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A Robust Approach for the Derivation 
of Closed-Forrn Green’ s Functions 

M. I. Aksun, Member, IEEE 

Abstruct- Spatial-domain Green’s functions for multilayer, 
planar geometries are cast into closed forms with two-level ap- 
proximation of the spectral-domain representation of the Green’s 
functions. This approach is very robust and much faster com- 
pared to the original one-level approximation. Moreover, il does 
not require the investigation of the spectral-domain behavior of 
the Green’s functions in advance to decide on the parameters 
of the approximation technique, and it can be applied to any 
component of the dyadic Green’s function with the same ease. 

I. INTRODUCTION 

UMERICAL modeling of printed structures used in N monolithic millimeter and microwave integrated circuits 
(MMIC) can be efficiently and rigorously performed by em- 
ploying the method of moments (MOM). The MOM is based 
upon the transformation of an operator equation, such as 
integral, differential, or integro-differential operators, into a 
matrix equation [l]. Although the MOM is the most effi- 
cient numerical technique for moderate-size printed geometries 
(spanning several wavelengths in two dimensions), there is 
still need for improvement, which could be accomplished in 
the calculation of the matrix elements and in the solution of 
the matrix equation. For small geometries like those requiring 
couple hundreds of unknowns, the matrix-fill time could be 
the significant part of the overall solution time, however, for 
large geometries the matrix solution time will dominate the 
CPU time [2]. 

In the application of the spatial-domain MOM to the solution 
of a mixed-potential integral equation (MPIE), one needs 
to calculate the Green’s functions of the vector and scalar 
potentials in the spatial domain where they are represented as 
oscillatory integrals, called Sommerfeld integrals. The eval- 
uation of these integrals is quite time consuming, therefore 
the matrix-fill time would be significantly improved if these 
integrals can be evaluated efficiently. Recently, a technique 
has been proposed to approximate these integrals analytically 
for a horizontal electric dipole over a thick substrate backed 
by a ground plane; this is called the closed-form Grleen’s 
functions method [3]. This technique was improved first for 
two layer geometries with arbitrary thicknesses [4], then for 
multilayer geometries with horizontal electric dipole (H.ED), 
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horizontal magnetic dipole (HMD), vertical electric dipole 
(VE,D), and vertical magnetic dipole (VMD) sources [5]. 
However, a question remains to be answered on the robustness 
and the efficiency of the technique, because some of the 
Green’s functions are usually difficult to approximate and it 
is recommended that the function to be approximated needs 
to be examined in advance. The: source of difficulties in 
this technique is the approximation of the spectral-domain 
Green’s functions in terms of complex exponentials. The 
originally proposed technique [3]/ uses the original Prony 
metlhod which requires the same number of samples as the 
number of unknowns, that is, the number of samples must 
be twice as many as the number of complex exponentials 
(one: for the coefficient and one for the exponent). Therefore, 
it would be difficult to account for the fast changes in the 
spectral domain without using tens of complex exponentials 
if not hundreds in certain cases, which is partly due to the 
uniform sampling required by the Prony method. The use of 
the least-square Prony method has improved the technique 
to account for the fast changes with a reasonable number 
of exponentials [4], but due to the noise sensitivity of the 
Prony methods [6], [7], it requires several trial and error 
iterations which render the technique to be inefficient and 
not robust. As a solution, another approximation technique, 
called the generalized pencil of function (GPOF) method [8], 
is employed in casting the Green’s functions into closed 
fomis [5]. The GPOF method has turned out to be quite 
robust and less noise sensitive when compared to the original 
and least-square Prony’s methods, and also provides a good 
measure for choosing the number of exponentials used in 
the approximation. However, it still requires one to study in 
advance the spectral-domain behavior of the Green’s function 
in order to decide on the approximation parameters like 
the number of sampling points and the maximum value of 
the sampling range. In addition, since the approximation 
techniques, like the Prony and the GPOF methods, require 
the function to be sampled uniformly, one would need to 
take hundreds of samples in order to be able to approxi- 
mate a slow converging function with rapid changes (even 
if this were to occur in a small region), which is a typ- 
ical behavior of the spectral-domain Green’s functions of 
the scalar potentials in a thin substrate. Because of these 
difficulties, the technique of deriving the closed-form Green’s 
functions and subsequently using 1 hem in MOM applications 
are considered to be not robust and could not be used much 
for the development of a general-purpose electromagnetic 
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region -(i+l)  

software. In this paper, a new approach based on a two- 
level approximation is proposed to overcome these difficulties, 
and demonstrated that it is very robust and computationally 
efficient. 

The procedure of the original one-level approximation is 
described and difficulties associated with this approach are 
demonstrated on some examples by using the GPOF method in 
Section I1 of this paper. This is followed in Section ID where 
the formulation of the new approach based on a two-level 
approximation and some numerical examples are included. 
Then, in Section IV, a discussion on the new technique and 
conclusions are provided. 

Z=d i-h 
source 

11. DIFFICULTIES IN THE ORIGINAL 
ONE-LEVEL APPROXIMATION 

Since the main goal of this paper is to introduce a robust 
technique to obtain the spatial-domain Green’s functions in 
closed forms for planarly-layered media, Fig. 1, it would be 
useful to give the definition of the spatial-domain Green’s 
functions 

where, G and G are the Green’s functions in the spatial and 
spectral domains, respectively, Hi2)  is the Hankel function of 
the second kind and SIP  is the Sommerfeld integration path 
defined in Fig. 2. Note that this integral, called the Sommerfeld 
integral, can not be evaluated analytically for the spectral- 
domain Green’s functions G, which are obtained analytically 
for planarly stratified media [5] ,  [9]. It was recognized by 
Chow et al. [3] that if the spectral-domain Green’s function 
G is approximated by exponentials, the Sommerfeld inte- 
gral (1) can be evaluated analytically using the well-known 
Sommerfeld identity 

Therefore, this places the emphasis of deriving the closed- 
form Green’s functions on the exponential approximation. 
Since the approximation techniques used for this problem, 
namely the original Prony, the least square Prony and the 
GPOF methods, require uniform samples along a real variable 
of a complex-valued function, one might think of choosing 
the integration path in (1) along the real IC, axis so that G can 
be sampled along a real variable. However, one should notice 
that k: = I C 2  - IC; and sampling along real IC, results in an 
approximation in terms of exponentials of IC, which cannot 
be cast into a form of exponentials of IC, as required in the 
application of the Sommerfeld identity (2). Hence, a deformed 
path on IC, plane, denoted by Cap in Fig. 2, was defined as a 
mapping of a real variable t onto the complex IC, plane by 

Z=Z ,-h 
region -(i+m) 1 

region-(i-m) 

Z=-Z -m -h 

Fig. 1.  A typical planar geometry. 

where IC ,  and IC are defined in the source layer [3]. The Green’s 
functions are sampled uniformly on t E [0, To], which maps 
onto the path Cap with I C p m a x  = k [ l +  T2]1/2 in the IC,-plane, 
and approximated in terms of exponentials of t which can 
easily be transformed into a form of exponentials of IC,. This 
scheme is called the one-level approximation approach here in 
this paper because the complex function to be approximated is 
sampled between zero and To and is assumed to be negligible 
beyond To. 

For a general-purpose algorithm, the spectral-domain 
Green’s functions are obtained for a multilayer medium and 
neither surface-wave poles nor the real images are extracted. 
It is true that the extraction of the surface-wave poles (SWP) 
and the real images would have helped the exponential 
approximation techniques by making the Green’s functions in 
the spectral domain well-behaving (extraction of the SWP’s) 
and fast-converging (extraction of the real images). However, 
since the contribution of the SWP’s is small for geometries 
on a thin substrate, and there is no analytical way of finding 
the real images for multilayer planar structures except for 
simple cases like single and double layers, the help gained 
for the approximation would be limited to a restricted class of 
planar geometries and would render the algorithm not general 
purpose and not robust. 

It would be instructive to consider the practical details of 
the implementation of the exponential approximation along 
the path defined in (3). It is of utmost importance to choose 
the approximation parameters; To, the number of exponen- 
tials to be used in the approximation, and the number of 
samples in t E [0, To], judiciously for the success of this 
approach. To illustrate the implementation of the one-level 
exponential approximation and the difficulties involved, the 
spectral-domain Green’s function for the scalar potential due 
to an x-directed dipole, Gz, is given in Fig. 3, for a geometry 
of four layers at 30 GHz: First layer-PEC; second layer- 
E,Z = 12.5,dz = 0.03 cm; third l a~e r -6~3  = 2.1,d3 = 0.07 cm; 
fourth layer-free-space, and the source and observation planes 
are chosen at the interface of the second and third layers. Since 
the expressions of the spectral-domain Green’s functions in a 
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kp - plane 

Fig. 2. Definition of the Sommerfeld integration path and the path Cap used in one-level approximation. 

4.0 
Imaginary 

4.0 
0.0 0.2 0.4 0.6 0.8 1.0 

t 
Fig. 3. The magnitude of the spectral-domain Green’s function G!: along 
the path Cap. First layer-PEC; second Iayer-e,z = 12.5, dz = 0.03 cin; third 
layer-e,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz. 

multilayer medium are given in [5] for HED, VED, HMD, 
and VMD sources, they are not included in this paper. It is 
evident from Fig. 3 that Green’s functions can have sharp 
peaks and fast changes for small t ,  which maps to thie far- 
field region in the spatial domain. Therefore, one needs to 
sample the Green’s function given in Fig. 3 at a peniod of 
less than 0.05 along t so that the fine features of the function 
can be captured in the approximation. The choice of To is 
another parameter that competes with the period of samples 
because large To corresponds to large number of samples 
and translates to a longer CPU time. Fortunately, for the 
example given in Fig. 3, the Green’s function decays quite 
fast in the spectral domain, therefore it would be enough to 
sample as far as To = 5 which requires 200 samples if At  
is chosen to be 0.025. The spatial-domain Green’s function is 
obtained via the GPOF method using the above approximation 
parameters (To = 5, number of samples = 201, number of 
exponentials = 13) and compared to the result obtained from 
the numerical integration, which are labeled as “Apprx.” and 
“Exact,” respectively, in Fig. 4. Although, as it was mentioned 
above, the SWP’s are not extracted from the spectral-domain 
Green’s function prior to the exponential approximation, the 
contribution of the SWP’s is also shown for the purpose of 
comparison and one can draw a conclusion that the exponential 
approximation algorithm (GPOF) works fine well withiin the 
influence range of the SWP’s and beyond that an asymptotic 

15.0 

14.0 

13.0 

12.0 

11.0. -. 

- Approx. - Exact 
SW contribution - a _ _ _ _  

1.0 3 -2.0 -1.0 0.0 

Fig. 4. The magnitude of the Green’s function for the scalar po- 
tential and the surface wave contribution. First layer-PEC; second 
layer-e,z = 12.5,dz = 0.03 cm; third layer-c,~ = 2.l,d3 = 0.07 cm; 
fourth layer-free-space, freq = 30 GHz. 

approximation together with the surface-wave contribution can 
be used to approximate the spatiad-domain Green’s functions 
[1C% [I l l .  

lJnfortunately, not all the Green’s functions have fast de- 
caying spectral-domain behavior like the above example given 
in Fig. 3. For example, the spectral-domain Green’s function 
for the vertical component of the vector potential due to 
a 13ED [5], G&./jkz = Gfy/jky, does not decay as fast 
and moreover has a relatively isharp peak which requires 
sampling almost as frequently as that of the example given 
in Fig. 3, as shown in Fig. 5. To demonstrate the effect of the 
approximation parameters, the Green’s function J Gf, dx (= 
~ - - ~ { G t . / j k ~ } )  is given for thie same approximation pa- 
rameters as those of the above (example (To = 5, number 
of samples = 201) and compared to the results obtained by 
the numerical integration of the spectral-domain representation 
of the Green’s function and to thte results obtained by using 
different approximation parameters in Fig. 6. It is observed 
that the approximated Green’s fiinctions do not agree with 
the exact solution for small values of p because the spectral- 
doinain Green’s function is not sampled far enough to get 
an accurate near-field distribution. However, if the value of 
To is increased, the agreement between the approximated and 
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Fig. 5. The magnitude of the spectral-domain Green’s function G& /jkz. 
First layer-PEC; second layer-e,:! = 12.5,dz = 0.03 cm; third 
layer-t,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz. 

exact Green’s functions is improved at the expense of the 
computation time provided that the frequency of sampling is 
kept constant. 

From the above discussion, it can easily be concluded that 
the one-level approximation approach can not be made fully 
robust and suitable for the development of CAD software. 
As it was mentioned above, this is because it requires users 
first to investigate the spectral-domain behavior of the Green’s 
function and then to perform a few iterations to find the 
best possible combination of the approximation parameters. 
To circumvent these difficulties, a two-level approximation 
scheme is developed here in conjunction with the use of the 
GPOF method and its details are given in the following section. 

111. TWO-LEVEL APPROACH FOR APPROXIMATING 
THE SPECTRAL-DOMAIN GREEN’S FUNCTIONS 

To alleviate the necessity of investigating the spectral- 
domain Green’s functions in advance and the difficulties 
caused by the trade-off between the sampling range To and the 
sampling period, the approximation is performed in two levels. 
The first part of the approximation is performed along the path 
Capl while the second part is done along the path Cap2, as 
shown in Fig. 7. Note that the second part of the approximation 
is the same as the one-level approximation scheme described 
in the previous section, except that now the value of Toz 
(kpmaxz = k [ l  + T22]1/2) can be set in advance to a value 
such that kpmaxz 2 k ,  where k ,  is the maximum value of 
the wavenumber involved in the geometry. 

To illustrate the procedure of the two-level approximation, 
we will first outline the necessary steps and then provide some 
of the details. The steps are: 

1) Choose T02 such that I C P m a x Z  2 k ,  : For exam- 
ple, since GaAs is the highest dielectric constant layer 
(E,(GaAs) = 12.5), then I C ,  = m k , ,  and T02 can 
be safely chosen to be five. 

-8.0 

-8.5 

-9.0 

-9.5 
0 

~ Exact 
- 
0 
x - 

Apprx.( T0=5, # of sample=20l) 
El Apprx.(TO=lO, # of sample=401) 
x Apprx.(TO=50, # of sample=601) 

-1 0.0 
-3.0 -2.0 -1 -0 0.0 1.0 

Fig. 6. The magnitude of the Green’s function for the vector potential 
G& dx. First layer-PEC; second layer-€,:! = 12.5, d:! = 0.03 cm; third 

layer-e,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz. 

2)  Choose Tol, i.e., ICPmax1 = k [ l  + (Tol + To2)2]1/2, and 
the number of samples on [kPmaxz, ICPmaxl]: The choice 
of To, is not very critical as long as one chooses ICPmax1 
large enough to pick up the behavior of the spectral- 
domain Green’s function for large IC,, and, since the 
spectral-domain behaviors of the Green’s functions are 
always smooth beyond ICPmax2, it is not necessary to have 
a large number of samples on [kPmauZ, ICPmaxl]. Typical 
values could be 200 for Tol and 200 for the number of 
samples. 

3) Sample the function along the path Capl and approxi- 
mate it by using the GPOF method: Sampling along the 
path Capl can be performed by varying t between zero 
and TOl uniformly in k,  = -jIC[T02 + t]. 

4) Subtract the function approximated for the range of 
ICP E [kpmaxz, ICpmaxl] from the original function: The 
remaining function will be nonzero over a small range 
of k, (E [O,kPmaxz] )  so that one can pick up the 
fine features of this function without employing a huge 
number of sampling points. 

5) Sample the remaining function uniformly along the path 
Ca,z and approximate it by using the GPOF method: 
Sampling along the path Cap, can be performed by 
varying t between zero and T02 uniformly in I C ,  = 

The parameters that must be fixed by the user in advance 
are the limits of the sampling ranges Tol and T02 for the first 
and the second parts of the approximation, respectively, and 
the number of samples along the paths CaP1 and Caps, which 
respectively correspond to the first and second parts of the 
approximation. Although the number of parameters which are 

k[-jt + (1 - t/To2)]. 
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t ImLkpl 

kp - plane 

Cap2 

Fig. 7. The paths C,,l and Capz used in two-level approximation. 

to be decided by the user seems to have increased compared to 
the one-level approximation, these parameters are determined 
only once for the class of geometries that are of interest; they 
are used for the approximation of any component of the dyadic 
Green’s function and for any geometrical constants. Moreover, 
the choice of these parameters do not require an investigation 
of the function to be approximated in advance because they can 
be chosen for the possible limits of the geometrical constants. 

To demonstrate the robustness of the technique, the choice 
of the parameters and the application of the above procedure, 
the Green’s function J Gtx dx is obtained for the same ge- 
ometry given in Section 11. Its spectral-domain representation 
is given here as 

to help explain the approximation procedure, where the layer 
“i” denotes the source layer, and A, B, C, and D are given 
in [5]. It should also be noted that this expression is for 
the case where the source and observation points are in the 
same layer, i.e., layer “i.” If it is desired to find the Green’s 
function for the observation layer different from the source 
layer, then the coefficients of the up-going waves and clown- 
going waves must be carried to the observation layer with a 
recursive algorithm [5], [9]. Let us first give the parametric 
equations describing the paths C,,l and Cap2 for the first and 
second parts of the approximation, respectively 

. For Cap1 ICzs = -jICi[T02 + t] 0 5 t 5 To1 ( 5 )  

For Cap, ICz, =kc; [ - j t +  ( 1 - - ;2)] 0 5 t 5 T o 2  

where t is the running variable sampled uniformly on the 
corresponding range. Then, the above procedure is followed 
step-by-step as: 

1) T02 = 5 is chosen, for which I C f m a x z  = ki[ l  + 
To2]1/2 > 1, = Lo. 

2) = 400 is chosen to ensure that the behavior of 
Gfx/jIC, for large 1, is captured. This choice is not 

3) 

4) 

critical, 300 or 500 could have been chosen instead. 
Since there is no fine feature to pick up in this range, 
that is, the function is smooth, one can keep the range 
large without having to use a large number of samples. 
Therefore, the number of samples is chosen to be 50. 
G:x/jICx is sampled along the path Cap, and the GPOF 
method is applied 

Ni Ni 

n=l n=l 

where bl ,  and Pln are coefficients and exponents ob- 
tained from the GPOF methlod, and Nl is the number 
of exponentials used in this approximation. The choice 
of the number of exponentials is based upon the number 
of significant singular values obtained in an intermedi- 
ate step of the application of the GPOF method. For 
this specific problem, five axponentials are chosen to 
approximate the Green’s function on the range of IC, E 
[ I C p m a x z ,  I C p m a x l ] .  The transformation of the coefficients 
bln and the exponents Pln is necessary to cast the 
approximating function into a form suitable for the 
application of the Sommerfeld identity (2), that is, the 
approximating function must be an exponential function 
of kz*.  Hence, aln and a1, are obtained in terms of b l ,  

The approximating function f ( k p )  is subtracted from 
the original function GtX/;iIC,, which guarantees the 
remaining function to be negligible beyond ICpmax2 

and Pln in (8) 

dICpk,H~2)(k,p) [ - f ( k , ) ]  

Note that the first integral is evaluated along the path 
Cap, because the integrand is negligible on Cap,, but 
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Apprx. (two-level) 
Apprx. (one-level) 
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1 og10 (IC0 P )  

Fig. 8. 

layer-e,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz. 

The magnitude of the Green’s function for the vector potential 
G:= dx. First layer-PEC; second layer-e,z = 12.5, dz = 0.03 cm; third 

the second integral is evaluated along Cup2 + CUp1. 
Therefore, the Sommerfeld identity (2) can be applied 
to the integrals in (9). 

5) The remaining function is sampled along the path Cu,2 

with 100 samples. Since the maximum range for the 
sampling (kpmax2)  is rather small, compared to that of 
the one-level approximation scheme, the frequency of 
sampling can be made quite high without substantially 
increasing the number of samples. For all practical 
purposes (including the worst case situation) the choice 
of 200 as the number of samples would be more than 
enough to get a good approximation 

where b2, and t32n are the coefficients and exponents of 
the exponentials of t obtained from the application of 
the GPOF method, and and azn are the coefficients 
and exponents of the exponentials of kzt .  The number 
of exponentials N2 in this part of the approximation 
is chosen to be 8, again by the number of significant 
singular values. 

To summarize, the approximation parameters as chosen 
here are as follows: for the first part of the approximation; 
TOl = 400, To2 = 5, number of samples = 50, and number of 
exponentials = 5, for the second part of the approximation; 
number of samples = 100, number of exponentials = 8. Note 
that the total number of exponentials used in this approxi- 
mation is 13. The Green’s function obtained by employing 
the above procedure is given in Fig. 8 along with the data 
obtained from direct numerical evaluation of the Sommerfeld- 

4.0 

0 Apprx.(GAxx 

2.0 

0.0 

-2.0 
1.0 -3.0 -2.0 -1.0 0.0 

oil10 ( L O P  1 

0 Apprx. (GAzz) 

0 Apprx. (Gqz) 
- ExacttGqz) 

-3.0 -2.0 -1.0 0.0 1 .o 

(b) 

Fig. 9. (a) The magnitude of the normalized Green’s 
functions 4aG&,/p3,4ae3GZ. First layer-PEC; second 
layer-c,z = 12.5,dz = 0.03 cm; third layer-e,s = 2.l,d3 = 0.07 cm; 
fourth layer-free-space, freq = 30 GHz. (b) The magnitude of the 
normalized Green’s functions 4nGtz,/p3, 4ne3G;. First layer-PEC; second 
layer-e,Z = 12.5,dz = 0.03 cm; third layer-e,3 = 2.1, ds = 0.07 cm; 
fourth layer-freespace, freq = 30 GHz. 

type integral (exact), and from the one-level approximation 
approach with the parameters of approximation To = 200, 
number of samples = 400 and the number of exponentials 
= 13. Note that the values of the parameters used in the 
one-level approximation are chosen to make the computation 
time minimum with a reasonable agreement. However, those 
of the two-level approximation are typical values and the 
number of samples for the second part of the approximation 
can even be reduced to 50 with no change in the results. 
The two approximation techniques for the above example are 
compared for the CPU time on a SPARCstation 10/41, using 
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Fig. 10. (a) The magnitude of the normalized Green’s function 47rG&/p3. 
First layer-PEC; second layer-e,z = 12.5,dz = 0.03 cm; third 
layer-e,3 = 2.l,d3 = 0.07 cm; fourth layer-free-space. (b) The magnitude 
of the normalized Green’s function 4ae3Gg. First layer-PEC; second 
layer-e,z = 12.5,dz = 0.03 cm; third layer-e,3 = 2.1, d3 = 0.07 cm; 
fourth layer-free-space. 

the same number of total exponentials (= 13) for different 
approximation parameters, and presented in the table format 
below: 

Approximation CPU time 
Approximation Parameters (set) 

one-level To = 200, N, = 400 198.0 
one-level To = 200, N ,  = 500 382.0 
two-level 

two-level 

TOl = 400, N,, = 50 

Tol = 400, N,, = 50 
Toz = 5 ,  N,, = 50 

T02 = 5, N,, = 100 

1.2 

3.5 

where N ,  is the number of samples in one-level approximation 
scheine while Nsl and Ns2 are the number of samples of the 
first and second parts of the approximation, respectively, in 
the two-level approximation approach. It is obvious that the 
two- level approximation approach improves the computational 
efficiency significantly. 

The robustness of the two-level approach can be demon- 
strated by casting the other Green’s functions into closed 
forms with the use of the same approximation parameters as 
those: used for 1 G& dx, namely T0l = 400,N,, = 50 
To2 := 5,  N,, = 100. The normalized Green’s functions of the 
vector and scalar potentials due to HED and VED sources 
are obtained (47rG&/p3,47r~G$, 47rGfZ/p3 and 4m3G9 
following the two-level approach (Apprx.) and evaluating 
the !$ommerfeld integrals numerically (Exact), and given in 
Fig. 9(a) and (b). This test shows thlat the same set of approx- 
imat,ion parameters can be used for any Green’s function, that 
is, there is no need for an advance investigation of the Green’s 
function and no need for any trial steps. The assessment 
of the robustness of the proposed approach also requires a 
stud!{ of the sensitivity of the approximation parameters to 
the geometrical constants and the frequency. Therefore, the 
Green’s functions for the vector and the scalar potentials are 
ob ta“  in closed forms for the same geometrical constants 
and for the same approximation piirameters used above, but 
the frequency of operation is changed to 1 GHz, 10 GHz and 
100 GHz, which is equivalent, in effect, to a change of the 
geometrical constants, Fig. 10(a) and (b). It is observed that 
the agreements between the exact and approximate sets of 
data are still perfect and hence it is safe to conclude that the 
two-level approach proposed in this paper is very robust. 

IV. CONCLUSION 
The closed-form Green’s functions developed previously 

suffer from the difficulties of choosing approximation param- 
eters, for the exponential approximation techniques used in the 
derivation, thereby rendering the technique to be inefficient 
and not robust. Moreover, the extraction of the SWP’s and 
real images may not be possible or efficient for multilayer 
geornetries when the original approach is used. Here, a new 
approach based on a two-level approximation is proposed to 
overcome these difficulties and to make the use of closed-form 
Green’s functions attractive for those developing EM software 
and for researchers in the field. The major advantages of this 
approach are its robustness and the: computational efficiency, 
both of which are demonstrated in the text. 
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