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Abstract This paper describes a robust approach for the
single machine scheduling problem 1|ri |Lmax. The method
is said to be robust since it characterizes a large set of opti-
mal solutions allowing to switch from one solution to an-
other, without any performance loss, in order to face po-
tential disruptions which occur during the schedule execu-
tion. It is based on a dominance theorem that characterizes
a set of dominant sequences, using the interval structure de-
fined by the relative order of the release and the due dates of
jobs. The performance of a set of dominant sequences can
be determined in polynomial time by computing the most fa-
vorable and the most unfavorable sequences associated with
each job, with regard to the lateness criterion. A branch and
bound procedure is proposed which modifies the interval
structure of the problem in order to tighten the dominant
set of sequences so that only the optimal sequences are con-
served.

Keywords Scheduling · Robustness · Sequential
flexibility · Interval structures · Pyramids

1 Introduction

Robust scheduling methods aim to face uncertainties that
usually arise during schedule execution. The goal is to
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achieve either solution robustness or quality robustness
(Herroelen and Leus 2003) meaning that a solution or its
quality should be stable for a wide range of possible ex-
ecution scenarios. The execution scenarios are usually as-
sumed to be captured using a scenario model which as-
sociates either a probability distribution or a fuzzy set
or an interval or a set of possible values (GOThA 2002;
Billaut et al. 2004) to the schedule parameters (release dates,
due dates, processing times, . . .). Therefore, robust schedul-
ing methods can be classified according to the kind of model
they use, the kind of robustness (solution or quality) they
aim to achieve and the way they operate.

Following these classification criteria, several state-of-
the-art papers (Mehta and Uzsoy 1998; Davenport and Beck
2000; Herroelen and Leus 2003; Herroelen and Leus 2004a)
have pointed out the main classes of robust scheduling. As
we only sum up here their main features, the reader should
refer to these studies for more detailed descriptions.

Reactive scheduling is a kind of robust scheduling ap-
proach that considers disruptions only during the on line
scheduling phase: a decision is made at each event occur-
rence, depending on the environment context. During the
decision-making process, some priority rules are used which
are assumed to be quite efficient with regard to a given per-
formance objective. Commonly, a reactive approach uses
neither a baseline schedule nor a scenario model. Therefore,
while this kind of approach allows to face a wide range of
disruptions (machine breakdown, processing time, release
or due date fluctuations, . . .), it does not ensure good per-
formance and does not provide decision-makers with a long
term view of the schedule.

This is why predictive-reactive scheduling methods are
often preferred. Indeed, these methods propose to use a
baseline schedule computed during the offline scheduling
phase. The schedule is repaired at appropriate moments
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of the online phase in order to react against disruptions.
Predictive-reactive approaches can be distinguished accord-
ing to the repair moment (continuously, periodically, . . .)
and the way the initial baseline schedule is repaired (lo-
cal schedule adaptation (Smith et al. 1995), total reschedul-
ing (Snoek 2001), partial rescheduling (Sabuncuoglu and
Bayiz 2000), match-up rescheduling (Sakkout et al. 1997;
Akturk and Gorgulu 1999), . . .). Predictive-reactive ap-
proaches usually yield better schedules than pure reactive
ones since having a baseline schedule allows to improve the
quality of the real time schedule decisions from the perfor-
mance point of view. Nevertheless, because they do not take
any scenario model into account, the quality and the stability
of the initial baseline schedule cannot be ensured a priori.

As pointed out by a few authors (Wiers 1997; Herroe-
len and Leus 2003), having a stable forecast of a project
schedule allows better human organization since decisions
can be advantageously anticipated before the schedule im-
plementation. This assertion has motivated the design of
proactive-reactive scheduling methods which aim at an-
ticipating, during the offline scheduling, the potential dis-
ruptions arising from the schedule environment. One class
of proactive-reactive approaches tends to obtain solution
robustness by computing a unique feasible solution hav-
ing rather good performance for any execution scenario
compatible with the scenario model (Kouvelis et al. 2000;
Daniels and Carrillo 1997; Jensen 2001). On the other side,
some proactive-reactive approaches tend to prioritize the
quality robustness: a set of schedule solutions is computed
so that the performance can be ensured whatever the se-
lected solution is. In this second class, a temporal flexi-
bility (Chiang and Fox 1990; Gao et al. 1995; Davenport
et al. 2000; Leon et al. 1994; Mehta and Uzsoy 1998;
Herroelen and Leus 2004b; Tavares et al. 1998) or a se-
quential flexibility (Wu et al. 1999; Moukrim et al. 2003;
Billaut and Roubellat 1996; Esswein et al. 2004; Aloulou et
al. 2002) is inserted into an initial deterministic solution in
order to protect it against unforeseen events. Indeed, a solu-
tion which is sequentially or temporally flexible character-
izes a set of solutions that can be used in the on-line phase.
By switching from one solution to another when disruptions
occur, the scheduler can control the performance degrada-
tion.

Several authors (Briand et al. 2003; Esswein and Billaut
2002; GOThA 2002) have pointed out that there exists a
trade-off between performance and robustness. An optimal
schedule is usually robust with regard to a small set of dis-
ruptions. If one wants to protect the schedule against a larger
set of disruptions then a degradation of its quality is neces-
sary. The same assertion can also be found in robust opti-
mization theory (Bertsimas and Sim 2004).

This paper focuses on proactive-reactive scheduling
methods where sequential flexibility is used as a way to

protect a solution against uncertainties. To handle sequen-
tial flexibility, a partial order is classically used. As defined
in (Cheng et al. 2002), a partial order P is defined by a pair
P = (X,�P ) where the binary relation �P on X × X is
reflexive, antisymmetric and transitive.

The notion of a group sequence (Thomas 1980) gives an
interesting partial order. It allows the characterization of a
set of solutions specifying, for each resource, a sequence of
task groups. The execution order of the tasks within a group
is free. The main advantage of such a partial order lies on the
capability to perform the worst case analysis, without solu-
tion enumeration, in order to determine the quality of the set
of solutions with regard to a regular criterion. Another ad-
vantage is that the number of characterized sequences can
be easily computed, without solution enumeration, in order
to quantify the flexibility. Of course, the larger the set of
solutions, the worse its quality. The notion of a group se-
quence has been widely used in the field of shop schedul-
ing, intending to determine a family of solutions to be used
during the schedule real time execution (Mauguière et al.
2002; Aloulou et al. 2002; Briand et al. 2002; Artigues and
Roubellat 1999; Wu et al. 1999; Billaut and Roubellat 1996;
Le Gall 1989).

While the concept of a task group allows to exhibit se-
quential flexibility, this flexibility is rather restricted. In-
deed, this concept does not allow to characterize solutions
when they correspond to permutations of tasks which are
not adjacent on the same resource. For instance, the solu-
tions i ≺ S ≺ j and j ≺ S ≺ i, where S is a set of tasks and
i and j are two tasks, cannot be represented together within
the same group sequence.

Furthermore, as group sequences are classically built up
without considering any uncertainty model, they are not ro-
bust a priori. Thus, computing a group sequence is certainly
helpful in order to react to unforeseen events occurring in
the online phase, but it seems difficult to know in advance
the set of disruptions that the set of solutions is insensitive
to.

In this paper the focus is on the characterization of a
large set of efficient schedules for single machine schedul-
ing problems 1|ri |Lmax, while lessening the previously de-
scribed drawbacks. We highlight that, although single ma-
chine scheduling problems are somewhat academic, meth-
ods that allow to solve them have often been useful in tack-
ling more realistic environments, like job shop problems
(Adams et al. 1988; Carlier and Pinson 1989; Chu et al.
1992). We believe that the same assertion can be made for
the robust framework presented below.

The paper is organized as follows. First some basic no-
tions related to the analysis of interval structures are recalled
since they are used for the definition of the partial order.
Then a particular dominance theorem, stated in the early
eighties, is presented. This theorem allows to characterize a
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Fig. 1 Allen’s relations

set of dominant sequences and we show how both the num-
ber of characterized sequences and the worst performance of
the dominant set can be efficiently computed, while avoiding
the complete enumeration of the sequences. We also study
the sensitivity of the dominant set of sequences relative to
a set of execution scenarios. Finally, a branch and bound
procedure is detailed which aims at characterizing a large
subset of optimal sequences by pruning the set of dominant
sequences.

2 Interval structures and basic concepts

An interval structure is defined by a couple 〈I,C〉 with I =
{i1, . . . , in} a set of intervals and C a set of constraints over
I × I . Each interval ij is defined by its lower and upper
bounds xj and yj . Any constraint between two intervals ij

and ik can be expressed either by specifying a total order
relation among the lower and upper bounds of the intervals
or by directly using the relations of the algebra proposed by
Allen (1981) (see Fig. 1).

For instance, let us consider the interval structure with
I = {A,B,C,D,E,F,G} given in Fig. 2. We assume that
the set of constraints C is defined by a total order such that
(xA = xB = xG) < (xC = xD) < yC < (yB = xF ) < xE <

yA < (yD = yE) < yF = yG). The set of equivalent Allen’s
relations is represented in the Table given in Fig. 3. Such a
table can be computed with time complexity O(n(n−1)/2),
n being the number of intervals.

A top and a base (Esquirol et al. 1999) are two interesting
notions related to the concept of interval structure.

Definition 1 A top of an interval structure 〈I,C〉 is an in-
terval t ∈ I such that ∀i ∈ I the Allen’s relation during(i, t)

never holds.

Fig. 2 An interval structure example

Definition 2 A base of an interval structure 〈I,C〉 is an in-
terval b ∈ I such that ∀i ∈ I the Allen’s relation during(b, i)

never holds.

The notions of a top and a base can be respectively used
to define the concepts of a t-pyramid and a b-pyramid.

Definition 3 Given a top tα , a t-pyramid Pα related to tα is
the set of intervals i ∈ I such that during(tα, i) holds.

Definition 4 Given a base bα , a b-pyramid Pα related to bα

is the set of intervals such that during(i, bα) holds.

For illustration, let us consider the interval structure
given in Fig. 2. It has three tops {C,D,E} and four bases
{A,B,F,G}. The involved t-pyramids are PC = {B,A,G},
PD = {G} and PE = {F,G}, and the b-pyramids are PA =
{C}, PB = {C}, PF = {E} and PG = {C,D,E}.

The concept of a b-pyramid has been already used in the
scheduling literature in order to determine a sufficient condi-



212 J Sched (2007) 10: 209–221

A B C D E F G

A equals(A,A) starts(B,A) during(C,A) overlaps(A,D) overlaps(A,E) overlaps(A,F ) starts(A,G)

B starts(B,A) equals(B,B) during(C,B) overlaps(B,D) precedes(B,E) meets(B,F ) starts(B,G)

C during(C,A) during(C,B) equals(C,C) starts(C,D) precedes(C,E) precedes(C,F ) during(C,G)

D overlaps(A,D) overlaps(B,D) starts(C,D) equals(D,D) ends(E,D) overlaps(D,F ) during(D,G)

E overlaps(A,E) precedes(B,E) precedes(C,E) ends(E,D) equals(E,E) during(E,F ) during(E,G)

F overlaps(A,F ) meets(B,F ) precedes(C,F ) overlaps(D,F ) during(E,F ) equals(F,F ) ends(F,G)

G starts(A,G) starts(B,G) during(C,G) during(D,G) during(E,G) ends(F,G) equals(G,G)

Fig. 3 Allen’s relations for the intervals {A,B,C,D,E,F,G}

tion of optimality for the F2|prmu|Cmax problem (Briand
et al. 2006). This condition allows to characterize a large
subset of optimal sequences which necessarily includes all
Johnson’s sequences together with numerous other optimal
job sequences. In the following we focus on the t-pyramid
concept which gives a dominant order for the 1|rj |Lmax

problem.

3 A dominance theorem for the single machine problem

The following dominance Theorem (Erschler et al. 1983)
had been stated with the main aim to prune the solution
space associated with deterministic single machine schedul-
ing problems, so that finding an optimal solution became
less time expensive. Later on, we show how this theorem
can also be used from a robust scheduling point of view.

A single machine problem V consists of a set T of n

jobs to be scheduled on a single disjunctive resource. A start
time sj has to be found for each job j . The release date
rj (sj ≥ rj ), the due date dj and the processing time pj

of each job are known. The studied dominance is relative
either to the admissibility of the problem (i.e., ∀j ∈ T , sj +
pj ≤ dj ) or to the minimization of the maximum lateness
Lmax = max(sj + pj − dj ), or to the minimization of the
maximum tardiness Tmax = max(0, sj + pj − dj ).

The hypothesis frame used by the authors to study the
dominance takes into account only the relative order of the
release dates rj and due dates dj of the jobs. Therefore, the
processing time pj as well as the explicit values of rj and dj

are not used. In other words, whatever the values of rj , dj

and pj , the following results are valid as long as the relative
order of the release and due dates are kept unchanged.

An interval structure 〈IV ,CV 〉, associated with a prob-
lem V , contains an interval ij = [rj , dj ] ∈ IV for each job j .
To characterize a dominant set of sequences, the authors use
the notions of the top and the t-pyramid related to 〈IV ,CV 〉.

It is assumed that the tops are indexed in ascending or-
der with respect to their release dates or, in case of equal-
ity, in ascending order with respect to their due dates. When
both their release dates and due dates are equal, the tops
are indexed in an arbitrary order. Thus, if tα and tβ are two
tops then α < β if and only if (rtα ≤ rtβ ) ∧ (dtα ≤ dtβ ). The

t-pyramid Pα corresponds to the pyramid that the top tα
characterizes. The functions u(j) (resp., v(j)) indicates the
index of the first (resp., the last) t-pyramid to which the job
interval ij belongs.

The theorem can now be stated.

Theorem 1 A dominant set of sequences can be constituted
by the sequences such that:

• the tops are in ascending order with respect to their index;
• only the jobs belonging to the first pyramid can be located

before the first top and they are in ascending order with
respect to their release dates (or in an arbitrary order in
case of release date equality);

• only the jobs belonging to the last pyramid can be located
after the last top and they are in ascending order with
respect to their due dates (or in an arbitrary order in case
of release date equality);

• only the jobs belonging to the t-pyramids Pk or Pk+1 can
be located between two successive tops tk and tk+1 so
that:
– first the jobs belonging only to Pk but not to Pk+1 are

sequenced immediately after tk in ascending order with
respect to their due dates (or in an arbitrary order in
case of equality),

– then the jobs belonging to both Pk and Pk+1 are se-
quenced in an arbitrary order,

– and last the jobs belonging only to Pk+1 but not to Pk

are sequenced in ascending order with respect to their
release dates (or in an arbitrary order in case of equal-
ity).

Theorem 1 defines a partial order since, on the one hand,
it imposes some precedence relations among the tops of the
interval structure (i.e., tk ≺ tk+1) and, on the other hand,
between the non-top jobs and the tops (i.e., tu(j)−1 ≺ j ≺
tv(j)+1). However, since the jobs sequenced before (resp.,
after) a top have to be ordered in ascending order with re-
spect to their release dates rj (resp., in ascending order
with respect to their due dates dj ), the partial order is re-
stricted.

In order to illustrate the theorem, let us focus on a prob-
lem having seven jobs so that the relative order among the
release dates rj and the due dates dj of the jobs is r6 < r1 <
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Fig. 4 The interval structure of
the problem

r3 < r2 < r4 < d2 < d3 < d4 < (r5 = r7) < d6 < d5 < d1 <

d7. The interval structure associated with this example as
well as the tops (in bold) and the t-pyramids are shown in
Fig. 4.

There are four tops: t1 = 2, t2 = 4, t3 = 5 and t4 = 7
which characterize four t-pyramids: P1 = {1,3,6}, P2 =
{1,6}, P3 = {1} and P4 = ∅ (in accordance with the defini-
tion, a top does not belong to the pyramid it characterizes).

Whatever the real values of ri and di (provided they are
compatible with the previous interval structure), Theorem 1
characterizes twenty four dominant sequences (out of 7! =
5040):

6 ≺ 1 ≺ 3 ≺ 2 ≺ 4 ≺ 5 ≺ 7, 1 ≺ 3 ≺ 2 ≺ 6 ≺ 4 ≺ 5 ≺ 7,

1 ≺ 3 ≺ 2 ≺ 4 ≺ 6 ≺ 5 ≺ 7, 6 ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 7,

1 ≺ 2 ≺ 3 ≺ 6 ≺ 4 ≺ 5 ≺ 7, 1 ≺ 2 ≺ 3 ≺ 4 ≺ 6 ≺ 5 ≺ 7,

6 ≺ 3 ≺ 2 ≺ 1 ≺ 4 ≺ 5 ≺ 7, 3 ≺ 2 ≺ 6 ≺ 1 ≺ 4 ≺ 5 ≺ 7,

3 ≺ 2 ≺ 1 ≺ 4 ≺ 6 ≺ 5 ≺ 7, 6 ≺ 2 ≺ 3 ≺ 1 ≺ 4 ≺ 5 ≺ 7,

2 ≺ 3 ≺ 6 ≺ 1 ≺ 4 ≺ 5 ≺ 7, 2 ≺ 3 ≺ 1 ≺ 4 ≺ 6 ≺ 5 ≺ 7,

6 ≺ 3 ≺ 2 ≺ 4 ≺ 1 ≺ 5 ≺ 7, 3 ≺ 2 ≺ 6 ≺ 4 ≺ 1 ≺ 5 ≺ 7,

3 ≺ 2 ≺ 4 ≺ 6 ≺ 1 ≺ 5 ≺ 7, 6 ≺ 2 ≺ 3 ≺ 4 ≺ 1 ≺ 5 ≺ 7,

2 ≺ 3 ≺ 6 ≺ 4 ≺ 1 ≺ 5 ≺ 7, 2 ≺ 3 ≺ 4 ≺ 6 ≺ 1 ≺ 5 ≺ 7,

6 ≺ 3 ≺ 2 ≺ 4 ≺ 5 ≺ 1 ≺ 7, 3 ≺ 2 ≺ 6 ≺ 4 ≺ 5 ≺ 1 ≺ 7,

3 ≺ 2 ≺ 4 ≺ 6 ≺ 5 ≺ 1 ≺ 7, 6 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 1 ≺ 7,

2 ≺ 3 ≺ 6 ≺ 4 ≺ 5 ≺ 1 ≺ 7, 2 ≺ 3 ≺ 4 ≺ 6 ≺ 5 ≺ 1 ≺ 7.

4 A flexibility measure

An interesting property of Theorem 1 is that the number of
dominant sequences, included in the set Sdom which is char-
acterized by the theorem, can be computed according to the
formula (Erschler et al. 1983) without the requirement of
any sequence enumeration.

card(Sdom) =
N∏

q=1

(q + 1)nq ,

where nq is the number of non-top jobs belonging to exactly
q pyramids and N is the total number of pyramids.

In order to illustrate this formula, we consider the previ-
ous example. There are three non-top jobs {1,3,6}. Job 3
belongs to a single t-pyramid, job 6 belongs to exactly two
t-pyramids and job 1 belongs to exactly three t-pyramids.
The application of the formula gives card(Sdom) = (1+1)1 ·
(2 + 1)1 · (3 + 1)1 = 24.

5 A performance measure

Theorem 1 associates to each interval structure, correspond-
ing to a class of problem V , a set of dominant sequences
Sdom. This section shows how the performance of this set
can be measured with respect to the maximum lateness cri-
terion.

In the following the focus is on the determination of
the values Lmax

j and Lmin
j corresponding respectively to the

worst and the best lateness of a job j among all the se-
quences of Sdom. As shown below, the computation of those
values can be performed with time complexity O(n logn)

by determining the most unfavorable sequence Seqmax
j and

the most favorable sequence Seqmin
j in Sdom for each job j .

Let us underline that the determination of Seqmax
j and

Seqmin
j only requires the knowledge of the relative order of

the release and due dates of the jobs, although the computa-
tion of Lmax

j and Lmin
j takes into account the explicit values

of rj , pj and dj . We also recall that in the following u(j)

and v(j), respectively, indicate the index of the first and the
last t-pyramid to which the job j belongs.

5.1 Determination of Seqmin
j

The most favorable sequence Seqmin
j ∈ Sdom for j is the se-

quence in which j is completed as early as possible. It is
determined using the Jackson’s rule.
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Fig. 5 Structure of Seqmin
j

We denote Predmin
j the set of jobs such that v(k) < u(j),

i.e., the jobs which necessarily precede j in any dominant
sequence. Then the following theorem is proved.

Theorem 2 The most favorable sequence Seqmin
j ∈ Sdom for

a job j is σ1 ≺ t1 ≺ · · · ≺ σu(j)−1 ≺ tu(j)−1 ≺ j so that the
jobs of σk = {i ∈ Predmin

j | u(i) = k} are sequenced in as-
cending order with respect to their release dates (see Fig. 5).

Proof First, it is obvious that only the jobs in Predmin
j ,

which necessarily precede j in any dominant sequence, have
to be considered since sequencing a job, not in Predmin

j , be-

fore j can only increase the lateness of j . So finding Lmin
j

amounts to the minimization of the total completion time of
the jobs of Predmin

j . Since the lateness of the jobs in Predmin
j

does not matter, we can use the Jackson’s rule which states
that the sequence ordering the jobs in ascending order with
respect to their release dates is optimal for 1|ri |Cmax. In-
deed, the Jackson’s rule respects Theorem 1 since it assigns
each job i to its pyramid Pu(i), just before the top tu(i). �

Let us return to the example given in Fig. 4. We focus on
job 5. This job is a top which characterizes pyramid P3. The
set Predmin

5 is made of the jobs k such that v(k) < 3, i.e.,
Predmin

5 = {2,3,6,4}. According to the theorem, the most
favorable sequence for job 5 is Seqmin

5 = 6 ≺ 3 ≺ 2 ≺ 4 ≺ 5.

5.2 Determination of Seqmax
j

In order to compute the worst possible value of Lmax
j

of a job j , we determine the most unfavorable sequence
Seqmax

j ∈ Sdom for j , i.e., the sequence in which j is com-
pleted as late as possible. That can be done also with tem-
poral complexity O(n logn).

We denote Predmax
j the set of jobs k such that u(k) ≤ v(j)

(the jobs such that u(k) > v(j) are necessarily sequenced
after j in any dominant sequence). Before giving the general
way to build up Seqmax

j , we need first to focus our attention
on the case when the problem has only one t-pyramid.

Theorem 3 Given an interval structure associated to a
problem V , having a single t-pyramid P of the top t , the
most unfavorable sequence Seqmax

j ∈ Sdom with regard to

the lateness of job j ∈ P is A ≺ t ≺ B ≺ j , where the
jobs of A = {i ∈ P | di > dj } are sequenced in ascending

order with respect to their release dates and the jobs of
B = {i ∈ P | di ≤ dj } are sequenced in ascending order with
respect to their due dates.

Proof The problem of maximizing the lateness of j amounts
to the maximization of the completion time of j since the
lateness of the other jobs does not matter. Therefore, we take
interest in sequences having the form S = A ≺ t ≺ B ≺ j ,
the jobs of A (resp., of B) being ordered in ascending order
with respect to their release dates (resp., in ascending order
with respect to their due dates. The completion time of j in
S is CS

j = max(CA, rt ) + pt + ∑
k∈B pk + pj . We assume

below that the conditions of Theorem 3 are satisfied, i.e.,
A = {i ∈ P | di > dj } and B = {i ∈ P | di ≤ dj }.

Then it is easy to verify that if a job i ∈ A is moved after
the top t then the completion time of j can never increase.
Indeed, in this case, because di > dj , the new sequence S′
has the form A′ ≺ s ≺ B ≺ j ≺ i (with A′ = A − {i}) and,
obviously, CS′

j ≤ CS
j .

Similarly, one can verify that if a job i ∈ B is moved be-
fore the top t then the completion time of j cannot increase.
Indeed, according to Theorem 1, the new sequence S′ is in
the form A1 ≺ i ≺ A2 ≺ t ≺ B ′ ≺ j (with A = A1 ≺ A2

and B ′ = B − {i}) and one can check that CS
j − CS′

j =
max(CA, rt ) − max(CA1≺i≺A2, rt ) + pi is greater than or
equal to zero because CA − CA1≺i≺A2 ≤ pi . Hence the the-
orem follows. �

We can now consider the general case where the interval
structure attached to the problem has several t-pyramids.

Theorem 4 The most unfavorable sequence Seqmax
j ∈ Sdom

for a job j is t1 ≺ σ1 ≺ · · · ≺ tv(j)−1 ≺ σv(j)−1 ≺ A ≺
tv(j) ≺ B ≺ j so that the jobs of σk = {i ∈ Predmax

j | v(i) <

v(j) and v(i) = k} are sequenced in ascending order with
respect to their due dates, the jobs of A = {i ∈ Predmax

j |
v(i) ≥ v(j) and di > dj } are sequenced in ascending or-
der with respect to their release dates, and the jobs of B =
{i ∈ Predmax

j | v(i) ≥ v(j) and di ≤ dj } are sequenced in
ascending order with respect to their due dates (see Fig. 6).

Proof The problem of maximizing the lateness of j amounts
to the maximization of the completion time of j since the
lateness of the other jobs does not matter. Obviously, the
greater the number of jobs sequenced before j , the larger
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Fig. 6 Structure of Seqmax
j

Table 1 A single machine
scheduling problem Jobs rj dj pj

1 10 44 5

2 13 25 6

3 11 27 7

4 20 30 4

5 30 43 3

6 0 34 6

7 30 51 2

the completion time of j . So, according to Theorem 1, only
the jobs i ∈ Predmax

j such that u(k) ≤ v(j) have to be con-
sidered. Furthermore, the later the jobs in Predmax

j are se-
quenced, the greater is the completion time of j . Therefore,
any job i ∈ Predmax

j has to be assigned, in accordance with
Theorem 1, either to Pv(i), if v(i) < v(j), or to Pv(j), other-
wise. Thus the problem of maximizing the completion time
of the jobs of Predmax

j amounts to v(j) independent prob-
lems of maximization, one for each t-pyramid. Maximizing
the completion time of the jobs of Pα , with α ≤ v(j) − 1,
is easy because the worst completion time is obviously
Cα = rtα + ∑

i∈Pα
pi + ptα which is obtained when the jobs

are sequenced after the top (in ascending order with respect
to their due dates). Maximizing the completion time of the
t-pyramid Pv(j) can be done according to Theorem 3. �

In order to illustrate Theorem 4, let us return to the exam-
ple given in Fig. 4. We focus our attention on job 6 and on
its most unfavorable sequence Smax

6 . This job belongs to two
pyramids characterized by tops 2 and 4, so v(6) = 2. The set
Predmax

6 is {1,2,3,4}. From the previous theorem one can
deduce that Seqmax

6 = 2 ≺ 3 ≺ 1 ≺ 4 ≺ 6.

5.3 Lateness diagram

Given a problem V and its dominant set of sequences Sdom,
it is interesting to lay out a visual representation that gives
the best and the worst lateness for each job. For this pur-
pose the diagram of lateness is introduced which associates
to each job i ∈ T an interval [Lmin

i ,Lmax
i ]. The bounds of

this interval are respectively computed on the basis of Seqmin
j

and Seqmax
j .

Figure 7 presents the lateness diagram associated to the
problem of Table 1, stemmed from Carlier (1982). We un-
derline that this problem matches the interval structure given

in Fig. 4. The most favorable and unfavorable sequences of
each job are indicated above each bound of the intervals.

Given Lmin
i and Lmax

i , the optimal Lmax can be bounded
as follows:

max
(
Lmin

j

) ≤ L∗
max ≤ max

(
Lmax

j

)
, ∀j ∈ T .

For instance, as depicted in Fig. 7, one can deduce that
−2 ≤ L∗

max ≤ 11. These bounds have to be compared with
the optimal lateness −1, which can be found using the
branch and bound procedure of Carlier (Carlier 1982). One
can also remark that, for any sequence of Sdom, jobs 1 and 7
are never late.

6 An uncertainty model by intervals

As claimed in the introduction, the offline characterization
of a set of schedules allows to favor the robustness of the on-
line decision-making process since it is possible to face the
disruptions by switching opportunely from a solution to an-
other, while controlling the performance degradation. Nev-
ertheless, given a set of schedules, one can also want to know
in advance the range of disruptions the set of schedules is ro-
bust to. Indeed, this kind of feature allows decision-makers
to size the sequential flexibility which is required in order
to protect the schedule against a set of possible execution
scenarios. We show below how, given an interval structure
and an interval model of the uncertainties, it is possible to
determine a set of schedules having a secured performance
whatever the considered execution scenario.

One interesting property of Theorem 1 is that it is insen-
sitive to variations of both the release and due dates, pro-
vided that their relative order is kept unchanged. Moreover,
it is also insensitive to variations of processing times which
are not considered by the theorem. In Sect. 5 it has been
shown that the most favorable and unfavorable sequences
Seqmin

j and Seqmax
j , regarding the lateness of a job, are also

unchanged under the same assumptions. Then the following
property obviously stands.

Property 1 Given a single machine scheduling problem V ,
having its set of potential execution scenarios characterized
by an interval model in the form ri ∈ [r i, r̄i], pi ∈ [p

i
, p̄i]

and di ∈ [d i, d̄i], if all the intervals [r i , r̄i] and [d i, d̄i]
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Fig. 7 Lateness diagram for the example of Table 1

are disjoint, Theorem 1 characterizes a set of dominant se-
quences Sdom for which the best and the worst lateness Lmin

j

and L
max
j can be ensured whatever the considered execution

scenario. Furthermore, whatever the considered execution
scenario, the set Sdom always involves at least one optimal
solution.

Proof If all the intervals [r i , r̄i] and [d i, d̄i] are disjoint
then a total order exists among the release and due dates.
Therefore, Theorem 1 can be applied in order to find a set
of dominant sequences Sdom, and one can ensure that it al-
ways involves at least one optimal solution, whatever the
considered scenario, provided it is coherent with the interval
model. Given a job j ∈ V , Sect. 5 has shown how to deter-
mine the most favorable and unfavorable sequences Seqmin

j

and Seqmax
j . They are also independent of the real values of

rj , pj and dj , since only the relative order among the rj

and dj is used for their determination. Given the sequence
Seqmin

j (resp., Seqmax
j ) associated to a job j , a lower bound

Lmin
j (resp., an upper bound L

max
j ) of its lateness can be ob-

viously determined using the values r i , p
i

and d̄i (resp., r̄i ,
p̄i and d i ). �

This last property is important since one can ensure that
a set of dominant sequences has performance which is a pri-
ori robust relative to a set of possible execution scenarios.
In other words, if the potential uncertainties are modeled by
means of intervals associated with the release dates, the due
dates and the processing times, then the best and the worst

Table 2 Interval model
example j [r j , r̄j ] [d j , d̄j ] pj

1 [6,9] [10,15] 4

2 [1,2] [36,37] 5

3 [20,22] [33,35] 8

4 [23,27] [28,32] 6

5 [3,5] [16,19] 7

lateness can be computed for each job, provided that the in-
tervals [r i, r̄i] and [d i, d̄i] are disjoint.

The assumption that the intervals [r i, r̄i] and [d i, d̄i] are
disjoint does not seem unrealistic. For instance, in a make-
to-order context, it only implies, on the one hand, that the
components which are required for the production are not
delivered by the suppliers at the same time but in disjoint
time windows, and, on the other hand, that the order due
dates are distributed in time according to disjoint time win-
dows.

For illustration, let us consider the problem of having the
interval model described Table 2 (without loss of generality
the processing times are assumed to be constant).

This interval model characterizes 259 200 different possi-
ble scenarios of execution. There are two tops (jobs 1 and 4)
and Theorem 1 determines twelve dominant sequences:

2 ≺ 5 ≺ 1 ≺ 3 ≺ 4, 2 ≺ 5 ≺ 1 ≺ 4 ≺ 3,

5 ≺ 1 ≺ 2 ≺ 3 ≺ 4, 5 ≺ 1 ≺ 2 ≺ 4 ≺ 3,

5 ≺ 1 ≺ 3 ≺ 4 ≺ 2, 5 ≺ 1 ≺ 4 ≺ 3 ≺ 2,
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Fig. 8 Lateness diagram

2 ≺ 1 ≺ 5 ≺ 3 ≺ 4, 2 ≺ 1 ≺ 5 ≺ 4 ≺ 3,

1 ≺ 5 ≺ 2 ≺ 3 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 4 ≺ 3,

1 ≺ 5 ≺ 3 ≺ 4 ≺ 2, 1 ≺ 5 ≺ 4 ≺ 3 ≺ 2.

The computation of the best and the worst lateness for each
job gives the lateness diagram of Fig. 8. The lateness val-
ues are robust with regard to any possible interval scenario
which respects the initial interval model.

7 A branch and bound procedure

7.1 General principles

Given an interval structure attached to a problem and its cor-
responding set of dominant sequences Sdom, it can be inter-
esting to prune Sdom in order to delete bad sequences so that
its worst performance (i.e., max(Lmax

j )) can be decreased.
Indeed, such a feature is useful when searching for a good
trade-off between flexibility and performance.

With this aim, given the initial interval structure 〈IV ,CV 〉
of a problem V = {j | rj , dj ,pj }, one can explore the
set of interval structures 〈IV ′ ,CV ′ 〉 which are compatible
with 〈IV ,CV 〉, i.e., such that V ′ = {j | r ′

j ≥ rj ,p
′
j = pj ,

d ′
j ≤ dj }.

For this purpose we developed a branch and bound proce-
dure. It is assumed that an upper bound of the worst lateness
L is defined by decision-makers, with L ≥ Lopt (Lopt be-
ing the optimal lateness of the considered problem V ). The
goal of the procedure is to enumerate the interval structures
〈IV ′ ,CV ′ 〉 (with V ′ = {j | r ′

j ≥ rj ,p
′
j = pj , d

′
j ≤ dj }) hav-

ing the worst lateness less than or equal to L.
Each node of the exploration tree is evaluated by a lower

bound and an upper bound of the lateness criterion. They
correspond, respectively, to the values maxj∈T Lmin

j and

maxj∈T Lmax
j , established as described in Sect. 5. The sep-

aration of a node i is stopped either when its lower bound
is greater than L (i.e., all the characterized sequences have a
maximal lateness greater than L) or when its upper bound is

less than or equal to L (i.e., all the characterized sequences
have a maximal lateness less than or equal to L). In the lat-
ter case, the node has to be memorized. A depth-first search
strategy is adopted.

7.2 Separation and branching schemes

Given a node of the tree, the longest path C, associated to
the sequence which gives to the worst lateness its value, is
determined. On this path two jobs are selected: the pivot job
corresponding to a top and a free non-top job which is se-
quenced either to the right or to the left of the pivot. In order
to select the pivot and the free job, three cases are consid-
ered. Let j be the job such that Lmax

j = maxi∈T Lmax
i .

• If j is a non-top job, then the pivot is the top of the pyra-
mid having the index v(j), the job being necessarily on
C; the free job is the immediate job being immediately
located on the right of the pivot on C;

• If j is a top, and if the associated t-pyramid holds some
non-top jobs, then the pivot is j and the free job is the job
being immediately located on the left of the pivot on C;

• If j is a top, and if the associated t-pyramid does not hold
any non-top jobs, then the pivot is the next top on C on
the left of j having still some non-top jobs in its pyramid,
the free job is the job immediately located on the right of
the pivot on C.

Let i and α, respectively, be the free job and the pivot.
A binary separation scheme is considered: α precedes i or i

precedes α. According to Theorem 1, these precedences can
be achieved as follows:

• α ≺ i is imposed by updating ri so that ri ← rα since α is
a top, rj ≥ rα implies that α precedes j in any dominant
sequence.

• Similarly, i ≺ α is imposed by updating di so that
di ← dα .
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Fig. 9 Node N0

Fig. 10 Node N2

The root of the exploration tree is the initial interval struc-
ture of the problem. Each node N of the exploration tree
has two children, Nα≺i and Ni≺α , having their own inter-
val structure and dominant sets of sequences Sdom(Nα≺i )

and Sdom(Ni≺α) such that Sdom(Nα≺i ) ∪ Sdom(Ni≺α) =
Sdom(N). The child having the best upper bound is selected.
The separation of a node stops either when it corresponds to
a solution or when C only holds top jobs. In the latter case,
the procedure backtracks to the last still unexplored node.

7.3 Example

In order to illustrate how the procedure works, let us return
to the example of Table 1. Here we assume that the targeted
lateness L is Lopt = −1. Our procedure passes by the fol-
lowing stages:

Stage 1: The node N0, having its upper bound maxi∈T ×
Lmax

i = Lmax
4 = 11 > Lopt, is separated. The sequence giv-

ing to Lmax
4 its value is 2 ≺ 3 ≺ 6 ≺ 1 ≺ 4. The job 2 is

selected as the pivot and 3 as the free job. Thus two branch-
ings are considered: r3 ← r2 and d3 ← d2 which give birth
to the nodes N1 and N2 (see Fig. 9).

The new lower and upper bounds of these nodes are eval-
uated as indicated in Fig. 9. The node N1, having its lower
bound equal to 0 and, hence, greater than Lopt, is cut. Only
N2 has to be developed.

Stage 2: the longest path associated to N2 is 3 ≺ 2 ≺ 6 ≺
1 ≺ 4. Job 3 is selected as the pivot and job 6 as the free job.
Two new branchings N3 and N4 are considered (see Fig. 10):
the one where r6 ← r3 and the one where d6 ← d3. The next
selected node is N4.

Fig. 11 Node N4

Fig. 12 Node N3

Fig. 13 Node N7

Stage 3: the longest path associated to N4 is 6 ≺ 3 ≺ 2 ≺
1 ≺ 4. Job 4 is selected as the pivot and job 1 as the free
job. The two new branchings are N5 and N6: r1 ← r4 and
d1 ← d4. Since the lower bound of N6 is greater than −1,
N6 is cut. Furthermore, N5, having both its lower and upper
bounds equal to −1, is an optimal node. Its interval struc-
ture characterizes two optimal sequences: 6 ≺ 3 ≺ 2 ≺ 4 ≺
(1–5) ≺ 7, where (1 − 5) is a group of permutable jobs. The
node N3 has still to be developed since other optimal solu-
tions can be found (see Fig. 11).

Stage 4: For N3, the longest path is 3 ≺ 2 ≺ 6 ≺ 1 ≺ 4.
Jobs 2 and 6 are respectively chosen as the pivot and the
free job. Two new nodes N7 and N8 have to be considered:
r6 ← r2 and d6 ← d2. N8 can be cut and the node N7 is
developed in the next stage (see Fig. 12).

Stage 5: For N7, the selected pivot is job 4 and the free job
is 1. Two new nodes are created N9 and N10 corresponding
to the updating: r1 ← r4 and d1 ← d4. N10 can be cut and
N9 is considered in the next stage (see Fig. 13).
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Fig. 14 Node N9

Stage 6: For N9, the longest path is 3 ≺ 2 ≺ 6 ≺ 4. Jobs
6 and 4 are respectively chosen as the pivot and the free job.
Two new nodes are obtained: N11 and N12 which can both
be cut (see Fig. 14). Since all the nodes have already been
explored, the procedure stops. Only the node N5 is optimal.

8 Computational experiments

In this section we present the computational results of the
procedure described above. We intend to show that it allows
to characterize, in a short time, an impressive number of op-
timal solutions.

8.1 Random generator and experimentation strategy

To generate data for the single machine scheduling problem,
we reuse the method introduced in (Hariri and Potts 1983).
The processing times of jobs correspond to uniform random
variables on the interval [1,100]. Each ri is represented by
a uniform random variable on the interval [0, α × ∑n

i=1 pi],
where α is a parameter allowing to adjust the distribution
of ri . Four values of α were considered: {0.25;0.5;0.75;1}.
Similarly, each di is represented by a uniform random vari-
able on the interval [(1 − β) × a × ∑n

i=1 pi, a × ∑n
i=1 pi].

The parameter a ∈ {100%,110%} allows to adjust the max-
imal temporal margin associated to jobs and the parameter
β controls the dispersion of di . Four values of β were con-
sidered β ∈ {0.25;0.5;0.75;1}. To ensure the coherence be-
tween the release date, the due date and the processing time
for each job, any di smaller than ri + pi is updated to this
value.

Using these generating principles, we generate instances
for single machine problems of 10, 50, 100 and 500 jobs. In
each case we generated 320 instances, ten for each possible
combination of the values of α, β , and a.

For each instance we take interest in optimality search-
ing by fixing the targeted lateness L to Lopt. The Carlier’s
branch and bound procedure has been used for computing
Lopt.

Let us point out that, although the procedure is able to
find all the admissible interval structures, the computational
effort required to enumerate all of them is considerable for

Table 3 Summarized results

Tcpu (s) Card (Sdom)

10 jobs Avg. 0.00018 7.27

Max. 0.01 108

Min. 0.001 1

50 jobs Avg. 0.068 3.67E+22

Max. 0.11 1.01E+25

Min. 0.02 1

100 jobs Avg. 0.43 1.87E+63

Max. 0.631 5.51E+65

Min. 0.22 36

500 jobs Avg. 57.17 2.06E+303

Max. 93.731 >1.00E+308

Min. 25.138 3.1568E+12

large problems. Nevertheless, as it is shown below, the num-
ber of dominant sequences characterized by the first found
interval structure is often very high. This is why, in each run,
we decided to stop the branch and bound procedure as soon
as a first admissible interval structure is found.

8.2 Summarized results

An overview of the results given by the procedure is pre-
sented in Table 3. The tests were executed on a 1.4 GHz Intel
processor with 1 Gb RAM. We point out, for each problem
class, the average CPU time consumed to find the first op-
timal interval structure, and the average number of optimal
sequences that the first structure characterizes. Let us notice
that the CPU times given in the table do not include the time
consumed by the algorithm of Carlier for computing Lopt.

Table 3 shows that the amount of time needed to solve
problems with 10–50–100 jobs is small and stable. The com-
putational effort increases when problems with 500 jobs are
considered, but the CPU time remains acceptable and sta-
ble. The average number of characterized sequences is usu-
ally very high, especially for large problems. Nevertheless,
it varies according to the considered problem (while usually
remains high).

9 Conclusion

In this paper a dominance theorem is studied which char-
acterizes, given the interval structure of a problem, a set of
dominant sequences. An interesting property of this char-
acterized set is that both its flexibility and its performance
with regard to the lateness can be computed, without any
sequence enumeration, in a polynomial time. Another inter-
esting property is that it remains unchanged as long as the
relative order among the release and the due dates of the jobs



220 J Sched (2007) 10: 209–221

is conserved. Furthermore, it is independent of the process-
ing times. On the basis of these properties, it has been shown
that, given an interval structure, a model of uncertainty can
be found, associating an interval to each parameter ri , pi ,
di . Then, provided that the intervals [ri] and [di] are dis-
joint, the worst performance can be ensured regarding the
lateness of each job. The worst performance is robust both
for any execution scenario with respect of the model and for
any dominant sequence characterized by the theorem.

A branch and bound procedure has been also proposed.
This procedure modifies the interval structure attached to a
problem so that the non-optimal sequences of the dominant
set are progressively discarded. The nodes of the exploration
tree correspond to new problems which differ from the ini-
tial one by the release and due dates of the jobs which have
been respectively increased and/or decreased. Thus, any leaf
of the exploration tree is a problem having an interval struc-
ture such that the dominance theorem only characterizes op-
timal sequences. The experimentation has shown that the
procedure is able to characterize, in a reasonable time, a very
impressive number of optimal sequences.

The previous results can be reused to characterize a set of
solutions for job shop problems. Indeed, as a job shop prob-
lem with m machines can be divided into m single machine
scheduling problems, a set of solutions can be determined
by characterizing a set of sequences for each machine. Of
course, these sets have to be coherent together, i.e., if i and
j are two tasks, to be respectively achieved on M1 and M2,
such that i ≺ j , then the worst earliest starting time of i on
M1 has to be less than or equal to the best earliest starting
time of j on M2.
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