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A ROBUST APPROACH FOR ACOUSTIC NOISE
SUPPRESSION IN SPEECH USING ANFIS
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The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial
intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive
Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication
in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input
adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on
the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in
audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article
presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS
(least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated
the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS
approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were
drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while
objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify
the claims and determine their relative performances.

K e y w o r d s: adaptive neuro fuzzy inference system, background noise, colored noise, noise cancellation, voice commu-
nication

1 INTRODUCTION

Audio communication [22] through modern communi-
cation interfaces (PSTN, IP phones, mobile communica-
tions, satellite phones, radios, etc) is an integral part of
human lives in today’s over-technologized world. In real
conditions, audio communication is often degraded by the
noise in the background [12]. Such a noise can be, for ex-
ample, a noise from motor vehicle engines, a noise from
machines in production halls, city sounds (traffic, etc), a
noise at sports and social events, etc.

The authors of the article base their work on the re-
sults of their own studies published in [1, 2]. The work
in this article builds on these studies and extends them.
In these studies, the authors address the issue of remov-
ing the disturbing components from useful signals (noise
suppression during audio communication in the cockpit
of a fighter airplane [1], noise suppression in foetal ECG
[2, 32, 38]) using linear adaptive filtration [5]. Linear adap-
tive filters play an important role in statistical signal
processing [6]. Currently, in commercial applications for
suppressing noise during audio communication, the most
widespread algorithm is the LMS adaptive one [6]. The
LMS algorithm is mathematically simple and undemand-
ing [29]. In real applications, however, it achieves a lower
convergence rate [6] and a higher error of the filtration

process [6]. Better results are achieved using the RLS fam-
ily of algorithms [6, 35] (an extremely low error rate and
extremely high speed of convergence). The results of the
experiments carried out by the authors [1, 2] show that
the basic RLS algorithm [18] is mathematically very de-
manding in terms of actual implementation [18]. Many
studies [8, 13, 19] further indicate that we encounter the
nonlinear nature of disturbance [4, 13, 21], which cannot
be completely eliminated using a linear filter [1, 4]. Due
to the reasons discussed above, the authors focus on the
use of a neuro-fuzzy system [19, 20]. A number of studies
suggest [8, 9, 17] that such a system could achieve better
results than commercially used systems.

2 THE ADAPTIVE NEURO–FUZZY

INFERENCE SYSTEM

ANFIS is an adaptive feed forward neural network that
is functionally equivalent to a fuzzy inference system of
the Sugeno type (Takagi-Sugeno) [19, 28, 32, 34, 36–38].

A Two Rule Sugeno ANFIS has rules of the form [19]

IFx isA1 and y isB1, THEN f1 = p1x+ q1y + r1. (1)

IFx isA2 and y isB2, THEN f2 = p2x+ q2y + r2. (2)

Where x and y are the inputs, Ai and Bi are the fuzzy
sets, fi , i = 1, 2 are the output fuzzy system, and pi , qi

∗ Department of Cybernetics and Biomedical Engineering, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava,
Czech Republic, {radek.martinek, michal.kelnar, jan.vanus, jan.zidek, petr.bilik}@vsb.cz

DOI: 10.2478/jee-2015-0050, Print ISSN 1335-3632, On-line ISSN 1339-309X c© 2015 FEI STU



302 R. Martinek et al : A ROBUST APPROACH FOR ACOUSTIC NOISE SUPPRESSION IN SPEECH USING ANFIS

Layer 5

w1
x w1 f1

B1

A1

A2

B2

A1e N

A1

?

Layer 1

y

w1

w2
w2

w2 f2

f

x y

x y

Layer 4Layer 3Layer 2

e N

Fig. 1. The architecture of ANFIS

and ri are the design parameters which are determined
during the training process [19].

The ANFIS architecture to implement these two rules
is shown in Fig. 1 [19, 28] in which a circle indicates a
fixed node whereas a square indicates an adaptive node.
As figure illustrates, ANFIS architecture consists of five
layers [19]. The functioning of the ANFIS is described
as [19, 28, 34]:

Layer 1

The output of each node is

O1,i = µAi
(x) for i = 1, 2 . (3)

O1,i = µBi−2
(y) for i = 3, 4 . (4)

Where x and y are the inputs to node i , A is a linguis-
tic label and µAi

(x) and µBi−2
(y) can adopt any fuzzy

membership function. So, the O1,i is essentially the mem-
bership grade for x and y . The membership functions
could be anything but for illustration purposes we will
use the bell shaped function given by

µA1
(x) =

1

1 + |(x− ci)/ai|
2bi

. (5)

Where {ai, bi, ci} is the parameter set which changes the
shapes of the MF degree with maximum value equal to 1
and minimum equal to 0.

Layer 2

Every node in this layer is a fixed node labelled Π,
whose output is the product of all incoming signals

O2,i = wi = µAi
(x)µBi

(y) , i = 1, 2 . (6)

Layer 3

The i -th node of this layer, labelled N , calculates the
normalized firing strength as

O3,i = wi =
wi

w1 + w2

, i = 1, 2 . (7)

Layer 4

Every node i in this layer is an adaptive node with a
node function

O4,i = wifi = wi(pix+ qiy + ri) . (8)

Where wi is the output of layer 3. The parameters in this
layer (pi, qi, ri) are to be determined and are referred to
as the consequent parameters.

Layer 5

The single node in this layer is a fixed node labelled
Σ, which computes the overall output as the summation
of all incoming signals:

Overall output = O5,i =
∑

i

wifi =

∑

iwifi
∑

i wi

. (9)

3 SUPPRESSING BACKGROUND NOISE

DURING AUDIO COMMUNICATION

IN A NOISY ENVIRONMENT

Figure 2 shows a schematic diagram of the measure-
ment workplace where the experiments were conducted.
The experimental system includes two signal sources: the
Speech Source and the Noise Source. These sources al-
low working with any signals in the wav format. Using
G.R.A.S. 40PP CPP Free-field QA microphones as refer-
ence and primary MIC and NI DAQ 9234.
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Fig. 2. Experimental measuring workplace
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The first source signal is the human voice x[n] , see
Fig. 3. For the purposes of the experiments carried out, a
test voice according to ITU-T P. 501 [10] was used (Test
signals for the use in telephonometry).

In the experiments performed, the first n = 30000
samples of audio recordings were used. The second source
signal is noise n1[n] . In the experiments conducted, a
recorded engine noise was used. These source signals were
reproduced by means of reference and primary loudspeak-
ers, see Fig. 2.

The system designed has two entry points (a primary
microphone and reference one). The first entry is a refer-
ence microphone that registers unwanted noise and this
signal is denoted n1[n] , see Fig. 4 (records only noise).
The second input is a primary microphone (signal mea-
sured) that picks up the useful signal (voice) plus un-
wanted background noise, this signal is denoted m[n] ,
see Fig. 5.

Recording parameters: sampling frequency of 8 kHz,
PCM audio format, bit rate 128 kbps, 1 channel mono),
used standard microphone (omnidirectional).

The aim of the authors was to create a system that
would reduce unwanted background noise n1[n] that con-
taminates the useful speech signal x[n] . The human voice
used reaches values of 30 dB to 40 dB while the engine
noise used reaches the value of about 80 dB to 100 dB.

Therefore, it is evident that the clarity of radio com-
munication in such a noisy environment would be very
bad. As shown in Fig. 2, the easiest way how to sup-
press the unwanted background noise would be direct
subtraction of the signal from the reference microphone
n1[n] from the signal captured by the primary micro-
phone m[n] . However, this approach will not work since
the noise n1[n] picked up by the reference microphone is
not the same as the noise that contaminates the voice
signal m[n] captured by the primary microphone, see
Figs. 6 and 7 (n1[n] →Non-Linear Unknown System

(NLUS) → n2[n]). Unfamiliar environment properties
apply here (signal distortion due to the environment —
interference [5], delay [7], etc).

Another possible way was the use of a linear filter (fre-
quency selective filters) [5]. However, these conventional
filtration techniques cannot be used because of the spec-
trum time variability of the interfering and useful signals
[5, 7].

If we considered the unknown environment (system)
as linear, we could apply any adaptive algorithm [6] that
will teach the FIR filter [18] to recognize the character-
istics of the channel. If we then applied this filter to the
signal from the reference microphone, which contains the
unwanted background noise, we could subtract this un-
wanted noise successfully. Many studies [8, 9, 13], how-
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ever, indicate that the real environment in a number of
applications shows a nonlinear nature [4]. Then, the linear
adaptive filtration techniques do not have satisfactory re-
sults here (in particular the LMS algorithm families [18]).
The authors deal with the study of linear adaptive filters,
type LMS and RLS, [8] in the publication [1, 2] use this
publication as a foundation.

4 IMPLEMENTATION OF ANFIS INTO THE

SYSTEM OF ADAPTIVE SUPPRESSION

OF UNWANTED INTERFERENCE

Figure 7 shows a principal diagram of the designed
adaptive system on which the experiments were con-
ducted.

The experiments were performed in a standard office
room, whose parameters are defined in Fig. 7 (Details
of the selected environment). Figure 8 shows the impulse
response [23] of the experimental room. This response was
determined on the basis of ITU-T – P34 [11].

In Fig. 7 signal n2[n] can be seen (coloured noise), this
signal represents noise n1[n] after running through an
unknown environment (interference, delay). Signal m[n]
is then given by the relation.

m[n] = x[n] + n2[n] . (10)

Where m[n] is polluted by noise. In practice, x[n] and
n2[n] are not correlated [8], x[n] is estimated from the
polluted signal m[n] . Obviously, it is suitable that n2[n]
is estimated. n2[n] is the delay and deformation of n1[n] ,
n2[n] is nonmeasurable, as follows

n2[n] = f(n1[n], n1[n− 1], n1[n− 2], · · · ) . (11)

Where function f is unknown and nonlinear, its fre-
quency range is usually overlapped with the frequency
range of m[n] , so a frequency filter cannot be realized.
Here, we use the ability of ANFIS network, which can
approach the nonlinear function, letting ANFIS approach
the colored n2[n] so estimated x[n] can be estimated [8].
When the ANFIS network approaches colored noise, the
input is noise n1[n] and n1[n − 1], and the membership
function of every variable is a Gaussian function; the out-
put sample should be colored noise, but it can not be ob-
tained directly in practice. Here, it can be replaced with
a measurable signal

m[n] = x[n] + f(n1[n], n1[n− 1], · · · ) . (12)

The output of the ANFIS can be the estimated value
y[n] , the objective of the training ANFIS is to make the
following error minimum

e2[n] = ‖m[n]− y[n]‖2 = ‖x[n] + n2[n]− y[n]‖2 =

‖x[n] + n2[n]− f̂(n1[n], n1[n− 1], n1[n2], · · · )‖
2. (13)

Where f̂ is the nonlinear approach produced by the
ANFIS network.

The above equation can be expanded, so we can get

e2[n] = ‖x[n]‖2 + ‖n2[n]− y[n]‖2 =

‖x[n] + n2[n]− f̂(n1[n], n1[n− 1], n1[n2], · · · )‖
2 (14)

Mathematical expectation is calculated in the equa-
tion. Note the expectation of x[n] is zero (the condition
suits for many problems or simple transform). x[n] and
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Fig. 14. Results of noise cancellation — ANFIS model D

n1[n] is noncorrelation, so n2[n] , y[n] is noncorrelation,
so

E2[e2] = E(x2) + E[(n2 − y)2] . (15)

Makes E(e2) minimum, which is equivalent to E[(n2−

y)2] minimum, that is, make y[n] approach n2[n] as much

as possible in other words, function f̂ produced by AN-
FIS will approach the practical noise transmission func-
tion with minimum mean square error.

In ideal conditions, y[n] = n2[n] so estimated x[n] =
x[n] . ANFIS adjusts its parameter automatically and
makes n1[n] process into n2[n] , and minus n2[n] in

the original input signal m[n] . Thus, the output signal

estimated x[n] equals the useful signal x[n] because of

complete cancellation of the noise.

5 THE RESULTS OF THE

EXPERIMENTS CONDUCTED

Various ANFIS networks (structures) were investi-

gated in the experiments performed. An overview of the

network models used is provided in Table 1.
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ANFIS functions were used for building of the AN-
FIS model [13] as well as for training (estimating) of the
EVALFIS function [13]. A detailed description of work
with ANFIS and EVALFIS functions in MATLAB envi-
ronment can be found in [14, 15]. Figures 9 to 23 show the
results of experiments conducted. Figures 9 to 14 compare
the time flows of the analysed signals.

Table 1. Information about anfis structures used

ANFIS info

Building the ANFIS Model A B C D

Number of nodes 21 35 53 75
Number of linear parameters 12 27 48 75

Number of nonlinear parameters 12 18 24 30
Total number of parameters 24 45 72 105

Number of fuzzy rules 4 9 16 25

Table 2. Resulting values of the SNR

Improvement of the SNR Value

Building the SNRin SNRout SNR Improvement
ANFIS Model (dB) (dB) (dB)

ANFIS ModelA –21.4765 –0.8662 22.3427
ANFIS Model B –21.4961 5.8876 27.3837
ANFIS Model C –21.6184 7.8521 29.4705
ANFIS Model D –21.3832 10.9591 32.3423

LMS [1,2] –21.3832 –9.6974 11.6858
RLS [1,2] –21.3832 4.3641 17.0191

Table 3. Resulting values of the SSNR and DTW

Building the SSNR (dB) d
ANFIS Model improvement (DTW distance)

ANFIS Model A 15.551 0.725
ANFIS Model B 16.754 0.630
ANFIS Model C 18.598 0.617
ANFIS ModelD 19.689 0.692

LMS [1,2] 7.314 0.891
RLS [1,2] 9.749 0.797

Table 2 shows the ability of the analysed ANFIS mod-
els to improve the value of SNR (Signal to Noise Ra-
tio [26]). In the experiments performed, the SNR value
of the contaminated speech signal and the signal after
passing the system designed was determined. The differ-
ence between these values showed what improvement was
achieved by each model. The SNR ratio is defined by the
following relation [26]

SNR = 10 log
Ps

Pn

[dB] , (16)

where the values Ps and Pn indicate the power of the
signal (s is signal) and noise (n bis noise).

If the SNR = 0 dB, it means that both the signal
and the noise have the same output. When SNR > 0,
the signal output is bigger than the noise output. When
SNR < 0, the reverse is true.

If we look at the acquired values stated in Table 2, we
can see that in the signal of the mixture of the speech
signal and the noise SNR, the noise has a much greater
output then the speech signal. If we evaluate the results
of filtration by means of the tested ANFIS structures,
it is clear that all the structures achieved a significant
improvement in the SNR values.

Table 3 shows the ability of the analysed ANFIS mod-
els to improve the value of SSNR (segmental signal to
noise ratio) [30]. In the experiments performed, the SSNR
value of the contaminated speech signal and the signal af-
ter passing the system designed was determined. The dif-
ference between these values showed what improvement
was achieved by each model. The SSNR ratio is defined
by the following relation [30, 33]

SSNR =
1

K

L−1∑

i=0

(

10 log

∑M−1

n=0
x2
i (n)

∑M−1

n=0
n2
i (n)

)

︸ ︷︷ ︸

SNRi

·V ADi . (17)

Where L is the number of segments of speech signal,
K is the number of segments in speech activity, V ADi

is information about speech activity (values 0 and 1),
further xi(n) = x(mi+n), ni(n) = n(mi+n) — segments
of length M selected step m . More information in [30–
33].

The DTW (Dynamic Time Warping) criterion in
Tab. 3 is used to compare the similarity of two sequences
of the speech signal to calculate the distance d between
them [30, 31, 39]:

• reference sequence (original speech signal)

x = (x1, x2, . . . , xN ) , N ∈ N , (18)

• test sequence (output speech signal from ANFIS)

y = (y1, y2, ..., yM ) , M ∈ N . (19)

Evaluating the local distance for each pair of elements
of these time-series using Manhattan distance (ie abso-
lute value of difference), obtains the local cost matrix

C ∈ R
N×M . (20)

Where elements of cost matrix are

CI,j = |xi − yj | , i ∈ {1, 2, . . . , N} , j ∈ {1, 2, . . . ,M} .
(21)

A path which runs through the low-cost areas of cost
matrix is called warping path, defined as sequence

P = (p1, p2, . . . , L) , L ∈ N , (22)

pℓ=(nℓ,mℓ) ∈{1, . . . , N}×{1, . . . ,M}, ℓ ∈ {1, 2, . . . , L}.
(23)

satisfying the following conditions

i Boundary condition: p1(1, 1) ∧ pL = (N,M).
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f (Hz)

2000

3000

4000

1000

0 1
Time (s)

32

ANFIS model B

Fig. 18. Results of noise cancellation — ANFIS model B
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Fig. 19. Results of noise cancellation — ANFIS model C
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Fig. 20. Results of noise cancellation — ANFIS model C

ii Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nL ∧
m1 ≤ m2 ≤ · · · ≤ mL .

iii Step size condition: pℓ+1−pℓ ∈ {(1, 0), (01), (1, 1)} ,
ℓ ∈ {1, 2, . . . , L− 1} .

The optimal path is selected from the set of all avail-
able warping paths by distance function

d = min{ΣL
l=1pl , p ∈ PN×M} . (24)

Where PN×M is the set of all possible warping paths for
cost matrix C .

If we evaluate the results of filtration by means of the
tested ANFIS structures, it is clear that all the structures

achieved a significant improvement in the SSNR and

DTW values.

Figures 15 to 20 show spectrograms of the analyzed

signals. This is a 3D graph that has two axes with inde-

pendent variables— frequency and time (order of sections

spectra). A 2D spectrogram is used here; it is a top view

of the original 3D graph.

Figures 21 to 23 show 3D spectrograms of the analysed

signals. A 3D spectrogram is a kind of a spectrogram that

is displayed in a three-dimensional space. Compared to

the traditional spectrogram, we put intensity of individ-

ual frequencies on axis z . If, at a certain time, we make a
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cross section of the 3D spectrogram with a plane parallel
to the frequency axis and axis z , we obtain a spectrum
of signals at this time.

6 DISCUSSION

Various ANFIS structures were examined during the
experiments conducted, see Tab. 1. The experiments con-
ducted confirmed the functionality of the technique de-
signed. The experiments showed that the technique de-
signed can successfully extract the speech signal even if
it is completely contaminated by the background noise.
The results (SNR, SSNR and DTW) indicate that sys-
tems using ANFIS show better experimental results than
conventional systems based on adaptive algorithms of the
LMS and RLS families [1, 2].

As for actual implementation in commercial equip-
ment, ANFIS Model B seems to be the most convenient.
This model is a good compromise in terms of mathe-
matical performance (Tab. 1) and results achieved (Tabs.
2 and 3). More complex ANFIS models (C,D) achieve
slightly better results, however, at the expense of higher
computational demands for the algorithm.

The increase of the SSNR is the most important ob-
jective criterion for comparison of the effectiveness of dif-
ferent algorithms; see Tab. 3.

The authors also conducted listening tests of clarity.
Here, ANFIS model A achieved the worst results (worse
clarity). Other ANFIS models examined, B, C and D,
achieved, from the subjective point of view of the listening
tests, the same results.

In practice, the lowest possible costs for implementa-
tion of adaptive systems are, of course, required while
maintaining a high quality of unwanted noise suppres-
sion. From the perspective of production costs, the most
convenient solution will be to construct system for ANFIS
Model B. In the future, we can expect a steady increase in
performance and quality in the area of computer technol-
ogy. With the advent of more efficient hardware, the re-
quirements for a low computational complexity and mem-
ory consumption of the algorithms will be decreased and,
therefore, more complex and more efficient algorithms can
be implemented. Hence, it is obvious that the area of
adaptive filtration still is and will be, for a long time to
come, a wide open area for scientific research as well as
commercial applications.

7 CONCLUSION

An effective noise cancellation in speech was under-
taken with the use of adaptive noise cancellation tech-
niques because fixed filters would necessitate the re-
design of the filter once the variations exist in the commu-
nication channel. The noise which interferes with speech
signals in transmission varies depending on the propaga-
tion path which is mostly unknown. An adaptive canceller
which can automatically adjust itself to the environment
is therefore employed.

This article has clearly investigated the use of adap-
tive neuro-fuzzy inference system (ANFIS) for effective
noise suppression in speech. In this paper, adaptive noise
cancellation using ANFIS has been implemented on au-
dio speech signal (voice communication). The adaptation
algorithm is based on the learning ability of ANFIS. In
experiments, we have achieved better performance. This
type of adaptive noise cancelling technology can be used
when there is a characteristic of an unknown external in-
terference source and the background noise is similar to
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the measured noise. This technology can cancel the exter-
nal disturbance, and the high signal-to-noise ratio signal
is obtained.

ANFIS has two advantages over the LMS and RLS
algorithms in low SNR environment. Experiments have
been evidently performed on these three distinct ap-
proaches and results drawn. A concise analysis and con-
structive comparison was afterward documented in order
to achieve the aim and objectives of the article. One, it
is more efficient to eliminate noise. The second, it offers
faster convergence time.

The future work includes the optimization of algo-
rithms for all kinds of noises and to use the optimized
one in the implementation of FPGA and LabVIEW.
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