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A Robust and Fast Imaging Algorithm with an Envelope of Circles

for UWB Pulse Radars
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SUMMARY Target shape estimation with UWB pulse radars is a

promising imaging technique for household robots. We have already pro-

posed a fast imaging algorithm, SEABED, that is based on a reversible

transform BST (Boundary Scattering Transform) between the received sig-

nals and the target shape. However, the target image obtained by SEABED

deteriorates in a noisy environment because it utilizes a derivative of re-

ceived data. In this paper, we propose a robust imaging method with

an envelope of circles. We clarify by numerical simulation that the pro-

posed method can realize a level of robust and fast imaging that cannot be

achieved by the original SEABED.

key words: UWB pulse radars, SEABED, robust and fast imaging, high

resolution imaging, envelope of circles

1. Introduction

UWB pulse radar systems have great potential for a high-

resolution imaging that is suitable and efficient for the mea-

suring techniques used for household and rescue robots. Ad-

ditionally, they can estimate object shapes even in the case

of a fire where optical methods cannot be applied. While

many imaging algorithms for radar systems have been pro-

posed, they require intensive computation, which is not suit-

able for realtime operations [1]–[4]. Contrarily, we have al-

ready proposed a fast imaging algorithm called SEABED

(Shape Estimation Algorithm based on BST and Extraction

of Directly scattered waves) for UWB pulse radars based

on a reversible transform BST between the received signals

and the target shape [5], [6]. However, the image obtained

by SEABED deteriorates in a noisy environment because

it utilizes derivatives of the received data. To resolve this

problem, image stabilization methods have been proposed.

One of these utilizes an adaptive smoothing with Gaussian

filter [7], another is based on Fractional Boundary Scatter-

ing Transform [8]. These two methods are robust in a noisy

environment. However, they both still utilize the BST with

derivatives of received data and so cannot completely re-

move the instability.

To resolve this problem, in this paper we propose a ro-

bust imaging algorithm with an envelope of circles, which

does not sacrifice the speed of SEABED. We note that a

conventional method quoted in [9] is similar to our ap-

proach from the viewpoint that it extracts the target bound-
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ary with time delays. Additionally, this method achieves ro-

bust imaging in a noisy environment because it does not uti-

lize a derivative operation. However, this method can be ap-

plied only to convex targets. In this paper, we propose a fast

and robust imaging algorithm for arbitrary shaped targets.

We calculate circles with estimated delays for each antenna

location and utilize the principle that these circles circum-

scribe or inscribe the target boundary. With this principle,

we prove that the target boundary is expressed as a bound-

ary of a union and an intersection set of the circles. This

method does not utilize a derivative of received data, and

enables us to realize robust imaging for an arbitrary shape

target.

2. System Model

We deal with 2-dimensional problems and TE mode waves.

We assume that the target has uniform permittivity and is

surrounded by a clear boundary that is composed of smooth

curves concatenated at discrete edges. We also assume

that the propagation speed of the radiowave is constant and

known. We assume a mono-static radar system. The in-

duced current at the transmitting antenna is a mono-cycle

pulse.

We define r-space as the real space where targets and

antennae are located. We express r-space with the parame-

ters (x, y). An omni-directional antenna is scanned along the

x axis. Both x and y are normalized by λ, which is the center

wavelength of the transmitted pulse. We assume y > 0 for

simplicity. We define s′(X, Y) as the received electric field

at the antenna location (x, y) = (X, 0), where we define Y

with the arrival time of the echo t and the speed of the radio

wave c as Y = ct/(2λ). We apply a matched filter with the

transmitted waveform to s′(X, Y). We define s(X, Y) as the

output of the filter. We define d-space as the space expressed

by (X, Y), and call it a quasi wavefront.

3. Conventional Method

3.1 SEABED Algorithm

We have already developed a non-parametric shape estima-

tion algorithm called SEABED. This method utilizes a re-

versible transform BST between the point of r-space (x, y)

and the point of d-space (X, Y), which is extracted by the

output of the matched filter s(X, Y). BST is expressed as

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



1802
IEICE TRANS. COMMUN., VOL.E90–B, NO.7 JULY 2007

Fig. 1 Relationship between r-space (Upper side) and d-space (Lower

side).

X = x + ydy/dx.

Y = y
√

1 + (dy/dx)2.

}

(1)

IBST (Inverse BST) is expressed as

x = X − YdY/dX.

y = Y
√

1 − (dY/dX)2,

}

(2)

where |dY/dX| ≤ 1 holds. This transform is reversible, and

gives us a complete solution for the inverse problem. Fig-

ure 1 shows the relationship between the r-space and the d-

space. IBST utilizes the characteristic that an incident wave

is intensively reflected in the normal direction. By utiliz-

ing IBST, SEABED enables us to estimate the target bound-

ary directly from a quasi wavefront. SEABED has the ad-

vantage that it can directly estimate target boundaries with

IBST, and achieves fast, high resolution imaging.

3.2 Noise Tolerance of SEABED

In a noisy environment, the estimated image with SEABED

easily deteriorates because IBST utilizes the derivative of a

quasi wavefront. In this section, we examine the behavior

of SEABED in a noisy environment. We scan an antenna

in −2.5λ ≤ x ≤ 2.5λ, and receive data at 101 locations.

We give a quasi wavefront with random error whose stan-

dard deviation is 0.005λ. We smooth the quasi wavefront

with Gaussian filter. Figures 2, 3 and 4 show the estimated

boundary by applying IBST to the quasi wavefront where

we set the correlation length of the filter as 0.05λ, 0.2λ

and 0.1λ, respectively. In Fig. 2, the estimated points have

large errors around the edge. This is because the correlation

length is too short. To discuss the deterioration of the image

analytically, we rewrite IBST as

Fig. 2 An estimated image with SEABED where correlation length is set

to 0.05λ.

Fig. 3 Same as Fig. 2 but correlation length is set to 0.2λ.

Fig. 4 Same as Fig. 2 but correlation length is set to 0.1λ.

x = X + Y cos θ

y = Y sin θ

}

, (3)

θ = cos−1(−dY/dX), (0 ≤ θ < π),

where θ is expressed as in Fig. 1. Equation (3) means that

the estimated points with IBST are on the circle whose cen-

ter is (X, 0) and radius is Y . In the equation, θ is determined

with dY/dX. Therefore, the estimated point mistakenly plots

along this circle in a noisy environment because the accu-

racy of θ strongly depends on that of dY/dX.

While the estimated image in Fig. 3 is stable, the res-

olution of the image degrades, especially around the edge.

Accordingly, SEABED suffers from a trade-off between the

stability and the resolution of the estimated image. There-

fore, we empirically choose the correlation length as 0.1λ

which holds the resolution and a stability of the image as

shown in Fig. 4. However the estimated points in Fig. 4 still

have errors.
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To resolve this trade-off with SEABED, methods for

stabilizing images have been proposed. One method is

based on smoothing the quasi wavefront, where we change

the standard deviation of the Gaussian filter depending on

the target shape [7]. Another is based on smoothing the data

obtained in the intermediate space between the r-space and

the d-space using Fractional Boundary Scattering Transform

[8]. These methods achieve robust imaging in a noisy en-

vironment. However, they cannot completely resolve the

above trade-off because they still depend on the derivative

operations.

4. Proposed Method

4.1 A Target Boundary and Envelopes of Circles

To resolve the trade-off between the stability and resolu-

tion of SEABED as set out in the previous section, we pro-

pose a new imaging algorithm that is free from derivative

operations. First, we clarify the relationship between the

group of points on a target boundary and that on the en-

velope of the circles. We assume that the target boundary

∂T is expressed as a single-valued and differentiable func-

tion. (X, Y) is a point on ∂D, which is the quasi wavefront

of ∂T . We define Γ as the domain of X for ∂D. We de-

fine g(X, Y) = ∂x/∂X = 1 − (dY/dX)2 − Yd2Y/dX2, and γ

as the domain of x for ∂T . We define S (X,Y) as an open set,

which is defined as an interior of the circle which satisfies

(x − X)2 + y2 = Y2. Figures 5 and 6 show the relationship

between d-space and r-space for a convex and a concave tar-

gets, respectively. If ∂D is a single-valued and continuous

function, we define S + =
⋃

X∈Γ S (X,Y) and S × =
⋂

X∈Γ S (X,Y).

We define the boundary ∂S + as

∂S + = {(x, y) | (x, y) ∈ S + − S +, x ∈ γ, y > 0}, (4)

and ∂S × as

∂S × = {(x, y) | (x, y) ∈ S × − S ×, x ∈ γ, y > 0}, (5)

where S + and S × is a closure of S + and S ×, respectively.

Here the next equation holds

∂T =

{

∂S + (g(X, Y) > 0),

∂S × (g(X, Y) < 0).
(6)

The proof of Eq. (6) is given in Appendix A. Eq. (6) shows

that ∂S + and ∂S × express the target boundary as an enve-

lope of circles depending on the sign of g(X, Y) as shown in

Figs. 5 and 6. We should correctly select these methods con-

sidering the sign of g(X, Y). We utilize the next proposition.

Proposition 1: The necessary and sufficient condition of

g(X, Y) < 0 is that

S + ⊂ S max ∪ S min (7)

Here, we define (Xmax, Ymax) and (Xmin, Ymin) as the point

of ∂D, where Xmax and Xmin are the maximum and mini-

mum values, respectively, at X ∈ Γ, as shown in Fig. 6. We

Fig. 5 Quasi wavefront (Upper side) and a convex target boundary and

an envelope of circles (Lower side).

Fig. 6 Quasi wavefront (Upper side) and a concave target boundary and

an envelope of circles (Lower side).

define S max and S min express S (Xmax,Ymax) and S (Xmin,Ymin), re-

spectively. A proof of Proposition 1 is given in Appendix

B.

If g(X, Y) < 0 holds, all circles for X ∈ Γ should inscribe

to the target boundary. This condition corresponds to that

x(Xmax, X) < x(Xmax, Xmin) < x(Xmin, X) holds for all X ∈ Γ
as shown in Fig. A· 3, where x(X, X

′
) is x coordinates of the

intersection point of ∂S (X,Y) and ∂S (X
′
,Y
′
). This condition is
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equivalent to Eq. (7) that all S (X,Y) in X ∈ Γ are included in

S max and S min. Accordingly, the number of circles which

constitute S + should be 2 in minimum for g(X, Y) < 0. We

should search the minimum number of the circles which

constitute S +. If the minimum number is 2, ∂T = ∂S ×
holds; otherwise, ∂T = ∂S + holds. When a target bound-

ary includes an edge, the edge can be estimated as the inter-

section point of circles ∂S (X,Y), where (X, Y) is transformed

into the edge point (x, y) with the IBST. Therefore, the tar-

get boundary ∂T with edges can be expressed as one of ∂S +
and ∂S ×.

In our proposed method, we estimate the target bound-

ary with an envelope of circles by utilizing these relation-

ships. This method enables us to transform the group of

points (X, Y) to the group of points (x, y) without a deriva-

tive operation. Note that we receive the scattered wave that

passes through a caustic point if the quasi wavefronts sat-

isfies g(X, Y) < 0. In that case, a phase of the scattered

waveform rotates by π/2 [6]. We can robustly recognize

this phase rotation from (X, Y) with the sufficient condition

of proposition 1. We compensate this phase rotation in our

proposed method to enhance the accuracy of the estimated

image.

4.2 Procedures in the Proposed Method

The actual procedures of the proposed method are as fol-

lows. Here we define R(X, X
′
) as x coordinates of the inter-

section point of ∂S (X,Y) and ∂S (X
′
,Y
′
). We also define ∆X as

the sampling interval of the antenna.

Step 1). Apply the matched filter to the received signals

s
′
(X, Y) and obtain the output s(X, Y).

Step 2). Extract quasi wavefronts as (X, Y
′
) which sat-

isfies ∂s(X, Y)/∂Y = 0, |s(X, Y)| ≥ α · maxY |s(X, Y)|.
Extract (X, Y) as ∂DT from (X, Y

′
), which satisfies the

local maximum of Y
′

for each X. Parameter α and the

searching region of Y
′

are determined empirically.

Step 3). Extract a set of (X, Y) as ∂Di from ∂DT, which

is continuous and |dY/dX| ≤ 1 is satisfied.

Step 4). Extract boundary points (x, y) on ∂S + (X, Y) ∈
∂Di as

y = max
X∈Γi

√

Y2 − (x − X)2, (8)

where Γi is a domain of X where (X, Y) ∈ ∂Di satisfies.

Count the minimum number of circles which constitute

S +, and define the number as NC. If NC > 2, determine

∂Ti = ∂S +, (xmin ≤ x ≤ xmax), (9)

where xmin = R(Xmin, Xmin + ∆X) and xmax =

R(Xmax, Xmax − ∆X).

If NC = 2, compensate a phase rotation for s(X, Y) by

π/2 and renew the quasi wavefronts as (X, Yc), and ex-

tract boundary points (x, y) on ∂S × as

y = min
X∈Γi

√

Y2
c − (x − X)2. (10)

Determine

∂Ti = ∂S ×, (xmin ≤ x ≤ xmax), (11)

where xmin = R(Xmax, Xmax − ∆X) and xmax =

R(Xmin, Xmin + ∆X).

Step 5). Set i = i + 1, and iterate Step 3) and 4) until

∂DT becomes empty.

Step 6). Estimate the target boundary as ∂T =
⋃

i ∂Ti.

5. Performance Evaluation

5.1 Shape Estimation Examples

We evaluate the estimation accuracies of SEABED and the

method we propose here. First, we give the random er-

rors to the true quasi wavefront, which is calculated from

the true target boundary with BST. The standard deviation

of the noise is 0.005λ. This simulation estimates the accu-

racy without influences from other factors including wave-

form distortion. The signals are received at 101 locations

for −2.5λ ≤ x ≤ 2.5λ. We fix the correlation length

to 0.1λ from the results of 3.2. Figure 7 shows the esti-

mated image where we apply the proposed method to the

same data as Fig. 2. The estimated image with the proposed

method achieves more stable and high-resolution imaging

than SEABED, especially around the edge. Figures 8 and

9 show the estimated images of the concave target achieved

with SEABED and the proposed method, respectively. The

estimated image for the concave shape with SEABED is not

stable, especially at around x = 0, ±2. Contrarily, the esti-

mated image with the proposed method is more stable and

accurate. This is because the proposed method estimates the

inclination of the target as that of the circles, which circum-

scribe or inscribe to the target boundary. A part of the circles

contributes as a part of the estimated shape, which means

Fig. 7 Estimated image with the proposed method for a convex target

with noise.
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Fig. 8 Estimated image with SEABED for a concave target with noise.

Fig. 9 Estimated image with the proposed method for a concave target

with noise.

Fig. 10 Output of the matched filter for a convex target.

that the inclination of the circle is utilized for imaging.

Next, we add a white noise to the received data s
′
(X, Y)

calculated with the FDTD method. Figure 10 shows the out-

put of the matched filter with the transmitted waveform. In

this case, S/N is about 5.5 dB. Here we define S/N as

S/N=
1

σ2
N

(Xmax−Xmin)

∫ Xmax

Xmin

max
Y
|s(X, Y)|2dX, (12)

where Xmax and Xmin are the maximum and minimum an-

tenna locations, respectively, and σN is the standard devi-

ation of noise. Figures 11 and 12 show the estimated im-

ages with SEABED and the proposed method, respectively.

The image of SEABED is not accurate especially around the

edges of the target. Contrarily, the image obtained by the

proposed method is stable, although the image around the

Fig. 11 Estimated image with SEABED for a convex target with noise

to s
′
(X, Y).

Fig. 12 Estimated image with the proposed method for a convex target

with noise to s
′
(X, Y).

Fig. 13 Output of the matched filter for a concave target.

edge is not precise compared with Fig. 7. We confirm that

the same image distortion around the edge appear in a noise-

less case. Therefore, the image distortion is caused by the

edge diffraction waveform which is different from the trans-

mitted one. We should also estimate the scattered waveform

by using the estimated image to enhance the accuracy [10].

This will be an important future work.

Next, we deal with scattered signals for a concave tar-

get. Figure 13 shows the output of the matched filter. S/N

is about 8.0 dB. Figures 14 and 15 show the estimated im-

ages for a concave target with SEABED and the proposed

method, respectively. The proposed method can estimate a

more stable and accurate image than can be achieved with

SEABED. The phase rotation of the scattering at the con-

cave surface is correctly compensated. The calculation time

of SEABED is 10.0 msec. The proposed method requires

more than 10.0 msec. This is because our method requires
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Fig. 14 Estimated image with SEABED for a concave target with noise

to s
′
(X, Y).

Fig. 15 Estimated image with the proposed method for a concave target

with noise to s
′
(X, Y).

searching operation in Eqs. (8) and (10). This computational

time is short enough for real time imaging. Additionally,

due to multiple scattering, false images are seen above the

target boundary. To develop a robust algorithm without false

images will also be a future task.

We should compare our method with the conventional

method [8]. Fractional boundary scattering transform en-

ables us to deal with the intermediate space between r-space

and d-space. With this transform, we can adaptively smooth

data depending on the target shapes. The optimized way of

smoothing with FBST is equal to the smoothing in the d-

space for the assumed target shapes in Figs. 4 and 8. There-

fore, Figs. 4 and 8 correspond to the optimal smoothing

method with FBST.

5.2 Accuracy Limitation to Noise

In this section, we quantitatively evaluate the accuracy of

the estimated image with the proposed algorithm. We give

random errors to the true quasi wavefront. Figures 16 and 17

show the root mean square errors (abbreviated as RMS) for

the convex and the concave target, respectively. The num-

ber of trial is 500. Our method obtains 2 times improve-

ment in accuracy for the both targets compared to SEABED,

where σN = 5.0 × 10−3. These improvements do not de-

pend on the noise power. Also, the accuracy of each method

is larger than 1.0 × 10−3. This is because the quasi wave-

Fig. 16 Relationship between RMS and σN for a convex target.

Fig. 17 Relationship between RMS and σN for a concave target.

front is smoothed with the Gaussian filter whose correlation

length is 0.1λ, which causes a systematic error. Although

RMS depends on the correlation length of the Gaussian fil-

ter, we confirm that RMS of the proposed method is better

than that of SEABED regardless of the correlation length.

The reasons of these results are as follows. SEABED de-

termines a point of the target boundary with derivative op-

erations. Contrarily, the proposed method utilizes all of the

points of a quasi wavefront in Eqs. (8) and (10). Therefore,

this method absorbs the instability of the derivative opera-

tions with the wider information of a quasi wavefront.

Moreover, we see the fluctuations of errors with

SEABED in Fig. 16. We see the same fluctuation, even if

we increase the number of the trial to 10000. The reason

is that the relationship between the accuracy and the noise

intensity is not simple because SEABED utilizes derivative

operations. Additionally, the accuracy of each method de-

pends on the local shape of the target. Figures 18 and 19

show the estimation error of y for each x in the both targets

(σN = 5.0 × 10−3λ). As shown in Fig. 18, the error around

the edge region becomes large even in the low noise situa-

tion. Though we assume that the antenna is scanned along

the straight line in the paper, this method can be readily ex-

tended to scanning along an arbitrary curved line.
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Fig. 18 Estimation error of y for each x in a convex target (σN = 5.0 ×
10−3λ).

Fig. 19 Estimation error of y for each x in a concave target. (σN =

5.0 × 10−3λ).

6. Conclusion

We proposed a stable and fast imaging method using an

envelope of circles. We clarified that convex and concave

target boundaries can be expressed as the boundary of the

union and the intersection, respectively, of a set of circles

obtained by quasi wavefronts. We clarified that the proposed

method can estimate images that be more stable and accu-

rate than those obtained with SEABED in numerical simula-

tions. Further, the proposed method achieves fast imaging,

just like with SEABED. An important future work will be

to extend this algorithm to 3-dimensional problems, and to

achieve a higher-resolution to compensate for the waveform

distortion.
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Appendix A: Proof of Eq. (6)

First, let us prove that if g(X, Y) > 0 holds at (X, Y) ∈ ∂D,

∂S (X,Y) circumscribes ∂T , where we define ∂S (X,Y) as the

boundary of S (X,Y). With (x, y) ∈ ∂T , the curvature κ on

∂T is expressed as

κ =
d2y/dx2

(1 + (dy/dx)2)3/2
(A· 1)

=
Ÿ

1 − YŸ − Ẏ2
. (A· 2)

where we define Ẏ = dY/dX, Ÿ = d2Y/dX2, and uti-

lize dy/dx = Ẏ/
√

1 − Ẏ2, and d2y/dx2 = Ÿ

(1−Ẏ2)3/2(1−YŸ−Ẏ2)
,

which are derived in [6]. Here, the condition that ∂S (X,Y) cir-

cumscribes ∂T is that κ > −1/Y holds because a curvature

of ∂S (X,Y) should be −1/Y for y ≥ 0. If g(X, Y) > 0 holds,

this condition is expressed as 1 − (dY/dX)2 > 0, which is

satisfied because y is a real number in the IBST. Therefore,

the previous proposition is proved. Similarly, we can prove

that if g(X, Y) < 0 holds at (X, Y) ∈ ∂D, ∂S (X,Y) inscribes

∂T . By utilizing these facts, the next proposition holds,

Proposition 2: If g(X, Y) > 0 holds at ∂D and (x, y) ∈
∂T, x ∈ γ holds, (x − X)2 + y2 ≥ Y2 is satisfied for all

(X, Y) ∈ ∂D, and (X, Y) exists as only one, where an equal

sign holds.
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Fig. A· 1 Arrangement of P, Q, S (Xp ,Yp) and ∂T for the proof of Propo-

sition 2.

We show the proof of this proposition as follows. We de-

fine (xp, yp) ∈ ∂T, xp ∈ γ as the circumscription point of

∂S (Xp,Yp) where (Xp, Yp) ∈ ∂D. We assume that ∂S (Xp,Yp)

exists, which intersects ∂T except for (xp, yp) as shown in

Fig. A· 1. We define this intersection point as Q = (xq, yq),

where xq > xp, xq ∈ γ holds, and other intersection points

do not exist for the region xp < x < xq. We also define

(Xq, Yq), which is transformed from (xq, yq) with BST. Here

(Xq, Yq) ∈ ∂D holds because (xq, yq) ∈ ∂T . We define the

points as (x, yt(x)) ∈ ∂T and (x, yc(x)) ∈ ∂S (Xp,Yp) for the

region xp ≤ x ≤ xq. In this region, yt(x) ≥ yc(x) holds be-

cause ∂S (Xp,Yp) circumscribes ∂T at P. We also define the

inclination of ∂T and ∂S (Xp,Yp) at Q as ẏt(xq) and ẏc(xq), re-

spectively. Here ẏt(xq) ≤ ẏc(xq) holds because yt(x) ≥ yc(x)

holds for xp ≤ x ≤ xq. Contrarily, Xq > Xp holds because

g(X, Y) > 0 and xq > xp holds. Therefore, ẏt(xq) > ẏc(xq)

satisfies because Xq = xq + yqẏt(xq) and Xp = xq + yqẏc(xq)

hold. These facts contradict each other, and ∂S (Xp,Yp) cir-

cumscribes ∂T at only one point at P. It is also proved if

xp > xq holds. Therefore, (x − Xp)2 + y2 ≥ Y2
p holds for

(x, y) ∈ ∂T . Similarly, this is satisfied for all (X, Y) ∈ ∂D.

Thus, the proposition 2 is proved. Similarly, we prove that

if g(X, Y) < 0 holds at ∂D and (x, y) ∈ ∂T, x ∈ γ holds,

(x − X)2 + y2 ≤ Y2 satisfies for all (X, Y) ∈ ∂D, and (X, Y)

exists as only one, where an equal sign holds.

Here we prove ∂T = ∂S + as follows.

(a) Proof of ∂S + ⊂ ∂T . We assume that the point

P = (xp, yp), (xp ∈ γ) exists, where P ∈ ∂S +, P � ∂T .

We define the point Q = (xp, yq) ∈ ∂T as shown in Fig. A· 2.

Here, (Xp, Yp) ∈ ∂D exists, where (xp−Xp)2+y2
p = Y2

p holds.

On the other hand, (xp − Xp)2 + y2
q ≥ Y2

p holds with Prop. 2.

Therefore yq ≥ yp holds because yq, yp > 0. Moreover, yq >

yp because we assume P � ∂T . Here we define (Xq, Yq) ∈
∂D which is transformed from (xp, yq) with BST. Here (Xq−
xp)2 + y2

p < Y2
q holds because of (Xq − xp)2 + y2

q = Y2
q and

yq > yp. Therefore P ∈ S (Xq,Yq) holds. P ∈ S + holds because

of S (Xq,Yq) ⊂ S +. However ∂S + ∩ S + = φ holds, where φ

is null set, because S + is open set. Accordingly, P � ∂S +
should not hold. Therefore ∂S + ⊂ ∂T is proved.

(b) Proof of ∂T ⊂ ∂S +, (x ∈ γ).

Fig. A· 2 Arrangement of P, Q and ∂T for the proof of ∂S + ⊂ ∂T .

We assume that P = (xp, yp) will exist where P ∈ ∂T, P �

∂S + holds. Here it is obvious with the definition of ∂S + that

the sufficient condition of (x, y) ∈ ∂S + is that for all (X, Y) ∈
∂D, (x − X)2 + y2 ≥ Y2 holds and (X, Y) ∈ ∂D exists at least

one point where an equal sign holds. On the contrary, P

satisfies the sufficient condition of (x, y) ∈ ∂S + with Prop. 2

because P ∈ ∂T and g(X, Y) > 0 holds. Accordingly, the

previous assumption is not true, and ∂T ⊂ ∂S + is proved.

With the facts (a),(b), ∂T = ∂S + is proved, where

g(X, Y) > 0 holds. Similarly, we can prove that ∂T = ∂S ×
where g(X, Y) < 0 holds.

Appendix B: Proof of Proposition 1

(i) Proof of the necessary condition of Proposition 1.

Here ∂T = ∂S × holds because g(X, Y) < 0. We define

(Xq, Yq) ∈ ∂D, where Xq � Xmax, Xmin holds. We de-

fine the point Q = (xq, yq) ∈ ∂T , which is transformed

from (Xp, Yp) with IBST as shown in Fig. A· 3. Here we

also define (xmin, ymin) ∈ ∂T which is transformed from

(Xmin, Ymin). Here, for all (X, Y) ∈ ∂D, (X − x)2 + y2 ≤ Y2

holds at (x, y) ∈ ∂T because g(X, Y) < 0 holds. Therefore,

(Xmin − xq)2 + y2
q < Y2

min
and (Xq − xmin)2 + y2

min
< Y2

q hold

because xq � xmin holds for Xq � Xmin. We define the points

on ∂S (Xq,Yq) and ∂S min as (x, yQ(x)) and (x, yMIN(x)), respec-

tively. Here, yQ(xq)2 < Y2
min
−(xq−Xmin)2 = yMIN(xq)2 holds.

Also, yMIN(xmin)2 < Y2
q − (xmin − Xq)2 = yQ(xmin)2 holds.

Therefore, yQ(xq) < yMIN(xq) and yQ(xmin) > yMIN(xmin)

hold because we assume y ≥ 0. Accordingly, ∂S (Xq,Yq) and

∂S min intersect at the region xq < x < xmin because xq < xmin

for g(X, Y) < 0. Here the intersection point of these two

circles exists as only one because we assume y ≥ 0. There-

fore, yQ(x) < yMIN(x) holds for x ≤ xq, and ∂S (Xq,Yq) ⊂ S min

holds. Additionally, S (Xq,Yq) ⊂ S min because of the definition

of S (Xq,Yq) and y ≥ 0. Therefore S (Xq,Yq) ⊂ S min holds. In the

case of x ≥ xq, we similarly prove S (Xq,Yq) ⊂ S max because

xmax < xq. Accordingly, S (Xq,Yq) ⊂ S min ∪ S max holds. This

holds in the case of Xq = Xmin or Xq = Xmax. Therefore, for

all (X, Y) ∈ ∂D, this relationship holds, and the necessary

condition of Proposition 1. is proved.

(ii) Proof of the sufficient condition of Proposition 1.

We assume that g(X, Y) > 0 holds in (X, Y) ∈ ∂D. By
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Fig. A· 3 Arrangement Q, ∂S min and ∂S max for the proof of the neces-

sary condition of Proposition 1.

Eq. (6), ∂T = ∂S + holds. We define P ∈ ∂T as (xp, yp). In

this region, S + ⊂ S max ∪ S min holds. Moreover, P ∈ S +
holds because ∂T = ∂S + and ∂S + ⊂ S + hold. Here

P = (xp, yp) ∈ ∂T should exist where xmin < xp < xmax

holds. We define (Xp, Yp) ∈ ∂D which is transformed from

(xp, yp) with BST. With Prop. 2, (xp − Xmin)2 + y2
p > Y2

min
,

and (xp − Xmax)2 + y2
p > Y2

max holds because g(X, Y) > 0 and

(xp − Xp)2 + y2
p = Y2

p holds. Therefore P � S + holds because

P � S min and P � S max. However this relationship con-

tradicts the previous assumption. Therefore the sufficient

condition of Proposition 1 is proved.
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