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 The main purpose of this paper is to study the vehicle routing problem with hard time windows 
where the main challenges is to include both sources of uncertainties, namely the travel and the 
service time that can arise due to multiple causes. We propose a new resolution approach for the 
robust problem based on the implementation of an adaptive large neighborhood search algorithm 
and the use of efficient mechanisms to derive the best robust solution that responds to all 
uncertainties with reduced running times. The computational experiments are performed and 
improve the objective function of a set of instances with different levels of the uncertainty 
polytope to obtain the best robust solutions that protect from the violation of time windows for 
different scenarios. 
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1. Introduction 

 
Since the pioneer paper of Dantzig and Ramser (1959) on the truck dispatching problem appeared at the 
end of the fifties of the last century, work in the field of the vehicle routing problem (VRP) has increased 
exponentially. Using a method based on a linear programming formulation, the authors of this work 
produced by hand calculations a near optimal-solution with four routes of a fleet of gasoline delivery 
trucks between a bulk terminal and twelve service stations supplied by a terminal. Nowadays, vehicle 
routing problem is considered as one of the most outstanding research achievements in the story of 
operations research and particularly in practice. There are  important advances and new challenges that 
have been raised during the last few years such as radio frequency identification, and parallel computing 
(e.g. Pillac et al., 2013; Montoya-Torres, 2015). The class of VRP problems involves minimizing a travel 
distance of vehicles, starting and ending from a depot, to serve some customers. Typically the solution 
has to obey several other constraints, such as the consideration of travel, service, and waiting times 
together with time-window restrictions. This variant is called in the literature vehicle routing problem 
with time windows (Bräysy & Gendreau, 2005; Kallehauge et al., 2005; Rincon-Garcia et al., 2015). 
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For instance, three types of solution approaches can be used to solve these types of problems. First, the 
exact methods assert that the optimal is found if the method is given sufficiently in time and space. We 
cannot expect to construct exact algorithms which solve NP-hard problems. Second, the heuristics are 
solution methods that can quickly achieve a feasible solution in a reasonable quality. A special class 
called metaheuristics provides a high quality solution (Labadie et al., 2016). The third class of solutions 
is also a special class of heuristic which provides a guarantee on the error combined with near-optimal 
solution. An interesting topic on solving VRP consists in considering parameters affected by uncertainty, 
making the problem more realistic.  
 
Different approaches have been proposed to deal with uncertainties in a VRP problem either in demand, 
travel time and/or service time. Among them, the stochastic approaches of vehicle routing problem SVRP 
have been treated in series of papers (Dror et al., 1993; Dror & Trudeau, 1986; Gendreau et al., 1996). 
The aim of the SVRP methodology is to find a near-best solution of the objective function responding to 
all possible data uncertainty. An alternative approach to handle the uncertain parameters is the robust 
optimization in which one can optimize against the worst scenario that can be generated from the source 
of uncertainty by using bi-objective function (Yousefi et al., 2017) and is immunized against this 
uncertainty (Sungur et al., 2008). In this context, the literature coats a large number of applications such 
as scheduling (Goren & Sabuncuoglu, 2008; Hazir et al., 2010), facility location (Minoux, 2010; Baron 
et al., 2011 ; Alumur et al., 2012 ; Gülpinar et al., 2013), inventory (Bienstock & Özbay, 2008; Ben-Tal 
et al.,2009), finance (Fabozzi et al., 2007; Gülpinar & Rustem, 2007; Pinar, 2007). In particular, the 
authors proposed a mathematical model for the robust optimization with uncertain demands (Moghaddam 
et al., 2012), heterogeneous fleet (Noorizadegan et al., 2012), routing with capacity (Sungur et al., 2008; 
Gounaris et al., 2013) and rail shuttle Routing problem (Rouky et al., 2018).  For instance, this is 
equivalent to the deterministic case studied by Miller-Tucker-Zemlin formulation of the used VRP. We 
refer the reader to an excellent survey and tutorial of the robust vehicle routing proposed by Ordóñez 
(2010). We note that uncertainty in travel cost could be handled using the robust combinatorial 
optimization approach. Wu et al. (2017) proposed a linear model evaluated on a set of random instances 
for the vehicle routing problem with uncertain travel time to improve the robustness of the solution which 
enhance its quality compared with the worst case on a majority of scenarios. In the same spirit, Toklu et 
al. (2013) treated the VRP problem with capacity and uncertain travel costs based on a variant of the ant 
colony algorithm to generate sets of solutions of uncertainty levels and to analyze their effects on the 
problem. 
 
The stochastic approach is also applicable for the vehicle routing problem with time window constraints 
(VRPTW). Errico et al. (2016) formulated the VRPTW with stochastic service times as a set partitioning 
problem and solve it by exact branch-cut-and-price algorithms. More precisely, they elaborated efficient 
algorithms by choosing label components, developing lower and upper bounds on partial route reduced 
the cost to be used in the column generation step. Unlike this approach, robust optimization seeks to get 
good solutions for the VRPTW problem by only considering nominal values and deviations possible 
uncertain data. Many works tackled the vehicle routing problem with time windows and uncertain travel 
times (Sungur et al., 2008). Agra et al. (2012) presented a general approach to the robust VRPTW 
problem with uncertain travel times. Travel times belong to a demand uncertainty polytope, which makes 
the problem more complex to solve than its deterministic equivalent. The advantage of the addition in 
complexity is that the model from Agra et al. (2012) is more usefule than the one from Sungur et al. 
(2008) and leads to less conservative robust solutions. Toklu et al. (2013) adapted their approach to solve 
the problem of VRPTW with uncertain travel times, whose objective was to minimize window time 
violation penalties by providing the decision makers a group of solutions found over several degrees of 
uncertainties considered. Agra et al. (2013) studied the VRPTW with uncertain travel times and proposed 
two robust formulations of the problem. The first extends the formulation of inequalities of resources and 
the second generalizes the formulation of inequalities of way. Their results show that the solution times 
are similar for both formulations while being significantly faster than the solutions times of a layered 
formulation recently proposed for the problem. Rouky et al. (2018) considered the vehicle routing 



M. Nasri et al.  / International Journal of Industrial Engineering Computations 11 (2020) 3

problem with time windows (VRPTW) by introducing both uncertainties:  the travel times of locomotives 
and the transfer times of shuttle as a model of the Rail Shuttle Routing Problem (RSRP)  in the Le Havre 
port. In order to solve this problem with uncertainties, the authors proposed the Robust Ant Colony 
Optimization (RACO). The aim of this paper is to study the similar robust VRPTW including both 
uncertainties in travel times and service times as in Rouky et al. (2018). Our contribution to all previous 
works lies, first on the choice of the Adaptive Large Neighborhood Search (ALNS) metaheuristic. 
Moreover, the numerical results were tested on a set of small instances based on the reference of Solomon 
benchmark, and large instances of Gehring & Homberger's benchmark. The studied problem generated 
different scenarios and each scenario is performed by using the best known sampling method, Metropolis 
version algorithm of Monte Carlo simulation. It is worth mentioning that the ALNS approach used three 
different removal operators to maintain the diversity during the searching process namely: proximity 
operator, route portion operator and longest detour operator, and one repair operator based on the greedy 
insertion. For a complete description of this ALNS approach including construction and destruction 
operators, we refer the reader to the third section. 
 
The remainder of this paper is structured in the following way. First of all, we define the problem, and 
we introduce its mathematical formulation. Next, we present our robust approach that is meant to solve 
the problem including a presentation of the ALNS preprocessing, destruction and insertion heuristics. 
Moreover, we evaluate the new approach using both the exact algorithm and the best-known heuristics. 
A detailed computational and comparative study is presented in Section 4 in order to provide perfectly 
robust conclusions. Finally, some concluding remarks are discussed. 
 
2. Problem statement 

This section is devoted to the statement of the vehicle routing problem with time windows under travel 
time and service time uncertainty. First, we introduce the deterministic model of the VRP problem which 
consists of an optimization of the total distance traveled by all vehicles under four constraints. Next, the 
service at any customer starts within a given time interval and it is not allowed to arrive late. Furthermore, 
if the vehicle arrives too early at a customer, it must wait until the time window opens. Taking into 
consideration these two constraints on time windows we transform the VRP problem to its VRPTW 
variant. To complete our statment of the problem, we introduce the source of uncertainties namely travel 
times and service times which makes the problem harder to solve than its deterministic counterpart. We 
suggest a new formulation of the uncertainty that was inspired by the recent work of  Rouky et al. (2018) 
where the travel times and service times uncertainties belongs to a convex  polytope in the travel time 
interval [𝑡 , 𝑡 + 𝛥 ] and service time interval [𝑃 ,𝑃 + 𝛿 ], where 𝑡  and 𝑃  denote the nominal values, 𝛥  and 𝛿  are the maximum positive perturbations. The complexity of this problem leads us to look for 
robust solutions and therefore to min-max the objective function, this is the last part of the state of the 
art of our problem. Now, in order to describe our problem, let us denote the set of nodes by N, using i 
and  j to denote general nodes, the depot will be denoted by o. The set of arcs is denoted as A and contains 
pairs of nodes, (i, j). The set of vehicles is called V with elements k. Now we can assign to each edge (i, 
j) a cost 𝑡 , and to each node i a time window [𝑎 ,𝑏 ]. Then 𝑥  are binary decision variables that take the 

value 1 if vehicle k uses the edge (i, j) and 0, otherwise. The deterministic model of the VRP can be stated 
as follows:  
 𝑚𝑖𝑛 𝑥 t

, ∈∈  

 
subject to  
 𝑥 = 1 ∈∈   ∀ 𝑖 ∈ 𝑁  (1) 
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𝑥 −  𝑥∈ = 0∈  ∀ ℎ ∈ 𝑁  ∀ 𝑘 ∈ 𝑉  (3) 

𝑥 = 1∈  ∀ 𝑘 ∈ 𝑉  (4) 

 
Each customer must be visited once, which is ensured by the first constraint. The second constraint 
ensures that each tour passes through the depot. The constraint (3) is a flow conservation constraint. 
Finally, the last constraint guarantees that each tour ends at the depot. Since the service time 𝑃  at any 
client i by vehicle k begins inside a given time interval [𝑎 ,𝑏 ], we require an additional constraint. 
 𝑎 ≤ 𝑃 ≤ 𝑏  ∀ 𝑖 ∈ 𝑁  ∀ 𝑘 ∈ 𝑉 . (5) 
 
The time windows considered here is hard, i.e. they cannot be violated, if the vehicle arrives earlier than 
required at a client i, it must hold up until the time window [𝑎 ,𝑏 ] opens and moreover it is not permitted 
to arrive late. 
 𝑃 + 𝑡 − 𝑃 ≤ 𝑀 1 − 𝑥 ∀ 𝑖 ∈ 𝑁  ∀ 𝑗 ∈ 𝑁{0}  ∀ 𝑘 ∈ 𝑉 , (6) 
 

where M is a great value. To model the uncertainty in travel times and service times in the presence of 
time windows, a step-wise (layered) formulation is used.  As mentioned above , the sets of uncertainties 
related to these times are described as follows: 𝑈 =  �̃� ∈  ℝ| |  /    �̃� = 𝑡 + 𝛥 𝜀  , 𝜀

, ∈ ≤ Г, 0 ≤ 𝜀 ≤ 1,∀(𝑖, 𝑗) ∈ 𝐴  , 

and 𝑈 =  𝑃 ∈  ℝ| |   /   𝑃 = 𝑃 + 𝛿 𝜔  , 𝜔∈ ≤ 𝛬, 0 ≤ 𝜔 ≤ 1,∀(𝑖 ∈ 𝑁) , 

 
The uncertainty parameters Г and Λ which vary respectively between 0 and |𝑁| +  |𝑉|, and 0 and |𝑁|, 
are called budgets of uncertainty. They are controling the maximum number of travel times and service 
times.  

 If Г=0 and Λ=0, the robust case is equivalent to the deterministic case. 
 If Г=|𝑁| + |𝑉| and Λ=|𝑁| then this is the worst case where all travel times and service times are 

supposed uncertain and take at once their maximum values. 
Robust optimization seeks to obtain good solutions for all the possible realizations of the uncertainties 
without it being necessary to define the laws of probability and considering only the nominal values and 
the possible deviations of the uncertain data. The uncertainties are introduced in  the cost function as 
follows: 
 𝑚𝑖𝑛 𝑥 t

( , )∈∈ + max
{  / ⊂ ,| | Г}

𝑥 Δ
( , )∈∈  . 

 
And the constraint (6) treating the time windows by this: 
 𝑃 + 𝑡 + 𝛿 𝜈 + 𝛥 𝜇 − 𝑃 ≤ 𝑀 1 − 𝑥  ∀(𝑖 ∈ 𝑁) ∀(𝑗 ∈ 𝑁\{0}) ∀(𝑘 ∈ 𝑉),∀(𝜃 ⊂ 𝑁) |𝜃| = 𝛬,∀(𝛹 ⊂ 𝐴) |𝛹| = Г  
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where 𝜈  and 𝜇  are binary variables which only takes respectively two values: 1 if i ∈ 𝜃 and  (i, j) ∈ 𝛹 and 0 otherwise. 
 
3. Robust approach for the VRPTW  

Along these lines, we propose an adaptive large neighborhood search (ALNS) heuristic to integrate into 
our approach in order to deal with robust VRPTW. The proposed metaheuristic (ALNS) is an extension 
of the Large Neighborhood Search (LNS) heuristic, which was first introduced by Shaw (1998), ALNS 
is a metaheuristic proposed by Ropke and Pisinger (2006). It is a common technique used to enhance a 
locally optimal solution and can prevent getting stuck in premature convergence to local optima within 
tightly constrained search space. Given an initial solution obtained by a construction method, it is based 
on the idea of improving the initial solution by applying various destroy and repair operators to generate 
large neighborhoods through which the search space is explored (Palomo-Martínez Pamela et al., 2017). 
The ALNS has already been adapted to several transportation problems including vehicle routing (Ropke 
& Pisinger, 2006), arc routing (Angélica Salazar-Aguilar et al., 2012), inventory-routing (Coelho et al., 
2012), and the reliable multiple allocation hub location problem (Chaharsooghi et al., 2017). The ALNS 
seems well-suited for the VRPTW, its power is manifested in the fact that each new solution is obtained 
by first removing a number of vertices, then re-inserting these vertices into the solution. ALNS was 
chosen because it outperforms other mono-objective algorithms applied to the same problem while 
keeping the simplicity and high performance that characterize local search algorithms. 
 
3.1. Adaptive Large Neighborhood Search 

We will now describe the ALNS that we have used in the present paper. We believe that ALNS can be 
applied to a large class of difficult optimization problems. In order to design an ALNS algorithm for a 
given optimization problem we need to: 
 

- Choose a number of fast construction operators which are able to construct a full solution. 
-  Select a number of destruction operators. It might be sufficiently important to choose the 

destruction operators that are expected to work well with the construction operator, but it is 
unnecessary. 

Here is the detailed algorithm: 
 
Algorithm 1 Adaptive Large Neighborhood Search 

Construct a feasible solution 𝑥; set 𝑥∗  =  𝑥 
Repeat 

Choose a destroy neighborhood 𝑁 and a repair neighborhood 𝑁  using roulette wheel 
selection based on previously obtained scores 𝜋  
Generate a new solution 𝑥  from 𝑥 using the heuristics corresponding to the chosen destroy 
and repair neighborhoods 
If 𝑥  can be accepted then 

  𝑥 = 𝑥  
End if 

If 𝑓(𝑥 )  <  𝑓(𝑥) then 
  𝑥∗  =  𝑥   

End if 

Update scores 𝜋  of 𝑁  and 𝑁  
Until Stop criteria is met 
Return 𝑥∗ 
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3.1.1 Initial solution generation 

In order to deal with the initial solution, we apply a greedy algorithm, which will be used in the 
reconstruction phase of the ALNS. This operator aims to insert the non-inserted nodes by testing the 
different possible configurations and then giving a feasible solution. It is not necessary that the 
completion time of the initial solution be minimal, as this solution will be further enhanced using the 
ALNS method. 
 
3.1.2 Solution destruction 

During the destruction phase, we put forward three different removal methods to maintain the diversity 
during the searching process and to define the neighborhood to explore at each iteration. Each removal 
method aims to remove a predefined number of nodes. The first operator is known as proximity operator. 
Its objective is to select close clients according to a spatio-temporal measure (Shaw, 1998), and then 
remove clients engendering the higher value of this measure. Using the same technique, the route portion 
operator comes to give more flexibility than the proximity operator to change the routes. The principle 
consists in choosing a pivot client owned to a road and remove it as well as its adjacent clients. Then, we 
calculate the spatio-temporal measure, with the objective to select a second client belonging to another 
route but close to the initial pivot. The second pivot is removed from the solution as well as its adjacent 
clients and so on until all clients will be removed. The third operator is referred to as longest detour 
operator. The interest of this operator is to remove the customers that lead to the largest cost increases 
for servicing them. For more details, we refer the reader to (PrescottGagnon et al., 2009). The algorithms 
of the used destroy operators can be found in Annex. 
 
3.1.3 Solution reconstruction 

Solomon's insertion heuristic (1987) presented a technique for choosing the new customer to be inserted 
into a route using two criteria 𝑐 (𝑖,𝑢, 𝑗) and 𝑐 (𝑖,𝑢, 𝑗) to select customer 𝑢 for insertion between adjacent 
clients 𝑖 and 𝑗 in the current partial route. The primary criterion 𝑐  calculate the best feasible insertion 
place in the current route for each unrouted client 𝑢 as 
 𝑐 𝑖(𝑢),𝑢 , 𝑗(𝑢) =  min

,…,
𝑐 𝑖 ,𝑢, 𝑖 .   

The second criterion 𝑐  selects the new inserted customer: 𝑐 𝑖(𝑢∗),𝑢∗ , 𝑗(𝑢∗) =  max 𝑐 𝑖(𝑢),𝑢 , 𝑗(𝑢)  | 𝑢 𝑖𝑠 𝑢𝑛𝑟𝑜𝑢𝑡𝑒𝑑 𝑎𝑛𝑑 𝑟𝑜𝑢𝑡𝑒 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑒  .    

Customer 𝑢∗ is then inserted into the route between  𝑖(𝑢∗) and 𝑗(𝑢∗). The measurement of an insertion 
place 𝑐  depends on factors: the increase in total distance of the current route after the insertion, and the 
delay of service start time of the customer following the new inserted customer. To be more precise, 𝑐 (𝑖,𝑢, 𝑗) is calculated as: 𝑐 (𝑖,𝑢, 𝑗) =  𝛼  𝑑 +  𝑑 − 𝜇𝑑  +  𝛼 𝑏 −  𝑏 , 𝛼  + 𝛼 = 1,𝛼  ≥ 0,𝛼  ≥ 0, 𝜇 ≥ 0  

where 𝑑 +  𝑑  is the new distance between two nodes 𝑖 and 𝑗 after the insertion, 𝑏  is the previous 
service start time, 𝑑  is the old distance between 𝑖 and 𝑗 and 𝑏  is the new service start time of customer 𝑗 after the insertion of customer 𝑢. The criterion 𝑐 (𝑖,𝑢, 𝑗) is calculated as following 
 𝑐 (𝑖,𝑢, 𝑗) =  𝜆𝑑 − 𝑐 (𝑖,𝑢, 𝑗), 𝜆 ≥ 0 

where the parameter 𝜆 is used to define how much the best insertion place for an unrouted customer 
depends on its distance from the depot and extra time required to visit the customer by the current vehicle. 
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3.1.3 Roulette wheel 

For each iteration of the destruction phase, a roulette-wheel procedure is applied to select a method for 
generating the neighborhood (nodes to be removed). During the search process, the ALNS maintains a 
score φ  which measures the best performance of an heuristic 𝑗 in the past iterations. The roulette wheel 

selection consists in selecting an heuristic 𝑗 with a probability  ∑  . During M iterations, the score φ  is 

reset and the probabilities of choosing an heuristic are recalculated (Pisinger and Ropke (2007)). 
 

3.2 ALNS applied to the robust VRPTW 

In this section, we apply the adaptive large neighborhood search (ALNS) to solve the VRPTW, assuming 
that the displacement and the service times are both objects of uncertainty. The robustness of this 
approach has been tested on several scenarios generated by the Monte Carlo tool of simulation. We will 
now describe how we have adapted the general ALNS to the robust VRPTW.  
We consider that the uncertainties in travel times and service times are independent and are budgeted by 
a pair of degrees of robustness (𝛬, Г). In other words, Г and 𝛬 are interpreted as the maximum number 
of travel times and service times that can deviated from their nominal values, and are bounded 
respectively in the intervals [0, |𝑁| + |𝑉|] and [0, |𝑁|]. Therefore, our objective is to find for each (𝛬, Г) 
scenario a robust solution which minimize the total delays, or immunize against the violation of time 
windows. 
 
Our algorithm is presented in detail in the subsections: (3.2.1), (3.2.2) and (3.2.3). Here are a few 
notations used in our Algorithm: 
 𝑅 ,Г : A possible realization. 𝑆 :  Best robust solution. 𝑆  : Solutions  achieved at the 𝑁  realization. 

TotalCost (.):  A function used to calculate the total time of displacement of a solution 

WorstEvalГ(. ): A function used to calculate the worst evaluation of a solution 𝑇𝑟 = (𝑐 = 𝑜, 𝑐 , … , 𝑐 = 𝑜): The tour of the vehicle 𝑘 𝜎 = (𝑐 , 𝑐 , … , 𝑐 ): A path of the tour 𝑇𝑟  𝐴𝑟𝑐𝑆𝑒𝑡Г: The whole of the arcs which have the  more large deviations of travel time 𝑁𝑜𝑑𝑒𝑆𝑒𝑡 : The whole of the nodes which have the 𝛬 more large deviations of service time 𝜉(𝜎 ) = {𝑐 , 𝑐 , … , 𝑐 }: All of the nodes which constitute 𝜎  𝐴𝑟𝑐(𝜎 ) = {𝛾 = (𝑐 , 𝑐 ), 𝛾 = (𝑐 , 𝑐 ), … , 𝛾 = (𝑐 , 𝑐 )}: The whole of the arcs which constitute 

the path 𝜎  

(𝑠 ): The maximum date of arrival of the vehicle 𝑘 at customer 𝑐  

  
Here is the detailed algorithm of our approach: 
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Algorithm 2 The robust approach Algorithm 
Parameters: Set 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, Set 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 
Outputs: Solution 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠         𝑀𝑜𝑛𝑡𝑒𝐶𝑎𝑟𝑙𝑜() 

For each 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈  𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 do 
 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛            𝐴𝐿𝑁𝑆(𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  
End for 

For each 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∈  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 do 
If 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  ≠  𝑇𝑟𝑢𝑒 then 
              𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
             Return NULL 
End if 

If 𝐸𝑣𝑎𝑙𝑊𝑜𝑟𝑠𝑡𝐶𝑎𝑠𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  ≠  𝑇𝑟𝑢𝑒 then 
  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  

Return NULL 
End if 

End for 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛          𝑀𝑖𝑛𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 
Return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 
3.2.1 Identification of scenarios 

At this step, we performed the Metropolis Monte-Carlo sampling in order to generate a reduced set of 
possible realizations 𝑅 ,Г from uniform distribution. For the sake of clarity, a realization 𝑅 ,Г represents 
a possible scenario in which Г displacement times take their maximum values 𝑡 + 𝛥 , and 𝛬 service 
times take their maximum values 𝑃 + 𝛿 . While the other arcs and the other nodes take respectively their 
nominal values 𝑡  and 𝑃 . For more details about Metropolis-Monte-Carlo techniques, we refer the reader 
to the work of Mosegaard et al. (1995) and more recent version of Rubinstein et al. (2016). 
 
3.2.2 Research of solution 

For each realization 𝑅 ,Г, we apply the Adaptive large neighborhood search in order to obtain a feasible 
solution noted 𝑆  satisfies each scenario that we have already generalized by Monte-Carlo. 
 
3.2.3 Robustness 

We draw up different mechanisms for the study of the robustness of the solution obtained by using ALNS 
approach in the previous step. The first mechanism of robustness allowed to verify the feasibility of our 
solution by  investigating the related time windows of each visited customer. It is not required at this 
level to test all possible realizations. The pseudo code of this method is shown in the algorithm 3. The 
second mechanism concerns the evaluation of robustness of the solution according to a defined robust 
criterion. The best case criterion is considered as a min-min strategy that tries to find the best solution 
overall scenarios. At the opposite, the worst case criterion provides a solution minimizing the worst 
deviation among all considered scenarios (e.g. Wu 2017). In between, an alternative robust criterion is 
related to as min-max deviation; more detail can be found in the paper of Aissi et al. (2009). 
 
In the present paper, we are more interested in finding the best solution in the presence of the worst case 
scenario for VRPTW under uncertain travel and service times (see algorithm 4). For the full details of 
different steps of algorithm 3 and 4, we refer the reader to the work of Rouky et al., (2018).   
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Algorithm 3 Check of the robustness 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒         𝑇𝑟𝑢𝑒 

For  𝑘          1 to |𝑉| do 

 For              to |𝜉(𝑇𝑟 )| 

  Calculate 𝐴𝑟𝑐𝑆𝑒𝑡Г and  𝑁𝑜𝑑𝑒𝑆𝑒𝑡  
  For 𝜆           to 𝑙 − 1 do 

   If  𝑙 ≤  Г + 1 or 𝛾 ∈ 𝐴𝑟𝑐𝑆𝑒𝑡Г then 

    t             t +  Δ  

   End if 

  End for 

For 𝑖           to 𝑙 − 1 do 

   If  l ≤  Λ or 𝑐 ∈ 𝑁𝑜𝑑𝑒𝑆𝑒𝑡 ,  then 

    P             P + δ  

   End if 

  End for 

  (𝑠 )Г,           

For 𝑖           to 𝑙 do 

     (𝑠 )Г,            max ((𝑠 )Г, + t +  P  , a ) 

  End for 

  If (𝑠 )Г, >  b  then 

   feasible takes false and the algorithm ends 
  End if 

 End for 

End for 

 
Algorithm 4 Evaluation on the worst case 𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 )     ←       

Put in descending order all the arcs of  𝛾(𝑆 ) according to their maximum deviations. 
For  𝑖      ←    1 to  do 

 𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 )   ←      𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 ) +  t + Δ  
End for 

For  𝑖    ←      Г+ 1 to |𝛾(𝑆 )| do 

 𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 )      ←   𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 ) +  t  

End for 

Return 𝑊𝑜𝑟𝑠𝑡𝐸𝑣𝑎𝑙Г(𝑆 ) 

 
4. Computational experiment 

Since VRPTW and RVRPTW are both NP-Hard, so to provide perfect conclusions and comparative 
results, we considered several kinds of instances. The robust approach examined was tested on a set of 
small instances based on the reference of Solomon benchmark (1987) (Solomon, 1987), and large 
instances of Gehring & Homberger's benchmark. Since the uncertainty of RVRPTW is simulated by 
discrete scenarios using Monte-Carlo Simulation, the uncertain travel time of each arc and the uncertain 
service time at each node are generated randomly between 0 and 10, with (Г,𝛬) is the degree of 
robustness which represents the number of service times and the number of travel times assumed to be 
uncertain. The used instances are noted as follow 𝐺𝑟_Г_𝛬_𝑖, where 𝐺𝑟 = {𝐶1,𝐶2,𝑅1,𝑅2,𝑅𝐶1,𝑅𝐶2} 
corresponds to the class name of the benchmark of Solomon and Gehring & Homberger.  and  𝛬 

represent the number of travel times and service times supposed uncertain. 𝑖 =
{100,200,400,600,800,1000} is an index that represents the size of the instance. 
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Table 1 shows the results obtained for small instances (100 customers) by using Cplex for the 
deterministic VRPTW and the results obtained by our robust approach based on ALNS that deals with 
the VRPTW considering that travel times and service times are both uncertain. The column “Instance” 
displays the notation of the instance. The column “Initial solution” presents the initial solution with which 
the robust approach starts. The column “best” states the best values found by the robust approach with 
10 runs while the column "mean" shows the average values found by the robust approach over 10 trials. 
The column “Optimal” displays the optimal solution for the deterministic VRPTW calculated by Cplex. 
 

Table 1  
Performance of our robust approach versus deterministic VRPTW (CPLEX) 

Instance Initial solution Best solution Mean solution Optimal solution  
R101_10_10_100 2176.59 1918.56 1981.45 1637.7  
R106_10_10_100 1794.75 1570.49 1603.24 1234.6  
R112_10_10_100 1292.24 1135.25 1165.39 978.7  
R201_10_10_100 1751.13 1534.99 1544.19 1143.2  
C101_10_10_100 917.76 870.46 881.17 827.3  
C105_10_10_100 1016.49 872.35 906.45 827.3  
C108_10_10_100 1172.46 982.18 1016.33 827.3  
C201_10_10_100 782.39 606.44 645.1 589.1  
C205_10_10_100 805.15 662.08 713.74 586.4  
C208_10_10_100 831.3 727.28 779.43 585.8  

RC101_10_10_100 2193.94 1882.76 1994.25 1619.8  
RC105_10_10_100 1915.73 1589.8 1713.6 1513.7  
RC108_10_10_100 1710.58 1474.84 1562.7 1114.2  
RC201_10_10_100 1659.86 1463.38 1509.13 1261.8  
RC202_10_10_100 1566.17 1398.14 1448.56 1092.3  
RC205_10_10_100 1518.52 1418.02 1453.03 1154  

 
Table 2 shows the results obtained for large instances by comparing the best-known results for the 
deterministic VRPTW to the results found by our robust approach based on ALNS that deals with the  
VRPTW considering that travel times and service times are both uncertain. 
 

Table 2  
Performance of our robust approach versus best known results 

Instance Initial solution Best solution Mean solution       Best known  
R121_25_25_200 6610.35 5696.41 5911.84 4784.11  
R141_25_25_400 12526.98 10939.12 11082.53 10372.31  
R161_50_50_600 26176.96 24277.04 24910.6 21131.09  
R181_50_50_800 41205.13 39011.14 39643.9 36852.06  

R1101_100_100_1000 63493.03 60506.88 61702.03 53473.26  
R125_25_25_200 5156.38 4667.38 4910.81 4107.86  
R145_25_25_400 11714.54 11250 11665.48 9226.21  
R165_50_50_600 22959.22 21231.41 21802.25 19588.89  
R185_50_50_800 37521.62 36488.37 36983.03 33723.77  

R1105_100_100_1000 58238.81 56015.9 56877.48 50876.21  
R1210_25_25_200 3919.05 3676.6 3731.17 3301.18  
R1410_25_25_400 10201.39 9847.68 10121.67 8094.1  
R1610_50_50_600 21602.23 19874.36 20350.31 17748.83  
R1810_50_50_800 36258.1 34792.04 35587.88 31086.85  

R11010_100_100_1000 52326.08 50678.87 50961.69 47992.05  
R221_25_25_200 5399.58 4785.14 4879.5 4483.86  
R241_25_25_400 11836.97 10442.34 10975.86 9210.15  
R261_50_50_600 24045.81 22070.83 22702.28 18206.8  
R281_50_50_800 34167.08 32289.08 33162.16 28114.25  

R2101_100_100_1000 51402.42 48077.63 49298.56 42188.86  
R225_25_25_200 4226.4 3625.7 3871.07 3366.79  
R245_25_25_400 10150.65 8340.94 8986.2 7128.93  
R265_50_50_600 18968.26 17022.95 17790.63 15096.2  
R285_50_50_800 29807.24 28110.59 28519.41 24285.89  

R2105_100_100_1000 48290.25 46144.16 46894.91 36232.18  
R2210_25_25_200 3312.17 2913.82 3066.73 2654.97  
R2410_25_25_400 8482.81 6679.72 7785.34 5786.4  
R2610_50_50_600 15874.92 14609.57 15165.41 12253.47  
R2810_50_50_800 25210.16 23839.6 24127.11 20401.47  
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Table 2 
Performance of our robust approach versus best known results (Continued) 

Instance Initial solution Best solution Mean solution       Best known  
R21010 100 100 1000 42490.62 40103.23 41335.65 30215.24  

C121_25_25_200 3399.45 2915.86 3029.34 2704.57  
C141_25_25_400 9205.81 8138.18 8584.48 7152.02  
C161_50_50_600 17624.24 15511.06 16672.38 14095.64  
C181_50_50_800 29445.55 28491.39 29075.07 25030.36  

C1101_100_100_1000 52251.98 51066.63 51982.04 42478.95  
C125_25_25_200 3116.86 2929.73 3058.28 2702.05  
C145_25_25_400 9992.46 8485.01 8964.53 7152.02  
C165_50_50_600 18388.46 17227.57 18035.76 14085.72  
C185_50_50_800 30275.37 28646.79 29428.55 25166.28  

C1105_100_100_1000 52938.75 52150.1 52467.93 42469.18  
C1210_25_25_200 3148.39 2808.41 2990.42 2643.51  
C1410_25_25_400 9195.54 8208.69 8632.71 6860.63  
C1610_50_50_600 16565.12 15842.58 16210.46 13637.34  
C1810_50_50_800 29738.8 27501.34 27112.31 24070.17  

C11010_100_100_1000 50163.43 46321.77 47806.49 39858.64  
C221_25_25_200 2316.76 2190.94 2244.38 1931.44  
C241_25_25_400 5043.61 4632.06 4957.28 4116.05  
C261_50_50_600 11601.77 10617.6 11308.25 7774.1  
C281_50_50_800 15126.33 14213.43 14833.2 11654.81  

C2101_100_100_1000 21742.75 20735.79 21212.43 16879.24  
C225_25_25_200 2444.25 2164.43 2243.59 1878.85  
C245_25_25_400 5243.39 4165.92 4405.26 3938.69  
C265_50_50_600 11527.53 10346.3 10596.96 7575.2  
C285_50_50_800 16054.91 14992.32 15575.45 11425.23  

C2105_100_100_1000 25179.55 24255.43 24799.67 16561.29  
C2210_25_25_200 2282.97 2008.49 2101.45 1806.58  
C2410_25_25_400 5012.63 4399.61 4687.95 3827.15  
C2610_50_50_600 11334.43 10294.91 10523.94 7255.69  
C2810_50_50_800 14967.74 14043.06 14651.07 10977.36  

C21010_100_100_1000 25907.63 24024.33 24624.61 15943.34  
RC121_25_25_200 4360.55 3815.01 4173.33 3602.8  
RC141_25_25_400 12220.71 10673.61 11061.17 8573.96  
RC161_50_50_600 23620.95 21917.12 22561.48 17014.17  
RC181_50_50_800 37849.35 35821.46 36257.21 31117.04  

RC1101_100_100_1000 56325.86 53322.91 54165.08 46138.01  
RC125_25_25_200 4182.22 3601.92 3762.9 3371  
RC145_25_25_400 11602.21 10604.17 10930.51 8172.64  
RC165_50_50_600 21047.61 20073.28 20400.21 16566.24  
RC185_50_50_800 35558.2 34959.07 35397.32 29796.67  

RC1105_100_100_1000 56705.85 53937.4 54407.58 45313.38  
RC1210_25_25_200 3902.19 3349.59 3514.39 3000.3  
RC1410_25_25_400 8908.94 8007.56 8397.93 7596.04  
RC1610_50_50_600 18946.53 18149.09 18591.05 15675.99  
RC1810_50_50_800 32010.09 31610.09 31838.24 28474.35  

RC11010_100_100_1000 49491.71 47296.55 48010.76 43679.61  
RC221_25_25_200 3865.62 3357.12 3460.46 3099.53  
RC241_25_25_400 9326.5 7160.2 7667.79 6682.37  
RC261_50_50_600 17021.84 16167.74 16660.9 13324.93  
RC281_50_50_800 29056.9 28307.07 28849.06 20981.14  

RC2101_100_100_1000 44947.06 43853.65 44307.34 30278.5  
RC225_25_25_200 3511.92 3232.09 3457.93 2911.46  
RC245_25_25_400 9809.92 7445.5 8708.31 6710.12  
RC265_50_50_600 17329.58 16076.16 16844.96 13000.84  
RC285_50_50_800 26883.72 26099.31 26607.32 19136.03  

RC2105_100_100_1000 42576.12 40999.51 41311.28 27140.77  
RC2210_25_25_200 2773.13 2397.68 2506.15 2015.6  
RC2410_25_25_400 5213.86 4722.23 4911.98 4278.61  
RC2610_50_50_600 12878.34 11991.88 12302.9 9069.41  
RC2810_50_50_800 20326.42 18361.79 18830.3 14439.14  

RC2101_100_100_1000 32588.02 30015.61 30598.91 21910.33  

 

 

In order to visualize the impact of increasing degrees of uncertainty on objective function, we set the 
value of  to 25 and we adjusted the value of Λ for multiple instances of size 100. Here is the curve 

obtained: 
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Fig. 1. Values of the objective function when adjusting the value of 𝛬 

The graph shows clearly that the objective function increases according to degree of uncertainty. To the 
best of our knowledge, this contribution is the first work to be devoted to the study of VRPTW 
considering both the uncertainties on travel times and service times. Due to the lack of work in this 
direction, we compared our results with the deterministic VRPTW literature even if the two problems 
are different in the sense that a good solution found for the deterministic case could become worse in the 
presence of uncertainties or even unreachable. 
 
From Table 1, the computation of the mean absolute percentage error (MAPE) of the data set indicates 
how much error in predicting the robust mean solution compared with the deterministic optimal solution. 
By including the uncertainties in travel times and service times, the minimization problem becomes 
robust and MAPE is about 22.68%. We need then extra cost to the objective function but the related 
counterpart risk gained is the protection against the delays and the solution is of good quality. In the 
meanwhile, for large instances, we concluded from table 2 that MAPE is about 22.57% where in this 
case the observed solution is the robust mean one compared to the deterministic case. The fact that the 
MAPE value for large and small instance around 23% is beyond our expectation and we believed that 
the robustness of the solution against the uncertain data can be achieved in the most cases by making the 
solution feasible for any travel times and service times in the uncertainly sets.  
 
It is then clear that our approach is very powerful in terms of the robustness since it included several 
algorithms (Robustness verification, worst-case evaluation ...) which leads to near best solutions for all 
the possible realizations of the uncertainties without any further considerations but only nominal values 
and deviations possible uncertain data are sufficient. 
 
5. Conclusion 

Our main goal in this paper was to consider the robust vehicle routing problem with time windows under 
both travel times and service times uncertainties. For this purpose, a new resolution robust approach has 
been suggested to minimize the total distance of the travel time in the presence of the maximum 
deviations of possible uncertain data. In this contrast, we generated all possible scenarios by using 
Metropolis-Monte Carlo simulation and we opt for the adaptive large neighborhood search ALNS 
algorithm to solve each sub-problem related to each scenario. In this context, several destroy/repair 
method has been combined to explore multiple neighborhoods within the same search and defined 
implicitly the large neighborhood. In order to study the feasibility of the resulting solution, following the 
previous works, efficient mechanisms have been developed; the first concerns the verification of the 
robustness, while the second takes into consideration the evaluation of the solution on the worst case. 
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The introduction of an effective way of modeling and handling several uncertainty data levels defined 
by pairs of uncertainty (𝛬,Г), which represent respectively the number of service times and the number 
of travel times assumed uncertain, has been tested on several sets of problems and showed improved 
robustness results for benchmark instances. Furthermore, the resolved method using the ALNS approach 
confirmed as in the previous work a great protection against uncertainties compared to what would have 
been found if a deterministic solution had been applied. 
 
In this work, the computational experiments were performed to examine our proposed new approach 
compared to the deterministic VRPTW literature on a set of small instances based on the Solomon 
VRPTW benchmark and large instances of Gehring & Homberger benchmark. The results have shown 
the robustness of our solutions against delays and offer decision-making tool that allows choosing the 
level of protection, as well as the deterministic solution, is applied. 
 
Future work will focus on the extension of the robust routing vehicle problem with time windows, in 
which both unexpected delays in travel time and service time may occur, to the application of parallel 
adaptive large neighborhood search in order to develop fast optimization procedures able to react in real 
time to changes in the problem information. 
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Appendices 
 

We introduce some algorithms used for the three different destruction operators of our Adaptive Large 
Neighborhood Search (ALNS) to ensure the diversity of the searching process. In contrast of the LNS 
heuristic which uses only one destroy procedure and one repair procedure, the ALNS uses an adaptive 
layer with a set of removal and insertion heuristics and applies them by preference using a selection 
mechanism that considers the statistics obtained during the search based on their performance and past 
success. The detail of each algorithm is given as follows: 
 

Appendix A 

 

Algorithm 5 Proximity operator 
Select randomly a node 𝑓𝑖𝑟𝑠𝑡𝑇𝑜𝑅𝑒𝑚𝑜𝑣𝑒 from the list of clients that have been removed, and add it to 
the list 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠  
Add the other nodes to 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 
For  𝑖 =  1 𝑡𝑜 𝑛𝑢𝑚𝑇𝑜𝑅𝑒𝑙𝑎𝑥 do 

Choose randomly a node 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝐼𝑑 from 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
Choose by Rank and relatedness a node 𝑛𝑜𝑑𝑒𝐼𝑑 
Add 𝑛𝑜𝑑𝑒𝐼𝑑 to 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
Remove 𝑛𝑜𝑑𝑒𝐼𝑑 from 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 

End For 

Return 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
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Appendix B 

 

Algorithm 6 Route portion operator 

Choose the First node to delete and its adjacent and add them to 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑠 list 
Add the nodes of 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑠 to 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 list and remove them from 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 
Add the other nodes to 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 
For  𝑖 =  1 𝑡𝑜 𝑛𝑢𝑚𝑇𝑜𝑅𝑒𝑙𝑎𝑥 do 

Choose randomly a node 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝐼𝑑 from 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
Choose by Rank and relatedness a node 𝑛𝑜𝑑𝑒𝐼𝑑 
Add 𝑛𝑜𝑑𝑒𝐼𝑑 to 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
Remove 𝑛𝑜𝑑𝑒𝐼𝑑 from 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 

End For 

Return 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑁𝑜𝑑𝑒𝑠 

Appendix C 

 

Algorithm 7 Longest detour operator 
Inputs: feasible solution 𝑥, Array 𝑚𝑎𝑥𝑇𝑎𝑏 
Outputs: 𝑧 max detour 
For 𝑟𝑜𝑢𝑡𝑒 ∈  𝑟𝑜𝑢𝑡𝑒𝑠(𝑥) do 
 𝑚 =  𝑀𝑎𝑥𝐷𝑒𝑡𝑜𝑢𝑟  

Add 𝑚 to 𝑚𝑎𝑥𝑇𝑎𝑏 
End for 𝑧 =  𝑚𝑎𝑥(𝑚𝑎𝑥𝑇𝑎𝑏) 

Return 𝑧 

 

 
 

 

© 2019 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 
 


