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Abstract. A robust and efficient uncertainty quantification method is presented for re-
solving the effect of uncertainty on the behavior of multi-physics systems. The extrema
diminishing method in probability space maintains a bounded error due to the interpola-
tion of deterministic samples at constant phase in a transonic airfoil flutter problem.

1 INTRODUCTION

Numerical errors in multi-physics simulations start to reach acceptable engineering
accuracy levels due to the increasing availability of computational resources. Nowadays,
uncertainties in multi-scale models, physical parameter variations, and lack of knowledge
of initial and boundary conditions have a larger effect on computational predictions than
discretization errors. It is, therefore, vital to take these uncertainties into account in
coupled problems to obtain reliable computational predictions for reducing safety factors
by robust design optimization.

Classical Monte Carlo uncertainty quantification for modeling random parameters is
computationally intensive compared to the more efficient Polynomial Chaos method. The
global polynomial approximation employed in the Polynomial Chaos formulation can,
however, give unreliable results for discontinuous responses. Polynomial Chaos methods
also require a fast increasing number of samples with time to maintain a constant accuracy
in unsteady problems.

In this paper, a robust extrema diminishing Polynomial Chaos method is presented
based on Newton-Cotes quadrature in a simplex elements discretization of probability
space [1, 2]. The method results in a bounded error in time-dependent problems by
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performing the uncertainty quantification interpolation of oscillatory samples efficiently
at constant phase. The application to a transonic airfoil flutter problem shows that the
asymptotic pitch angle standard deviation is 16 times larger than the initial condition.

2 MATHEMATICAL UNCERTAINTY QUANTIFICATION PROBLEM

Consider a dynamical system subject to na uncorrelated second-order random input
parameters a(ω) = {a1(ω), .., ana

(ω)} ∈ A with parameter space A ∈ R
na, which governs

an oscillatory response u(x, t, a)

L(x, t, a; u(x, t, a)) = S(x, t, a), (1)

with operator L and source term S defined on domain D × T × A. The spatial and
temporal dimensions are defined as x ∈ D and t ∈ T , with D ⊂ R

d, d = {1, 2, 3}, and
T = [0, tmax]. A realization of the set of outcomes Ω of the probability space (Ω, F , P ) is
denoted by ω ∈ Ω, with F ⊂ 2Ω the σ-algebra of events and P a probability measure.

Here we consider a non-intrusive uncertainty quantification method l which reuses
an existing deterministic solver for fluid-structure interaction simulation of (1). Non-
intrusive uncertainty quantification method l is a combination of a sampling method
g and an interpolation method h. Sampling method g defines the ns sampling points
ak ≡ a(ωk) and returns the deterministic samples v(x, t) = {v1(x, t), .., vns

(x, t)} with
vk(x, t) ≡ u(x, t, ak). Interpolation method h constructs an interpolation surface w(x, t, a)
through the ns samples v(x, t) as a weighted approximation of u(x, t, a).

3 ROBUST EXTREMA DIMINISHING METHOD

The multi-element Polynomial Chaos method l based on Newton-Cotes quadrature
points in simplex elements [1] evaluates the statistical moment integral by dividing pa-
rameter space A into ne non-overlapping simplex elements Aj ⊂ A. A piecewise poly-
nomial approximation w(x, t, a) is then constructed based on ns deterministic solutions
vj,k(x, t) = u(x, t, aj,k) for the values of the random parameters aj,k that correspond to
the ñs Newton-Cotes quadrature points of degree d in the elements Aj

µwi
(x, t) =

ne∑
j=1

∫
Aj

w(x, t, a)ifa(a)da =

ne∑
j=1

ñs∑
k=1

cj,kvj,k(x, t)i, (2)

where cj,k are Polynomial Chaos Newton-Cotes quadrature weights. Here, second degree
Newton-Cotes quadrature is considered in combination with adaptive mesh refinement in
probability space, see Figure 1. It is proven in [2] that the resulting approach satisfies the
extrema diminishing (ED) robustness concept in probability space

min
A

(w(a)) ≥ min
A

(u(a)) ∧ max
A

(w(a)) ≤ max
A

(u(a)) ∀u(a). (3)

The ED property leads to the advantage that no non-zero probabilities of unphysical
realizations can be predicted due to overshoots at discontinuities in the response surface.

2



Jeroen A.S. Witteveen and Hester Bijl

(a) Element (b) Initial grid (c) Adapted grid

Figure 1: Discretization of two-dimensional parameter space A using 2-simplex elements and second-
degree Newton-Cotes quadrature points given by the dots.

4 EFFICIENT INTERPOLATION AT CONSTANT PHASE

Assume that solving equation (1) for realizations of the random parameters ak results
in oscillatory samples vk(t) = u(ak), of which the phase vφk

(t) = φ(t, ak) is a well-defined
monotonically increasing function of time t for k = 1, .., ns. In order to interpolate the
samples v(t) = {v1(t), .., vna

(t)} at constant phase [1], they are transformed into functions
of their phase v̂(vφ(t)) according to v̂k(vφk

(t)) = vk(t) for k = 1, .., ns, see Figure 2. The in-
terpolation ŵ(wφ(t, a), a) of the samples v̂(vφ(t)) is transformed back to an approximation
in the time domain w(t, a) = ŵ(wφ(t, a), a). This uncertainty quantification formulation
for oscillatory responses is proven to achieve a bounded error ε̂(ϕ, a) = ŵ(ϕ, a) − û(ϕ, a)
as function of phase ϕ for periodic responses according to

ε̂(ϕ, a) < δ ∀ϕ ∈ R, a ∈ A, (4)

where δ is defined by
ε̂(ϕ, a) < δ, ∀ϕ ∈ [0, 1], a ∈ A. (5)

The error ε(t, a) = w(t, a) − u(t, a) is also bounded in time under certain conditions, see
[2]. The phases vφ(t) are extracted from the samples using a trial-and-error algorithm
based on the local extrema of the time series v(t).

kv

time t

(a) samples vk(t)

kv^

φphase

(b) samples v̂k(φ)

Figure 2: Oscillatory samples as function of time and phase.
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(a) t = 2.5 (b) Stochastic grid

Figure 3: Response surface of angle of attack α(ω) as function of random natural frequency ratio ω̄(ω)
and free stream velocity U∞(ω) for the transonic airfoil flutter problem.

5 STOCHASTIC TRANSONIC AIRFOIL FLUTTER

The stochastic post flutter behavior of an elastically mounted airfoil in Euler flow is an-
alyzed at a bifurcation parameter value U∗ of 130% of the deterministic linear bifurcation
point. The response of a structural model of a pitch-plunge airfoil with cubic nonlinear
spring stiffness at a Mach number of M∞ = 0.8 is considered. The randomness in the
ratio of natural frequencies ω̄(ω) and free stream velocity U∞(ω) is given by a uniform
and beta distribution with a coefficient of variation of 10% and 1%, respectively.

The response surface approximation of the angle of attack α(t, ω) as function of the
random parameters ω̄(ω) and U∞(ω) given in Figure 3a shows a highly oscillatory response
surface at t = 2.5. The resulting asymptotic standard deviation of σα = 1.6o is a factor
16 larger than the initial angle of attack α(0) = 0.1o. This result is obtained using the
time-independent grid with ns = 9 samples and ne = 2 elements in probability space
shown in Figure 3b.

6 CONCLUSIONS

The presented extrema diminishing uncertainty quantification method with bounded
error predicts a 16 times larger asymptotic standard deviation compared to the initial
condition due to the effect of physical uncertainties in a transonic airfoil flutter problem.
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