and we expect it to be similarly efficient
in other “large” basis sets frequently used in condensed-
matter physics. For atom-centered basis sets, like those
common in quantum chemistry, direct mixing of the den-
sity matrix is feasible, and likely more efficient. Our
scheme does not apply directly to hybrid functionals,
where orbitals or Fock matrices have to be mixed also; an
extension to this case would be an interesting direction
for future research.
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APPENDIX: MATHEMATICAL PROOFS

Lemma 1. Let

H∗ =

Nb∑
i=1

εi|φi〉〈φi| (48)

with orthonormal φi and non-decreasing εi. Let f :
R → R be a real analytic function in a neighborhood
of [ε1, εNb

]. Then the map H 7→ f(H) is analytic in
a neighborhood of H∗, and

df(H∗) · δH =

Nb∑
i=1

Nb∑
j=1

f(εi)− f(εj)

εi − εj
〈φi, δHφj〉|φi〉〈φj |

(49)

with the convention that f(εi)−f(εi)
εi−εi = f ′(εi).

Proof of Lemma 1. This is a classical result, known
as the Daleckii-Krein theorem in linear algebra; see for
instance Higham47. To keep this paper self-contained,
we follow here the proof in Levitt48 in the analytic case.
Since f is analytic on [ε1, εNb

], it is analytic in a complex
neighborhood. Let C be a positively oriented contour
enclosing [ε1, εNb

]. Then, for H close enough to H∗, we
have

f(H) =
1

2πi

∮
C
f(z)

1

z −H
dz (50)

and analyticity of f follows. For δH small enough,

f(H∗ + δH)

=
1

2πi

∮
C
f(z)

1

z −H∗ − δH
dz

≈ f(H∗) +
1

2πi

∮
C
f(z)

1

z −H∗
δH

1

z −H∗
dz

= f(H∗) +
1

2πi

∮
C

Nb∑
i=1

Nb∑
j=1

f(z)〈φi, δHφj〉
(z − εi)(z − εj)

|φi〉〈φj |dz

= f(H∗) +

Nb∑
i=1

Nb∑
j=1

f(εi)− f(εj)

εi − εj
〈φi, δHφj〉|φi〉〈φj |

(51)
where ≈ means up to terms of order O

(
‖δH‖2

)
.

Proof of Theorem 1. If α0 ≤ 1, Hn belongs to the
convex hull spanned by H0 and {HKS(fFD(H)), H ∈ H}.
On this compact set X, fFD, I and their derivatives are
bounded. We have for all H ∈ X

I(H + α(HKS −H))

= I(H)− α〈Ω−1(HKS −H), (HKS −H)〉+O(α2)

= I(H)− α〈Ω∇I(H),∇I(H)〉+O(α2)
(52)

where in this expression the functions Ω and HKS are
evaluated at fFD(H), and the constant in the O(α2) term
is uniform in n. It follows that for α0 small enough, there
is c > 0 such that

I(Hn+1) ≤ I(Hn)− αc‖∇I(Hn)‖2, (53)

and therefore ∇I(Hn)→ 0, so that
HKS(fFD(Hn))−Hn → 0.

We now proceed as in Levitt 49 . Let I∗ =
limn→∞ I(Hn). The set Γ = {H ∈ X,
I(H) = limn→∞ I(Hn)} is non-empty and compact.
Furthermore, d(Hn,Γ) → 0; if this was not the case,
we could extract by compactness of X a subsequence
at finite distance of Γ converging to a H∗ ∈ X satis-
fying I(H∗) = limn→∞ I(Hn), which would imply that
H∗ ∈ Γ, a contradiction.

At every point H of Γ, by analyticity there is a neigh-
borhood of H in H such that the  Lojasiewicz inequality

|I(H ′)− I∗|1−θH ≤ κH‖∇I(H ′)‖ (54)

holds for some constants θH ∈ (0, 1/2], κH > 049,50. By
compactness, we can extract a finite covering of these
neighborhoods, and obtain a  Lojasiewicz inequality with
universal constants θ ∈ (0, 1/2], κ > 0 in a neighborhood
of Γ. Therefore, for n large enough, using the concavity
inequality xθ ≤ yθ+θyθ−1(x−y) with x = I(Hn+1)−I∗,
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y = I(Hn)− I∗, we get

‖∇I(Hn)‖2 ≤ 1

αc
I(Hn)− I(Hn+1)

≤ 1

θαc
(I(Hn)− I∗)1−θ

·
[

(I(Hn)− I∗)θ − (I(Hn+1)− I∗)θ
]

≤ κ

θαc
‖∇I(Hn)‖

·
[
(I(Hn)− I∗)θ − (I(Hn+1)− I∗)θ

]
‖∇I(Hn)‖ ≤ κ

θαc

[
(I(Hn)− I∗)θ − (I(Hn+1)− I∗)θ

]
(55)

It follows that ‖∇I(Hn)‖ is summable, and therefore
that ‖Hn+1 − Hn‖ is; this implies convergence of Hn

to some H∗. When θ = 1/2 (or, in light of (22), when
d2E(fFD(H∗)) is positive definite), we can get exponen-
tial convergence49.

Note that the bounds used in the proof of the above
statement (for instance, on α0) are extremely pessimistic,
since they rely on the fact that the set of possible P is
bounded, and therefore all density matrices of the form
fFD(HKS(P )) have occupations bounded away from 0
and 1, which results in bounded derivatives for Tr(s(P )).
A more careful analysis is needed to obtain better bounds
(for instance, bounds that are better behaved in the zero
temperature limit).
Proof of Theorem 2. From (52) it is easily seen that
the linesearch process stops in a finite number of iter-
ations, independent on n. This ensures that there is
αmin > 0 such that αmin ≤ αn ≤ αmax. From (26) it
follows that a similar inequality to (53) holds, and the
rest of the proof proceeds as in that of Theorem 1.
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