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This article presents a robust approach to navigating at high speed across desert terrain.
A central theme of this approach is the combination of simple ideas and components to
build a capable and robust system. A pair of robots were developed, which completed a
212 km Grand Challenge desert race in approximately 7 h. A pathcentric navigation sys-
tem uses a combination of LIDAR and RADAR based perception sensors to traverse trails
and avoid obstacles at speeds up to 15 m/s. The onboard navigation system leverages a
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human-based preplanning system to improve reliability and robustness. The robots have
been extensively tested, traversing over 3500 km of desert trails prior to completing the
challenge. This article describes the mechanisms, algorithms, and testing methods used
to achieve this performance. © 2006 Wiley Periodicals, Inc.

1. INTRODUCTION

Autonomously navigating at high speeds for long
distances necessitates a robust and capable robot.
While there have been numerous examples of highly
capable autonomously navigating robots �Kelly &
Stentz, 1997; Coombs, Lacaze, Legowik & Murphy,
2002; Wettergreen et al., 2005� none of them have been
able to drive challenging desert roads and trails at
high speeds for multiple hours �Urmson et al., 2004�.
Achieving this combination of robotic skill and
stamina was a goal of the DARPA Grand Challenge.
In meeting the Grand Challenge, two principles
emerged as the keys to robustness and success: Keep
the components simple and test as frequently and as
aggressively as possible. Sandstorm and H1ghlander
�Figure 1� are the embodiment of this strategy.

In simplifying the overall robotic systems, a bal-
anced approach using mechanical and software solu-
tions was adopted to take advantage of existing tech-
nologies, where possible. For example, the selection
of the high mobility multipurpose wheeled vehicle
�HMMWV� and Hummer H1 chassis instead of a
more readily available sports utility vehicle �SUV�
chassis meant that the onboard navigation software
need not be as sensitive to terrain features �i.e., an
H1’s ground clearance is much larger than that of a
conventional SUV and so the perception system can
ignore rocks that are irrelevant to the H1 but would
cause significant damage to a smaller vehicle�.

Similarly, human input during a preplanning
process is used to reduce the complexity of the on-
board navigation system. While the Grand Challenge
precluded any intervention while robots were oper-
ating on a course, the 2 h before the challenge could
be leveraged with human input to increase the like-
liness of success. During this time, human editors
worked to modify the route to account for dangerous
terrain that might be difficult for a robot to detect in
real time. The process provided enough information
for pre-emptive action to be taken to avoid some dan-
gerous situations and helped reduce the complexity
of the onboard navigation system. By balancing sim-
plicity with the necessary complexity required to
complete the challenge, a robust system was
developed.

The development process consisted of short de-
velopment cycles interleaved with periods of inten-
sive field testing. While this took a toll on both per-
sonnel and equipment, it enabled the discovery of
problems and weaknesses with both implementa-
tions and ideas simultaneously.

1.1. Format of the Grand Challenge

The 2005 Grand Challenge was a 212 km race
through the Mojave Desert. To win the challenge, a
team’s robot had to complete the course in less time
than any other robot, and do so within 10 h. Infor-
mation about the route and exact distance of the
challenge was withheld until 2 h prior to race start,
precluding prerunning or recording of the race
route.

Figure 1. Sandstorm and H1ghlander were developed to
navigate at high-speed in desert terrain.
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The route description contained a series of way-
points marking the corridor and speed limits within
which the robots were required to travel. Once away
from the starting line, the robots were required to be
completely autonomous. The only communications
allowed to a robot were publicly available global po-
sitioning system �GPS� signals and a safety kill sys-
tem used by challenge personnel to ensure safety.

The Red Team developed two robots and used a
combination of autonomous and human preplan-
ning to complete the Grand Challenge. Once under-
way, the robots used onboard sensors to adjust a pre-
planned route, to avoid obstacles and to correct for
errors in position estimation.

The approach presented in this article proved
successful; both Sandstorm and H1ghlander com-
pleted the Grand Challenge and demonstrated a
new level of robust high-speed navigation.

1.2. Overview

This article describes the Red Teams vehicles, soft-
ware, and testing process in depth. Section 2 begins
the discussion with a detailed description of the
electromechanics that make up both robots, and ex-
plains the significant differences between them. Sec-
tion 3 describes the software architecture and com-
ponents that operate onboard the robots including
algorithms for perception, navigation and tracking.
Both the benefits and limitations of the utilized ap-
proaches are described. Section 4 provides a short
description of the preplanning system, while Section
5 provides a detailed discussion of the various test-
ing processes employed by the team during the de-
velopment cycle. In Section 6, an analysis of how the
Red Team robots performed during the Grand Chal-
lenge event is presented. Section 7 closes the discus-
sion with a number of lessons learned and some
ideas for future work building from the Grand
Challenge.

2. THE ROBOTS

Sandstorm and H1ghlander are substantially differ-
ent robots; each has its own unique actuation and
control challenges. While much hardware and soft-
ware is shared between the platforms, each vehicle
has distinct performance characteristics.

The decision to develop two robots was not made
lightly. The extra time, effort, and personnel neces-

sary to build and maintain two similar, but not iden-
tical robots represented a significant concern. How-
ever, operating two robots provides two principal
advantages. During testing, the potential availability
of two robots helps ensure that there is at least one
operational for software testing. Increased testing
time is one of the keys to increasing robustness and
capability. During the challenge, two robots provide
an increased level of reliability since even if one of
them fails, the other will continue. In the team’s es-
timation, the advantages of having two robots for
testing and racing outweighed the concerns.

2.1. Chassis

Sandstorm is a modified 1986 Model 998 HMMWV.
The vehicle has been highly customized for autono-
mous control. The roof and passenger compartments
have been removed in favor of a large electronics
enclosure. Pictures of Sandstorm before and after the
vehicle modifications are included in Figure 2. The

Figure 2. Sandstorm before and after modifications.
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electronics box is suspended atop the vehicle plat-
form on 12 coil over damper struts. Suspension low-
ers the natural frequency of the electronics enclosure
so that sensors can be rigidly mounted. It also mini-
mizes the shock dose to the computers and electron-
ics so they are protected from severe accelerations.
Sandstorm’s control frame floats with the electronic
enclosure, causing the navigation system to drive
the floating electronics box, without a full under-
stand of the position and orientation of the chassis.
This is one of the main causes of Sandstorm’s char-
acteristic smooth, but slightly sloppy driving style.

H1ghlander is built from a 1999 commercial H1
truck chassis with an upgraded 2001 electrical sys-
tem. This upgrade includes a new vehicle harness,
engine controller, and transmission controller. These
were installed to allow easy reprogramming of en-
gine and transmission functions. H1ghlander also
uses an upgraded hydraulic steering system which
provides a quick high accuracy steering response.
All other vehicle components remain stock with the
exception of a race quality suspension similar to
Sandstorm’s. Unlike Sandstorm, H1ghlander retains
three of its four passenger seats. This allows team
members to ride in the vehicle for development, and
also gives other people the unique experience of
riding in an autonomous vehicle. Figure 3 shows
H1ghlander before and after its vehicle modifica-
tions. Because H1ghlander does not have a floating
electronics enclosure, the navigation system has a
better estimate of the true pose of the vehicle. This
helps H1ghlander drive more crisply than
Sandstorm.

2.2. Controls Strategy

Throughout the vehicle system, feedback controllers
are used in order to regulate systems and position
actuators. In most cases, the method used is a vari-
ant of the proportional integral derivative �PID� con-
troller. While PID control is not always the most ac-
curate or highest performance controller, it is easy to
use and robust. Equation �1� represents the general
PID controller:

u = Kpe + Ki� edt + Kd

d�− PV�

dt
. �1�

In general, there are no accurate models avail-
able �or the time needed to develop them� for most

of the vehicle systems, which makes more compli-
cated control difficult. All PID algorithms are imple-
mented in discrete time through the use of real-time
processes running with fixed time steps. The use of a
simple and easy to tune control strategy across the
entire vehicle helps ensure the reliability and robust-
ness of these systems.

The vehicle electronics systems for both Sand-
storm and H1ghlander utilize multiple electronic
control modules �ECMs�. ECMs are automotive or
commercial grade components that contain one or
more embedded processors, including the input/
output circuitry, and memory necessary to carry out
a given task or function. ECMs are distributed
throughout the vehicle system, and are intercon-
nected by a series of automotive grade data links.

Each ECM runs a real-time operating system in
order to ensure that the different control and com-
munications loops occur at deterministic rates, and

Figure 3. H1ghlander before and after modifications.
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that safety critical tasks are performed reliably. Soft-
ware routines, such as boot code, communications,
and input/output functions were developed, using a
combination of hand coded C or assembly language.
Control routines were developed using Simulink
models, which were then autocoded into functions
that were run on the control modules. This allowed
rapid development and testing of controllers in
simulation, before autocoding them to run on the
vehicles.

There is a clean break in functionality between
vehicle system and navigation software, which al-
lowed the use of a very simple interface between the
two subsystems. This interface, as shown in Figure
4, allows a navigation process to command a vehicle
velocity and curvature. The vehicle system reacts to
those commands and provides measured velocity
and steering position back to the navigation system.
The vehicle system also safeguards the vehicle via
emergency-stop radios and deactivation buttons.

2.3. Power and Cooling

One of the significant differences between Sand-
storm and H1ghlander is their power generation
and cooling systems. Neither vehicle has the factory
alternator installed, but both require about 4 kW of
auxiliary power for all of the necessary computing,
sensing, and actuation components. Sandstorm em-
ploys an auxiliary generator mounted on the aft of
the vehicle. The 24 V generator is turned by a small
diesel engine which shares the propulsion engine’s
fuel supply. A compressor mounted to the propul-
sion engine provides cooling for an evaporator
mounted in the electronics enclosure.

H1ghlander’s power system is more complex. It
incorporates a switch-reluctance generator driven by
the main propulsion engine that generates between
4 and 7 kW �depending on engine rpm� at 340 Vdc.
This high-voltage bus is used to efficiently power
H1ghlander’s electric air conditioning compressor,
and is downconverted to both 12 V and 24 V in or-
der to supply the necessary vehicle and electronics
power.

Both vehicles’ power systems are controlled by
ECMs which contain embedded processors and in-
put and output circuitry to monitor and control their
respective power components. The power control al-
gorithms are very similar. They use a modulated
voltage to control current technique that was devel-
oped in order to maintain acceptable power levels
even at times when current draw exceeds available
power. This control scheme, as outlined in Figure 5,
uses predominantly integral �I� or “follower” control
with offset gains and feedback derived from logic
based on measured current and voltage. The control-
ler is designed to operate with batteries in parallel
with the output voltage buses. A dual/switching
controller is needed because at steady state the gen-
erator is able to provide more than enough power to
supply the components, but when the batteries are
at a low state of charge, the current draw required to
charge the batteries can exceed the available power,
causing an overcurrent or “stall” condition at the
generator. To compensate for this condition, the
power controller is designed to change the output
voltage of the generator in order to keep the current
draw to acceptable levels. By lowering the voltage,
the difference between the generator and batteries
can be decreased. While in this “max-current” case,
the output voltage is modulated to keep current
draw at about 90% of available current. As the bat-
teries charge, the required current drops and the
controller switches to voltage control and maintains
an ideal voltage level. This basic power control
method has proven to be robust, and has been ex-
tended in H1ghlander to control the power con-
sumption of two downconverters and the cooling
unit.

For both Sandstorm and H1ghlander, the power
systems are designed to seamlessly function through
minor power generation glitches. For example, dur-
ing testing Sandstorm has traveled over 125 km
without any power production from the auxiliary
generator, demonstrating the robustness of this
design.

Figure 4. Vehicle to navigation system interface.
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2.4. Steering

Electronic actuation of steering is a fundamental part
of autonomous vehicle control. Sandstorm and
H1ghlander have vastly different steering actuation
strategies, and in turn have very different steering
performance characteristics. In both cases, the sys-
tems respond to steering curvature commands from
a tracker in the navigation software. The com-
manded curvature is linearly mapped to a steering
angle in the controller, which is then maintained.
There is no feedback control around actual curva-
ture, only around steering angle. This proved a chal-
lenge to the vehicle’s tracking system since it does
not account for wheel slip, caused by differing
ground conditions, or mechanical sensor slip which
inherently changes the mapping between curvature
and steering angle.

Mechanically, Sandstorm retains its complete
stock steering system. To electronically steer the
wheels, a large driven gear is mounted to the top of
the steering column, behind the steering wheel. A
drive gear, attached to a dc motor and harmonic
drive gear set �shown in Figure 6�a��, is mated with
the steering column gear. The harmonic drive gear-
ing provides a very high gear ratio with zero back-
lash and large amounts of torque. The downside of
this high-reduction gearing is that it limits steering
speed.

The motor is controlled through a drive ampli-
fier by an ECM, which runs a closed-loop control
algorithm around the steering angle. Controller

feedback is provided by a rotational sensor mounted
to the output shaft of the power-steering gearbox,
which outputs a pulse-width modulated signal pro-
portional to steering position. For robustness, there
is also a multiturn sensor that measures position at
the motor. A PID controller is used to maintain
wheel steering position by outputting motor torque

Figure 5. H1ghlander’s power controller.

Figure 6. �a� Sandstorm’s steering actuator and �b�
H1ghlander’s hydraulic steering actuator.
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and reading the steering angle. This steering ap-
proach retains a majority of the stock steering sys-
tem, which makes the system simple and robust.
The downsides include the limited steering actua-
tion speeds and limited accuracy due to a large me-

chanical deadband in the power steering linkage,
which causes hysteresis in the controller.

H1ghlander employs a different steering strat-
egy; all of the stock steering components were re-
moved and replaced with a full hydraulic steering

Figure 7. Plots of Sandstorm �a� and H1ghlander �b� steering response.
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system. The hydraulic system is composed of a dual-
cylinder rotary hydraulic actuator �shown in Figure
6�b��, a fixed-displacement hydraulic pump, and an
electrohydraulic valve to control the hydraulic flow.

Electronics in the valve maintain a closed-loop
control of the valve’s spool position. Spool position
is directly proportional to hydraulic flow �which can
be mapped to cylinder velocity� and is commanded
by an ECM. Steering angle is measured in the rotary
actuator both by measuring the rotary output shaft
position, and the linear position of one of the hy-
draulic cylinders. The ECM reads these positions, se-
lects which one to use for feedback, and outputs a
desired spool position based on a PID control algo-
rithm. The advantage of this steering strategy is very
responsive steering, and the ability to hold a very
precise steering angle. The downside is the complex-

ity of a hydraulic system, which is prone to leaks,
heat, and filtration issues, each of which was en-
countered during the development.

Figure 7 illustrates the differences in steering re-
sponse between Sandstorm and H1ghlander.

2.5. Velocity Control

The control of vehicle velocity is an important aspect
of high performance driving. In a racing atmo-
sphere, speed control must be accurate and respon-
sive as it is constantly being adjusted to ensure ve-
hicle stability. Velocity also poses a controls
challenge, since it involves two different mechanical
systems �propulsion engine and brakes� to maintain
speed in any number of environmental conditions.

Sandstorm has a mechanically controlled engine.

Figure 8. Model of the brake controller.

Figure 9. Model of the speed controller.
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This means that to actuate the throttle, a valve on the
injection pump must be physically turned. To ac-
complish this, an automotive-grade throttle body ac-
tuator was modified and mounted to the injection
pump. The actuator is a simple dc motor with ana-
log position feedback. An ECM reads this position
and runs a PID closed-loop control algorithm in or-
der to command the injection pump to a specific
throttle level.

In contrast, H1ghlander’s engine is fully elec-
tronically controlled, meaning that its entire opera-
tion, from fuel injection to timing is commanded by
an electronic engine controller. This makes autono-
mous activation very simple; a message is sent
across a data-link and acted on by the engine
controller.

Both Sandstorm and H1ghlander use the stock
service brakes to slow the vehicle. In both cases the
service brakes are actuated by an electric motor. Both
motors are three phase brushless design with an in-
tegral 50:1 harmonic drive gear reduction. In Sand-
storm’s case, the motor is mounted to press on the
brake pedal. This results in a relatively slow braking
response but provides significant mechanical advan-
tage. In H1ghlander, the motor is mounted to actu-
ate the brake master cylinder directly. This mounting
achieves quicker response, since less motor travel ac-

counts for more braking force. In both configura-
tions an ECM runs a proportional controller to com-
mand braking, which effectively provides torque-
based control of the motor. This type of control
inherently compensates for system degradation,
such as brake wear or different pressure line losses.
A diagram of Sandstorm and H1ghlander’s brake
controller is given in Figure 8.

The speed controller is a piece of embedded soft-
ware that receives desired speed from the navigation
system and commands the throttle and brakes to
maintain that speed. The speed controller is actually
comprised of three controllers: A speed controller
using a throttle command, a speed controller using a
brake command, and transition logic to determine
which one to use. The control strategy mimics a lay-
man human driver, where only the engine or the
brakes will be actuated at any time. This is contrary
to the driving strategy of most racers, who often
times actuate the throttle and brakes simultaneously.
Figure 9 illustrates this speed controller graphically.
The throttle and brake controllers each use a propor-
tional integral control scheme. Transition logic inte-
grates the speed error and uses that as a time-delay
switch with limits depending on commanded speed
and whether the system is switching from the
throttle to the brakes or vice versa.

Figure 10. A plot of speed controller performance.
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This method allows more error at higher com-
manded speeds to minimize changeover between
throttle and brakes, but also generates a quick re-
sponse for sharp deceleration before turns. The
speed feedback used in the control algorithms is ob-
tained from the transmission and smoothed using a
third-order Butterworth filter.

The speed controller maintains speed to within
0.5 m/s on average, with a 1–2 m/s undershoot
when braking �response shown in Figure 10�. This
undershoot is due to a nonconstant contact point in
the brake system which causes the braking force to
increase dramatically. The controller does not com-
pensate for this nonlinear braking response since the
error was determined to be acceptable.

2.6. Perception Sensors

Sandstorm and H1hghlander combine data from a
variety of sensors to perceive the world. In selecting
sensors, the team evaluated monocular cameras, ste-
reo cameras, LIDAR, and RADAR systems to find
modalities amenable to generating terrain evalua-
tions under the difficult conditions of the Grand

Challenge. Table I outlines the sensing modalities
considered and the advantages and disadvantages
for this problem.

These considerations led to a perception strategy
based on a set of five LIDAR and a navigation
RADAR. Three of the LIDAR operate to characterize
terrain, using overlapping field of view to provide
redundancy. The two remaining LIDAR and the
RADAR are used to detect obvious obstacles at long
ranges. Figure 11 illustrates the sensor fields of
views, while Figure 12 shows the sensor locations on
the robots. This design provides a robust perception
suite, with multiple sensors observing the significant
portions of terrain in front of the robots. The remain-
der of this section describes the specifics of the sen-
sors selected for the robots. Table II presents the
specifications of the sensors used on the robot.

2.6.1. LIDAR

A Riegl Q140i scanning laser range finder is used as
the primary terrain perception sensor for both robots
due to its long sensing range, ease of integration,
and few, well understood, failures modes. A limita-

Table I. A qualitative comparison of sensors considered for inclusion in the navigation system.

Sensor Advantages Disadvantages Selected

Conventional
camera

- Wide vertical field of view
- Large swath of dense data

- Data quality decreases due to
lighting changes and glare

- Conventional processing techniques
are challenged offroad

No

Stereo
camera

- Wide vertical field of view
- Generates dense three-dimensional

data sets

- Data quality decrease due to lighting
changes and glare

- Measurement accuracy decreases as
the square of range

No

LIDAR -Accurate range measurements
- Straightforward to integrate

- Wide horizontal field of view

- Provides only a single plane of data
-Correlating between line scans may

be challenging when moving over
rough terrain

Yes

Automotive
RADAR

- Commercial grade hardware
- Integrated signal processing to

identify targets
- Operates through most visual

obscurants

- Off-road performance is not
characterized

- Output provides only limited
information for external processing

No

Navigation
RADAR

- Dense raw signal strength output
- Operates through most visual

obscurants

- Understanding raw RADAR signal
returns is complicated

Yes

476 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



tion of scanned LIDAR is that it is generally only
possible to collect dense point data in a single plane.
Flash LIDAR does not suffer this limitation but is
still too range limited to be useful at Grand Chal-
lenge speeds. Two-axis mechanically scanned
LIDAR have reasonable range, but cannot scan rap-
idly in both axes and thus do not provide significant
benefits over a single scanning plane for this
application.

In addition to the long-range LIDAR, four SICK

LMS 291 laser scanners are used to provide short-
range supplemental sensing. Two are mounted in
the front bumper, providing low horizontal scans
over a 120° wedge centered in front of the robot.

Figure 12. H1ghlander �left� and Sandstorm with their sensors labeled.

Figure 11. Sandstorm and H1ghlander have multiple
sensors with overlapping fields of view.

Table II. Characteristics of navigation sensors.

Sensor Characteristic

Narrow field of
view LIDAR

Horizontal field of view: 60°
Instantaneous field of view:

0.17° �0.17°
Dots per scan: �240

Scan Rate: 50 Hz
Manufacturer: Riegl

Model: Q140i

Wide field of
view LIDAR

Horizontal field of view: 180°
Instantaneous field of view:

0.86° �0.86°
Dots per scan: 181
Scan Rate: 75 Hz

Manufacturer: SICK
Model: LMS 291

Navigation
RADAR

Horizontal field of view: 360°
Instantaneous field of view:

1.2° �4.0°
Measurements per scan: 300

Scan Rate: 2.5 Hz
Manufacturer: NavTech

Model: DS2000
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These sensors can be used to detect obvious, large,
positive obstacles. The other two SICK LMS laser
scanners are mounted to the left and right of the
vehicle body. These sensors perform terrain
classification.

2.6.2. RADAR

While LIDAR may have difficulties sensing in dusty
environments, RADAR operates at a wavelength
that penetrates dust and other visual obscurants but
provides data that are more difficult to interpret. Be-
cause of its ability to sense through dust the
NavTech DS2000 continuous-wave frequency modu-
lated �CWFM� radar was used as a complimentary
sensor to the LIDAR devices.

2.6.3. Pose Estimation

Reliable and robust position sensing is essential
since it is central to performing reliable control and
building usable world models. The implementation
of position sensing is a major undertaking that can
drain valuable development resources. To avoid this
problem, Sandstorm and H1ghlander use an off-the-
shelf pose estimation system. The Applanix M-POS
provides position estimates by fusing inertial and
differential GPS position estimates through a Kal-
man filter. The output estimate is specified to have
submeter accuracies, even during extended periods

of GPS dropout. The M-POS system also provides
high accuracy angular information, through carrier
differencing of the signal received by a pair of GPS
antennas, and the inertial sensors. The M-POS sys-
tem outputs a pose estimate over a high-speed serial
link at a rate of 100 Hz. This constant stream of low-
latency pose information simplifies the task of inte-
grating the various terrain sensor data sources.

2.6.4. Stabilization and Pointing

The ability to interpret data from long-range sensors,
such as a Riegl LIDAR scanner, can be severely ham-
pered by pitching and rolling induced by robot mo-
tion over terrain. The performance of the single axis
scanning LIDAR is particularly affected by mechani-
cal excitation in the pitch axis. When sensing at rea-
sonably long ranges, even small-scale pointing er-
rors can result in a dramatic change in where a
sensor’s beam intersects the terrain. Because of this,
range data associated with small obstacles or terrain
details at distance become ambiguous, and the over-
all perception performance is severely degraded. Ac-
tive attenuation of the terrain excitations can reduce
this effect, yielding interpretable terrain range data.

The Gimbal sensor mounting design aligns the
Riegl LIDAR’s optical aperture with the center of the
gimbal and balances the mass distribution around
the rotational center. Each axis includes minimal-
mass components and the simplest possible gimbal

Figure 13. Front and back view of the gimbal.
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support structure with the design goal of minimiz-
ing the moment of inertia. By minimizing the mo-
ment of inertia, the overall responsiveness of the
gimbal is increased.

Harmonic drive actuators are used to point the
gimbal based on feedback from a combination of in-
cremental and absolute position encoders, and fiber-
optic gyros. Each gimbal axis assembly is designed
for electrical and mechanical simplicity. To achieve
this goal, common design and components are used
on each of the axes. The aluminum bracket compo-
nents are designed to have minimal mass and mo-
ment of inertia about their respective rotational axes,
while still maintaining sufficient strength and
stiffness.

The entire gimbal mechanism is enclosed within
a protective carbon fiber shell. The shell prevents
water and dust from damaging the mechanism and
electronics, and includes a front window with spe-
cially coated optical glass for the sensors to operate
through. The fully assembled gimbal is shown in
Figure 13. Table III describes the gimbal characteris-
tics, while Table IV describes its performance.

3. ONBOARD NAVIGATION SOFTWARE

Onboard navigation software combines incoming
sensor data with a preplanned route to generate a

new safe and traversable route. In the following sec-
tions, the architecture and algorithms used to drive
Sandstorm and H1ghlander are presented.

3.1. Architecture

The navigation software-architecture was designed
with the infrastructure to support high-speed navi-
gation while being robust to sensor failures and
adaptable enough to support a rapid, relatively un-
structured development process. These design goals
led to a pathcentric navigation architecture, built
around a set of well-defined rigid data interfaces.

In this pathcentric architecture �see Figure 14�,
the fundamental command action is to execute a
path. This differs from a majority of autonomous
navigation architectures which use an arc as the fun-
damental action. The path data structure is perva-
sive throughout this approach; the preplan is pro-
vided as a path, path-planning acts as a filter on the
path, and the perception system uses it to steer sen-
sor focus and account for incompletely sensed
terrain.

The pathcentric architecture has several advan-
tages that improve performance and robustness over
arc-centric architectures �Simmons et al., 1995; Kelly
& Stentz, 1997; Betulla, Manduchi, Matthies, Owens
& Rankin, 2000; Biesiadecki, Maimone & Morrison,
2001; Urmson, Dias & Simmons, 2002�. It provides a
simple method for incorporating human input
through a preplanned route. Given a route, planning
can be performed in a fixed width corridor around
the preplanned route, thus reducing the search space
for a planning algorithm from the square of the path
length to linear in the path length. The pathcentric
approach avoids problems with arc-based arbitra-
tion, such as discontinuities in steering commands
�due to contradictory information� and jerky control
�due to discrete arc sets�. Furthermore, since the
navigation system commands the execution of paths
rather than discrete arcs. This effectively decouples
the steering control frequency from the planning fre-
quency, further increasing the smoothness of control.
This makes the system insensitive to reasonable
amounts of variation in the planning cycle, further
increasing robustness.

To use terrain evaluation data from multiple
sources, the architecture uses a map-based data fu-
sion approach. To provide this functionality, the ar-
chitecture defines a second fundamental data type;
the map. In this system, a map is a rectilinear grid

Table III. Gimbal characteristics.

Parameter Value

Payload compliment High-resolution LIDAR
line scanner

Payload dimensions 240 mm�250 mm�500 mm

Payload weight 12+ kg

Platform weight �25 kg

Peak power 550 W

Table IV. Gimbal performance characteristics.

Axis
Range of

motion �°�
Angular

velocity �°/s�
Acceleration

�°/s2�

Pitch ±40 360 49,500

Roll ±40 360 4,200

Yaw ±90 360 1,450
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aligned with the world coordinate system and cen-
tered on the robot. Each of the sensor processing al-
gorithms produces its output in the form of a cost
map. Cost maps are a specific map type that repre-
sents the traversability of a cell using a numeric
value. In this implementation, the cells have an edge
length of 25 cm. Figure 15 shows an example cost
map.

The path and cost map are two of a handful of
fundamental data types �other examples include ve-
hicle pose and LIDAR line scan data structures� that
are used as the syntax for communication between
various data processing modules. The software
implementation uses a communication and infra-
structural toolset that allows algorithm developers
to create modules that communicate with the rest of
the system using the specified data types through a
set of abstract, reconfigurable interfaces �Gowdy,
1996�. During development and debugging, the in-
terfaces for an algorithm can be configured to read
data from time-tagged files using a common set of
data access tools. As an algorithm matures, the inter-
faces are reconfigured to communicate with the rest
of the navigation system. This approach helped re-
duce the required uptime and availability of the
robot.

By using a common set of carefully defined and
strictly controlled data types as the syntax for com-
munication, it is possible to quickly develop new
features for either path or map processing. While the
syntax is defined and controlled, the semantics, or
meaning, of the data being passed between modules
is free to be adapted as new ideas evolve and algo-
rithms are developed. This flexibility makes the
overall system robust and adaptable to ever-
evolving ideas that develop as the navigation prob-
lem is explored.

3.2. Sensor Fusion

The map fusion process is critical to the robustness
of the navigation system, as it enables the system to
cope with sensor failures and missing data. To use
the data from the various sensor processing algo-
rithms, it is necessary to combine it into a composite
world model �either implicitly or explicitly�. In this
system, the data are combined in the sensor fusion
module by generating a composite map using a
weighted average of each of the input maps.

Each of the processing algorithms specifies a
confidence for the output map it generates. The fu-
sion algorithm then combines the maps with these

Figure 14. The pathcentric architecture of the onboard navigation software.
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weightings to generate the composite expected cost
map. This design allows the sensor processing algo-
rithms to adjust their contribution to the composite
map if they recognize that they are performing
poorly. In practice, a set of static weights, based on a
heuristic sense of confidence in the algorithms abil-
ity to accurately assess the safety of terrain, worked
well. With calibrated sensors, this approach pro-
duces useable composite terrain models. Figure 16
shows various input maps and the resulting, fused
composite map.

3.3. Perception

In this approach to high-speed navigation, three
principal risks are considered: Hitting large obvious
obstacles that can destroy a vehicle, driving on
avoidable rough terrain that will damage a vehicle
over prolonged periods of time, and dynamic
effects—such as sliding and rollovers—which cause
a loss of control and can also potentially destroy a
vehicle. The perception algorithms presented here
are designed to address these risks. The binary ob-
stacle LIDAR and RADAR processors are designed
to quickly detect obvious obstacles at range. The ter-
rain evaluation LIDAR processor is designed to gen-
erate a continuous valued classification of terrain,
ranging from safe and smooth to intraversable. The
slope calculations in this algorithm are used to steer
the robot away from terrain with a likelihood of
causing static tipover, but falls short of estimating
dynamic tipover. Instead, the risk from dynamic ef-
fects is mitigated in a speed planning algorithm.

The various perception algorithms provide an
overlapping �both geometrically and in terms of ca-
pability� set of models that reduce the likelihood of
missing the detection of any obstacles while also
providing robustness in the face of a sensor or algo-
rithmic failure.

3.3.1. Sensor Pointing

The sensor pointing algorithm uses a preplanned
path as a guide as to where to point the Riegl
LIDAR. A priori knowledge of the path enables the
algorithm to point the sensor around corners, prior
to the robot making a turn, and helps the perception
system build detailed models of terrain in situations
where the fixed sensors would generate limited in-
formation. A simple algorithm calculates a look-
ahead point along the path given the current pose
and speed of the robot. The look ahead point is then
used to calculate the pitch, roll, and yaw required to
point at this location. These commands are then
passed onto the gimbal. The data generated by the
pointed and fixed shoulder mounted LIDARs are
used by the terrain evaluation LIDAR processing
algorithm.

3.3.2. Terrain Evaluation LIDAR Processing

Terrain classification and obstacle detection are at
the core of high-speed outdoor navigation. The ter-

Figure 15. An example cost map showing low �light� and
high �dark� cost terrain.

Figure 16. An illustration of fused sensor maps.

Urmson et al.: A Robust Approach to High-Speed Navigation for Unrehearsed Desert Terrain • 481

Journal of Field Robotics DOI 10.1002/rob



rain evaluation system borrows ideas from Kelly
and others �Kelly & Stentz, 1997,1998; Batavia &
Singh, 2002; Kelly et al., 2004� in performing terrain
evaluations within a single line scan to reduce the
effects of imperfect pose estimation.

The terrain evaluation approach is derived from
the Morphin algorithm �Simmons et al., 1995; Gol-
berg, Maimone & Matthies, 2002; Urmson et al.,
2002� but has been adapted to operate on a single
line scan of data instead of a complete cloud. The
algorithm operates by fitting a line to the vertical
planar projection of points in vehicle width seg-
ments. The slope and chi-squared error over this
neighborhood of points provide the basis for evalu-
ation. The operation is performed at each LIDAR
point in a scan. If a point does not have a minimum
number of points within a support distance or the
surrounding points are not sufficiently dispersed,
the point is not classified. The traversability cost is
calculated as a weighted maximum of the slope and
line fit residual.

Once traversability costs have been determined,
each point is projected into a cost map, with inde-
pendent cost maps maintained for each sensor. The
terrain evaluation from each sensor is periodically
combined into a composite output map. The travers-
ability cost for each cell in the composite map is
computed as the weighted average of the costs from

each sensor, with weights proportional to the num-
ber of points used in generating the traversability
cost for each sensor map.

While this basic algorithm works well, it blurs
small obstacles over a large area since it does not
separate foreground obstacles from background ter-
rain �see Figure 17�. The foreground obstacle pixels
cause the line fit for the background pixels to have
significant residual errors. To address this problem, a
filter is used to separate foreground features from
background terrain. During the evaluation process,
any point at a significantly shorter range than the
point being evaluated is ignored. This has the effect
of removing discrete foreground obstacles �and their
contribution to the line fit residual� from the evalu-
ation of background terrain, while still correctly de-
tecting obstacles. Figure 17 illustrates the effect of
this filtering on a scene consisting of four cones in a
diamond configuration. Without filtering, each of
the four cones is represented as obstacles the size of
a car, with the filtering applied the cones are repre-
sented as obstacles of the approximately the correct
size.

3.3.2.1. Limitations

There are two situations where the terrain evalua-
tion produces incorrect output: When LIDAR scans

Figure 17. Obstacle blur before �left� and after foreground separation filter is applied.
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graze a surface, and when traveling through narrow
tunnels or canyons.

In grazing scenarios, the algorithm will misclas-
sify grazing returns as obstacle locations. The graz-
ing returns are classified as obstacles because the
shape of the LIDAR return is indistinguishable from
a return with significant obstacles. Fortunately, this
occurs rarely and is mitigated through the use of
multiple sensors. Applying a nearest-neighbor clus-
tering approach �Batavia & Singh, 2002� may be a
solution to this problem.

The second problem of operation in very con-
strained environments �such as narrow tunnels� re-
sults in areas with sensor data not being classified.
This problem stems from the requirement that the
terrain evaluation only occur at LIDAR points that
have neighbors with a minimum dispersion. This re-
quirement causes a one-half vehicle width of data at
each end of the LIDAR scan to be ignored. In normal
outdoor navigation scenarios, this defect is insignifi-
cant. In situations where the LIDAR returns all occur
within a narrow area �e.g., a tunnel�, important ter-
rain features are not classified since the points that
make up the walls of the tunnel do not have suffi-
ciently dispersed neighbors. This problem is illus-
trated in Figure 18. Note that the approach to the
tunnel and tunnel walls near the opening are classi-
fied correctly, but as soon as the sensor measure-
ments become constrained within the tunnel, only
the center of the tunnel is classified while the outer

one-half vehicle width on either edge of the scan are
not classified, including the walls.

Both of these shortcomings are mitigated by the
combination of the other terrain evaluation algo-
rithms and the terrain extrapolation modules de-
scribed in the following sections.

3.3.3. Binary Obstacle LIDAR Processor

The binary obstacle LIDAR Processor is designed to
quickly and robustly detect obstacles by collecting
points over short time periods while a vehicle drives
over terrain. The algorithm uses the fact that LIDAR
points cluster on vertical faces to detect obstacles.

Using geometric information to determine a bi-
nary measure of traversability is common and has
been a topic of research for decades. Typically, this
information is gleaned from images using classifica-
tion techniques �Ulrich & Nourbakhsh, 2000� or geo-
metric analysis of three-dimensional �3D� terrain
data �Singh & Keller, 1991; Talukder, Manduchi,
Rankin & Matthies, 2002�. In recent work �Roth,
Hamner, Singh & Hwangbo, 2005� have extended
the RANGER algorithm to use LIDAR point clouds
accumulated as a vehicle drives. The algorithm de-
rives roughness, roll, and pitch by fitting planes to
patches of point clouds.

As a LIDAR is moved through space, it sweeps
the terrain, and a point cloud representing this ter-
rain is built by registering each scan using the ve-

Figure 18. An example of where a constrained environment causes the LIDAR terrain evaluation algorithm to behave
poorly.
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hicle and sensor pose. Selected pairs of points from
this cloud are compared to compute the slope and
relative height of the terrain.

Traversability is determined by performing a
point-wise comparison of points within a region sur-
rounding the point in question. If the slope and ver-
tical distance between the two points is determined
to be greater than a threshold value, both points are
classified as obstacles. Given two points to compare,
slope is computed as

� = tan−1���z�,��x2 + �y2� . �2�

If �z and � are greater than threshold values, an ob-
stacle is inserted into the cost map.

Comparison of full rate LIDAR data is computa-
tionally expensive �Lalonde, Vandapel & Hebert,
2005�. To make comparison rates reasonable, points
are binned into two-dimensional �2D� �x ,y� cells and
hashed by 2D cell location. Each hash location con-
tains a list of all points within a cell. When a new
point hashes to a hash location containing a list of
points far from the new point, the list of points is
cleared and the new point is inserted. The data
structure allows near-constant time comparison of
nearby points by doing a hash lookup in the region
of a point of interest.

With long-range sensors, small errors in attitude
of the sensor cause large errors in point registration.
The comparison of two measurements of the same
terrain patch from two different view points can
falsely generate an obstacle if the vehicle pose esti-
mate is erroneously pitched or elevated. Further-
more, the likelihood of inconsistent pose estimates is
increased with time and distance traveled. Thus, it is
important to delete old points. To accommodate fast
deletion, points are inserted into a ring buffer in the
order that they are received. Once the ring buffer is
full, each new point overwrites the current oldest
point in the buffer and the hash table.

3.3.3.1. Limitations

This algorithm relies on excellent registration of sen-
sors to the world. The calibration of sensors relative
to the vehicle center is a significant cause of error
when multiple sensors are compared. Relative errors
in pose estimation can cause false positives between
scans of a single sensor. These two considerations
limit the effectiveness of this algorithm at range.

Because of the reliance on registration, sensors

that are not rigidly mounted relative to the vehicle

coordinate frame cannot be processed using this al-

gorithm. On H1ghlander, a considerable amount of

capability is gained by comparing the bumper

mounted SICKs. In flat terrain, these sensors can de-

tect large obstacles �fence posts, large rocks, cliff

walls, etc.� at up to 50 m. Because of its floating elec-

tronics box, Sandstorm cannot use the bumper

mounted sensors with this algorithm.

Since this algorithm is designed to complement

the LIDAR terrain evaluation algorithm, it is not

sensitive to terrain features, such as roughness and

gentle slopes. The algorithm misses small ruts and

washouts and produces false positives when tuned

to attempt to detect such small features.

3.3.4. Radar Obstacle Detection

Radar sensing has several advantages for off-

highway autonomous driving. It provides long-

range measurements and is not normally affected by

dust, rain, smoke, or darkness. Unfortunately, it also

provides little information about the world. Resolu-

tion on most small antennas is limited to 1° or 2° in
azimuth and 0.25 m in range. Radar scanning is gen-
erally performed in 2D sweeps with a vertical beam
height of �5°. More narrowly focused beams are dif-
ficult to achieve and terrain height maps cannot be
extracted from so wide a beam because objects of
many heights are illuminated at the same time. This
prevents using geometric or shape algorithms, such
as those commonly used with LIDAR.

Attempts at using electromagnetic effects to gain
information, such as correlating polarization with
object density, have met with little success �Yamagu-
chi, Kajiwara & Hayashi, 1998�. This leaves intensity
of backscatter returns, binned by range and azimuth,
as the sole identifier. Most previous systems use con-
stant �Kaliraperumal, Lakshmanan & Kluge, 2001� or
adaptive thresholding �Jiang, Wu, Wu & Sun, 2005�,
but achieve only marginal performance on good
paved roads and are insufficient for off-highway
driving. Many obstacles have surfaces that reflect
energy away from the radar antenna, returning very
low backscatter returns. Other objects that pose little
risk to a large vehicle, such as brush, gentle inclines,
and small rocks, have large radar cross sections.
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Thus, the intensity of backscatter returns is a poor
measure of the risk posed by an object.

3.3.4.1. Context Filtering

The primary challenge of processing radar data is
separating dangerous or interesting objects from
pervasive clutter. Early experimentation with thresh-
olding and energy filtering failed in desert environ-
ments, generating too many false positives from in-
nocuous objects. Thus another feature was therefore
required for classification.

In the desert, clutter tends to occur over wide
areas. Vegetation, inclines, and rough road sections
all produce backscatter returns distributed over a
significant region. Conversely, obstacles, such as
telephone poles, fence posts, and cars are generally
isolated from each other and surrounded by road or
clear dirt. Smooth ground, such as this, is specular
because the low angle of radar beam incidence tends
to reflect energy away from the antenna. Therefore, a
potential classification feature is isolation, or the
quality of a moderately low cross-section object of
small footprint surrounded by clear specular areas.
While this limits the class of obstacles detected, it

defines an important class of obstacles that can be
detected with a small rate of false positives.

To implement an algorithm exploiting this clas-
sifier, radar data are organized into a 2D image con-
sisting of range and azimuth bins �Figure 19�. A ker-
nel consisting of two radii is convolved with this
image. While the kernel is centered on a pixel, the
energy between the inner and outer radii is sub-
tracted from the energy contained within the inner
radius. The value for this pixel is compared to a
threshold and then reported as obstacle or not. The
strength of this filter is dictated by the ratio of
negative to positive space, i.e., the ratio of the two
radii. The size of the inner radius determines the
footprint size for which the filter is tuned. Results
from a scene in the Nevada desert are presented in
Figure 20.

3.3.4.2. Radar Map Hysteresis

As a vehicle drives forward, obstacles drop below
the radar beam or become obscured, causing them to
fade in and out of individual radar images. Thus,
some form of memory is required to preserve their
size and location. A simple approach is to add any
newly classified obstacle pixel to a map combined
with the previously reported locations of other ob-
stacles. Due to the conversion from polar to Carte-
sian cost maps, the location and size of an obstacle is
refined as a vehicle approaches it.

Figure 19. The kernel used in context filtering. The black
pixels are multiplied by positive one and the white pixels
by negative one. The center pixel is set to the sum of these
values.

Figure 20. Example context-filtered results from a desert
scene. White pixels are empty and darkness represents
strength of backscatter return.
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Hence, a modification is required to the simplis-
tic method that stores the union of all reported ob-
stacle pixels. If a new obstacle blob is reported and
overlaps with an old blob, then the old blob is re-
moved and replaced with a new more refined model
of the obstacle location. This is implemented as a
recursive algorithm that searches the neighboring
pixels in Cartesian space to identify the extent of the
old blob.

The results of this hysteresis are shown in Figure
21. As the vehicle approaches a fence post, the re-
ported width is reduced from over 1.5 m to a more
reasonable 0.5 m as better azimuth data become
available. Obstacles that the vehicle has already
passed are stored in the map even though they are
not in the radar antenna’s 180° field of view.

3.3.4.3. Limitations

The radar system was tested on Sandstorm and
H1ghlander for over 3000 km of off-highway driv-

ing. It effectively detected the narrow range of ob-
stacles it was designed to detect, but does not gen-
eralize beyond those. As a complement to the
LIDAR processing algorithms, it makes no attempt
to detect road edges or other areas of rough terrain,
making radar-only off-highway navigation risky.
While limited, this implementation demonstrates
that, with proper scoping, RADAR can provide
valuable long-range obstacle data to complement
LIDAR and potentially vision-based sensing.

3.3.5. Terrain Extrapolation

Perception in high-speed outdoor navigation often
suffers from incomplete data due to a combination
of occlusion and vehicle motion which can cause
sensors to skip over terrain. Without a method for
inferring reasonable traversability values for unseen
terrain, this problem can result in catastrophic fail-

Figure 21. Two maps recorded driving along a barbed-wire fence during the 2005 Grand Challenge. The left map shows
the magnified fence post at 35 m range. The right map shows the same post, this time at 15 m range. As the obstacle
approaches, its size and position are refined, while obstacles behind the vehicle and out of the antenna’s field of view are
retained.
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ures, such as the example illustrated in Figure 22. To
address this problem, the onboard navigation sys-
tem incorporates a terrain extrapolation module
�TEM�. While appropriately interpreting the travers-
ability of unsensed terrain is not new, there is very
little published work in the literature �Nabbe, Ku-
mar & Hebert, 2004�.

The terrain extrapolation algorithm infers ter-
rain costs based on three assumptions: �1� The char-
acteristics �width, traversability� of a trail or road do
not change rapidly over short distance along a path,
�2� the cost of traversability can change rapidly in
the direction perpendicular to the path �i.e., trails
may be sharply defined�, and �3� the preplanned
path is parallel to the actual traversable path. Figure
23�a� gives an example of input cost data for the
TEM. As a path is driven, the algorithm samples a
cross section of costs perpendicular to the pre-
planned path, represented by the black line in Figure
23�a�. Each sample is combined with a running
alpha-blended average of costs from the same lateral
offset. The result is a constantly evolving “learned”
profile of the costs across the path. The alpha blend-

ing average filters out high-frequency terrain fea-
tures, such as perpendicular fences, while allowing
the TEM to adapt to new trail conditions over a few
tens of meters.

The calculated trail cost profile is used to gener-
ate a “hallucinated” cost map by painting the profile
along the preplanned route. The map is fused with
the sensor evaluation cost maps with a low confi-
dence. The result is a cost map with TEM data only
in locations in where there are no other available
cost data, as shown in Figure 23�b�.

3.3.5.1. Limitations

The primary limitation of the TEM is that it requires
the true traversable path to be approximately paral-
lel to the preplanned path. Since the profile data are
calculated as cross sections of the preplanned path,
the profile of the preplanned path matches the pro-
file of the traversable path only when the two paths
are approximately parallel, as shown in Figure 24�a�.
If the preplanned and traversable paths are at sig-
nificantly different angles, as shown in Figure 24�b�,
the profile generated by the TEM will become

Figure 22. An example of incomplete data �a� which led to significant damage �b�. The red continuous line represents the
preplanned path. The data show that the preplanned path is on the road edge and veers off the road, which is combined
with the with the hill crest to cause the robot to leave the road.
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blurred as the cross sections of the traversable path
do not consistently project into the cross section of
the preplanned path.

3.4. Planning

The planning portion of the online navigation sys-
tem is broken into a pair of modules that adjust the
preplanned path based on terrain evaluation gener-

ated by the perception algorithms. The first stage,

the geometric planner, adjusts the path to avoid ob-

stacles and minimizes the cost of traversability of the

terrain the robot will drive over. The speed planner

operates on the output of the geometric planner and

pre-emptively slows the robot for any sharp turns

that may result when the geometric planner gener-

ates a plan to avoid obstacles.

Figure 23. �a� Example of typical cost map from H1ghlander. The black line represents a cross-section sample of costs the
TEM uses to produce a cost profile. �b� Same scene as �a�, but with the TEM’s output fused into the upper half of the cost
map.

Figure 24. �a� An example of the preplanned path �light line� running approximately parallel to the traversable path
�dark lines�. The black lines are part of the cross section sampled by the TEM. In this case, the profile generated by the
TEM produces an accurate profile of the path. �b� An example of the preplanned path not running parallel to the
traversable path. In this case, the cross sections sampled do not correlate to the cross section of the traversable path.
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3.4.1. Geometric Planning

Trajectory planning algorithms attempt to find an
optimal path from a starting point to a goal point.
There has been a tremendous amount of work in this
area ranging from deterministic heuristic-based al-
gorithms �Hart, Nilsson & Rafael, 1968; Nilsson,
1980� to randomized algorithms �Kavraki, Svestka,
Latombe & Overmars, 1996; Lavalle, 1998; Lavalle &
Kuffner, 1999, 2001�. There has also been significant
research in algorithms to set speeds and curvatures
reactively �Coombs et al., 2002; Roth et al., 2005; Shi-
moda, Kuroda & Iagnemma, 2005�. In the Grand
Challenge, a prescribed route consisting of a center-
line with a set of bounds was provided. The bounds
and centerline did not necessarily define a road, but
did constrain where a robot may travel. While the
details of the terrain were unclear, the route guaran-
teed that there was a traversable path within the cor-
ridor. This information can be exploited to signifi-
cantly reduce the computational requirements of
path planning. While the approach presented here
was designed for the Grand Challenge, there are
many scenarios in which an autonomous robot can
be given a reasonable preplan of the route it must
traverse.

3.4.1.1. Conformal Search

Because the path is assumed to be traversable, the
search can be limited to expansion near and in the
direction of the path. A search graph is constructed
relative to the preplanned path that conforms to the
shape of the path and constrains the motion of the
vehicle. The spacing of the graph along the path is
varied to increase stability as speed increases. The
graph is searched using A* and the nodes compris-
ing the solution are connected by straight-line
segments.

Possible expansion nodes are grouped in linear
segments, oriented normal to the direction of travel
of the path, similar to railroad ties �Figure 25�.
Nodes are spread with a fixed spacing across each of
the segments. Each node is allowed to expand to
neighboring nodes in the next segment. A node is
considered to be a neighbor of another node if its
lateral offset is within one step of the current node.
Expansion opposing the direction of travel or within
a segment is disallowed.

The cost at each node is calculated from the
composite fused cost map. A rectangular window is
centered on the node and aligned with the direction

of travel of the path. Costs in the cost map within
the window are aggregated using a weighted aver-
aged to produce a C-space expanded estimate of cost
of traversability at that node. To encourage the plan-
ner to produce paths which are shaped like the pre-
planned path, traversal cost to the left and right

neighbors is increased by a factor �2.
Each cycle, the graph is regenerated and

searched using A* to produce an optimal path given
the most recent sensor data. The search starts at the
point closest to the vehicle on the last path output by
the planner. The first few meters �proportional to
speed� of the previous path are used as the starting
point to generate the new path. This starting path is
used to account for vehicle motion during the
search.

The raw output path tends to have sharp turns;
A* chooses to either maintain a fixed offset from the
preplanned path or to avoid an obstacle as hard as
possible. These sharp turns slow the vehicle consid-
erably, as the speed planner will reduce speed to
ensure safety. In order to remove these sharp turns, a
greedy smoothing operator is applied to the path.
The smoothed path is only accepted if it has a cost
approximately equal to the nonsmooth path.

In most cases, the search operates quickly; faster
than 20 Hz on the navigation computers. Occasion-
ally, the search space is too complicated for the
search to be completed within a reasonable amount
of time. Because the vehicle is a real-time system
traveling at high speed on rough terrain, planner
lockup is unquestionably bad. To prevent lockup,
the search times out after a 20th of a second, return-
ing the best path found at that point. In practice, this
path has been acceptably drivable.

3.4.1.2. Limitations

In situations where sharp turns are required, two of
the perpendicular segments can overlap resulting in

Figure 25. The conformal planner operates between cells
on adjacent segments normal to the preplanned path.
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a path that has a small knot in it. The knots rarely
cause a problem but can cause the tracker to become
confused and either reverse or drive poorly.

The planner does not explicitly consider speed,
and the speed of the output path is assumed to be
close to the speed of the preplanned path. While the
speed planner will slow the output path to account
for obstacle avoidance, explicitly reasoning about
speed and geometry at the same time could improve
performance and generate safer paths.

Since this path planner does not reason about
reversing and will generate a route through ob-
stacles if no other path is available, a second level of
planning is necessary to correctly handle some sce-
narios. For example, the existing planner cannot cor-
rectly handle a completely blocked road.

3.4.2. Speed Planning

The speed planner is responsible for ensuring driv-
ing speeds are safe. As vehicle speed increases, dy-
namics become important. Speed induces side-slip
�Gillespie, 1992� and can cause rollover �Diaz-
Calderon & Kelly, 2005� in vehicles with a high cen-
ter of gravity. Considerable research has been done
to characterize vehicle performance at low speed
�Golda, Iagnemma & Dubowsky, 2004� considering
both roughness �Castelnovi, Arkin & Collins, 2005�
and compressibility �Talukder, Manduchi, Rankin &
Matthies, 2002; Talukder, Manduchi, Castano et al.,
2002� for speed setting and is primarily reactive.

Maximum tractive force is limited by friction,
thus speeds must be planned such that they gradu-
ally decrease as turns are approached. While ob-
stacle avoidance and controller error can cause ex-
ecuted curvatures to be larger than the initial plan
calls for, an estimate of maximum safe vehicle speed
can be determined in advance as a function of path
curvature and maximum deceleration.

3.4.2.1. Modeling

The vehicle is modeled as a point mass with rigid
wheels on a flat surface. Mass is equally distributed
over the wheels and does not shift. Under these as-
sumptions, sliding occurs when static friction cannot
counter longitudinal or lateral acceleration:

v2

R
� �g , �3�

�v̇� � d , �4�

where � is the coefficient of friction, g is gravity, v is
the speed of the vehicle, d is the maximum decelera-
tion of the vehicle, and R is the radius of curvature
of the path. While d is limited by the tire-soil inter-
action, in practice maximum deceleration is slightly
smaller because the velocity controller does not op-
erate at the traction limit.

Numerous unmodeled dynamics including sus-
pension effects, changes in friction, and tire stiffness
cause inaccuracies in this model. In practice, it is im-
portant to incorporate a safety margin, ksafety, to de-
crease lateral acceleration and maximum
deceleration:

�eff = �ksafety, �5�

deff = dksafety, �6�

vlat � ��effgR . �7�

Equation �4� can be reformulated to represent a
maximum speed, vlat of a point Pi relative to the fol-
lowing point, Pi+1:

vlon = �2deff�Pi+1 − Pi� + Pi+1v . �8�

Radius of curvature is defined as ds/d� where d� is
differential heading change of the path and ds is arc
length. Because the path is represented as discrete
points, d� and ds cannot be measured directly and
must be estimated by �� and �s. For a point Pk,
define two headings �+ and �− as the heading of two
points, Pk+spacing and Pk−spacing

�� = �+ − �−. �9�

Arc length is approximated by the sum of lengths
between the points between Pi−spacing and Pi+spacing

�s = 	
i=−spacing

spacing−1

�Pk+i+1 − Pk+i� , �10�
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R = �s/�� . �11�

A two-pass process is applied to determine a maxi-
mum speed at each point in the path. The first pass
walks the path in the forward direction and sets a
maximum speed at each point to the lower of a
maximum overall speed for the vehicle and the re-
sult of Eq. �7�. The second pass walks the path from
the last point to the first point and limits the change
in velocity so that it is constrained by Eq. �4�.

The algorithm runs two ways. Before executing
a path, the algorithm processes the entire path once
setting speeds well beyond the sensing horizon of
the vehicle. While the vehicle is driving, the algo-
rithm runs on the output of the planner �a small
subset of the overall path� allowing the vehicle to
slow for unexpected obstacles.

In practice, this algorithm performs well enough
to drive safely on desert trails. As the vehicle ap-
proaches turns, it smoothly decelerates to a safe
speed. As the vehicle approaches obstacles, it slows
as necessary to swerve around them.

3.4.2.2. Limitations

Traction is limited by the sum of two vector compo-
nents: Lateral acceleration required to turn plus lon-
gitudinal acceleration of the tires �Gillespie, 1992�.
Because this model uses the maximum of each of
these components, the maximum deceleration and
coefficient of friction must be tuned for the worst
case—turning while decelerating. This results in a
slightly lower maximum speed through turns when
the vehicle is not decelerating.

Tires are not rigid and consequently do not sud-
denly break away as this model suggests. In reality,
as lateral acceleration increases, tires walk sideways
inducing a side slip angle �Gillespie, 1992�. The side
slip angle is a function of many parameters includ-
ing tire pressure, tire stiffness, and the coefficient of
friction. When vehicles operate with high slip
angles, they are hard to control. Additionally, if slip
angle is not corrected for by the control layer, it will
induce error.

Many effects which are functions of the terrain
and environment decrease tractive force. A wheel
bouncing on washboard terrain has less contact with
the ground, and as a result cannot apply as much
force. On side slopes and in banked turns, gravity
and the “up force” generated by the curvature of the
terrain changes the maximum possible speed before
rollover and breakaway.

Additional system effects should also be consid-
ered. Controllers have greater error at high speed.
The planner operates poorly when it has very little
information. An analysis of these errors could pro-
vide a function that predicts errors at particular
speeds and curvatures. A cap on these errors would
determine maximum speed through turns and in
straights.

3.4.3. Path Tracking

At the lowest level of the onboard navigation sys-
tem, a modified conventional pure-pursuit path
tracking algorithm �Amidi, 1990; Coulter, 1992�
steers the vehicle. As is common, the look-ahead dis-
tance of the tracker is adjusted dynamically based on
speed. The control gains are configured to provide a
balance between good performance at both low
speed in tight maneuvering situations, and at high
speed on straight-aways and soft corners.

The basic pure pursuit algorithm works well if
the output arcs are executed faithfully by the under-
lying vehicle controllers. Errors in the mapping be-
tween steering angle and curvature in the low level
control scheme induce systematic tracking errors.
For example, the steering angle sensor on Sandstorm
would intermittently shift relative to its mechanical
ground, this resulted in a moving zero point for the
mapping between steering angle and curvature that
could not be corrected by the vehicle control system.
The effect of this shift was to cause the robot to track
with a significant steady-state lateral offset from a
desired path.

To correct for this problem, the basic pure-
pursuit tracker is augmented with an integral correc-
tion function. The error term is calculated as propor-
tional to the lateral offset between the vehicle and
the path when the commanded steering angle is
near zero curvature. This causes the integral term to
accumulate on straight aways, but not in corners
where pure-pursuit tracking would normally have
significant errors. The scaled integrated curvature
correction term is then added to the desired curva-
ture generated by the basic pure-pursuit algorithm
before it is passed on to the vehicle control system.

This solution worked well and effectively re-
moved the tracking bias problems induced by the
shifting steering sensor. The addition to the integral
term also made the vehicle robust to some mechani-
cal damage to the steering system that would have
otherwise degraded driving performance.
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4. PREPLANNING

The preplanning system creates a path, including its
associated speeds and estimated elapsed time, prior
to robot operation. It incorporates aspects common to
mission scaled schedulers and planners for space
missions �Tompkins, Stentz & Whittaker, 2004� and
provides the critical input that allows the navigation
system to make assumptions about the world in
which it operates. Preplanning helps a robot by al-
lowing it to anticipate and slow down for obstacles
and conditions without sensing them directly. Good
human drivers use similar foreknowledge to adjust
radii, favor lanes, and set speeds to slow down for
harsh terrain features.

As illustrated in Figure 26, the preplanning sys-
tem involves the initial generation of a path using
splines to smooth an initially coarse list of waypoints.
The smoothed path is then modified by human edi-
tors to widen turns, and identify high risk areas in the
path. In parallel, risk is assessed throughout the
course and an automated speed setter uses this infor-
mation to achieve a desired elapsed time. This result-
ing path is then output in the form of a series of fine
waypoints which are used by the robot to traverse the
course. As part of this process, several rounds of veri-
fication are performed, to find and remove problems
with the path. Periodically, the current best path is
transferred to a robot to ensure that there is always a
route available, in case of some unexpected failure.

Human editors perform feature extraction that is
beyond the state-of-the-art in automated image un-
derstanding. Image extraction algorithms are limited
to items, such as road extraction from imagery �Har-
vey, McGlone, McKeown & Irvine, 2004� and object
detection and delimiting �Flores-Parra, Bienvenido &
Menenti, 2000� for large-scale features, such as build-
ings. Even though delimiting and detecting objects

would be useful for the identification of underpasses,
overpasses, and gates, the algorithms are only semi-
automated, reducing their value for this application.
Furthermore, even if these technologies were imple-
mented, they are still unable to detect subtle ob-
stacles, such as road washouts, which can be poten-
tially fatal for a robot.

4.1. Path Editing

Path editing is a process that transforms a set of
coarse waypoints and speed limits into a preplanned
path with 1 m spaced waypoints. The smoothing
process produces a route of curved splines from
waypoint to waypoint defined by a series of control
points and spline angle vectors. Human editors can
alter splines by shifting control points and spline
angle vectors that specify the location and orienta-
tion of a path. The generated splines are constrained
to ensure C2 continuity which helps ensure a driv-
able path.

The human editing process removes unneces-
sary curvature from the smoothed path. Smooth
paths are also generally faster since decreasing the
amount of curvature in a path reduces concerns for
dynamic rollover and side slip. Figure 27 shows an
instance where an editor has widened a turning ra-
dius in a path.

4.2. Speed Setting

During preplanning, a speed setting process speci-
fies the target speeds for an autonomous vehicle

Figure 26. An illustration of the preplanning process.

Figure 27. An example of path detailing: Adjusting a turn
to achieve a minimum turning radius.
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given a target elapsed time to complete a pre-
planned path. Speed setting is performed by assess-
ing the risk for a given robot to traverse a section of
terrain based on available information. An auto-
mated process then uses a speed policy generated by
combining the risk assessment with any speed limits
imposed on the course to assign speeds to each way-
point in the path.

The risk estimation process discretizes risk into
four levels �dangerous, moderate, safe, and very
safe� in classifying terrain. Each risk level maps to a
range of safe robot driving speeds. Risk is first as-
signed regionally, over multikilometer scale terrains,
using general characteristic of the terrain under con-
sideration. Once the entire route has risk assigned at
a coarse level, a first-order approximation of the
ease/difficulty of that route, as well as an estimate of
the overall elapsed time can be generated.

In addition to classifying risk at a macrolevel,
risk is also assigned to local features of importance.
This processing step characterizes and slows the
path down for washouts, overpasses, underpasses,
and gates. In this way, human editors provide a ro-
bot with a set of “pace notes,” similar to the infor-
mation used by rally race drivers. These details al-
low a robot to take advantage of prior knowledge of
the world to slow pre-emptively. This is a critical
part of the process for increasing the robustness of
the onboard navigation system.

4.3. Verification

The verification step helps ensure that each pre-
planned route is free from errors prior to a robot
executing it. The verification process is performed in
three ways: �1� In-line as an automated method
which operates periodically while the route is ed-
ited, �2� through multiple reviews by human editors,
and �3� through an automated external independent
check on the final route.

4.3.1. Automated Inline Verification

The inline verification process provides human edi-
tors periodic updates of locations where the path be-
ing edited violates any constraints. The specific con-
straints considered are: �1� Exceeding of corridors
boundaries, �2� path segments with radii tighter than
a robot’s turning radius, and �3� areas where the
route is very narrow and warrants extra attention.

Each of these potential problems is flagged for re-
view by a human editor. These flags are then used as
focal points for interpreting the path.

4.3.2. Human Review

Editors review each segment multiple times to en-
sure that the final route is safe. While detailing a
route, each segment undergoes an initial review by
editors which fixes major problems. The first review
looks for any errors in the output of the automated
planner, and attempts to identify areas of high risk
for a robot, such as washouts. These high risk areas
are then flagged, to be confirmed in a second review.
A second review takes the output of the first review,
and refines the route, confirming marked “flags”
and adding additional “flags” for any high risk areas
missed in the first review. The expectation is that
after completion of the second review, there will be
no need for additional editing of the geometry of the
route. In the third and fourth reviews, the main fo-
cus is to verify that all problems identified by the
automated inline verification process have been
cleared, as well as to confirm that any problems
identified by the automated external verification al-
gorithm are addressed.

4.3.3. Automated External Verification

An automated external verification process operates
on the final output to the robot and checks heading
changes, turning radius, speeds, and boundary vio-
lations. In addition, the verification process outputs
warnings where there are areas of high slopes and
sections of narrow corridors along the path. These
warnings are used to identify areas for the human
editors where extra care should be used. The verifi-
cation process also produces a number of strategic
route statistics, such as a speed histogram for time
and distance, a slope histogram, and a path width
histogram. These statistics are used in determining
the target elapsed time for the route and in estimat-
ing the risk for the route. This process is repeated
several times as the path detailing progresses until
the route is deemed safe for the robots to use.

5. TESTING AND SYSTEM PERFORMANCE

To succeed in the Grand Challenge, robots must dem-
onstrate both performance and reliability. To achieve
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these two requirements, the team identified that a
system of tests and performance milestones were re-
quired. Performance milestones were set to ensure
driving skills and reliability would meet near-term
program goals, such as passing the site visit demon-
stration, winning pole position at the National Quali-
fying Event �NQE� and completing the Grand Chal-
lenge. Examples of performance milestones included
shakedown cruises, NQE skills tests, and race length
autonomous runs at a race pace and in a race envi-
ronment. In addition to milestones, the team devel-
oped test methods that enabled quantitative evalua-
tion of the effects of changes to the robots’ hardware
and software on performance �see Figure 28�.

5.1. Controlled Tests

The impetus for a controlled test methodology was
to monitor development progress and measure driv-
ing skill. The team also used the tests to evaluate the
effects of changes in hardware and software on the
robots’ overall ability to drive. The ability to drive
was defined as three major skills. The first skill was
the ability of the robots to follow a preplanned path

based on position sensing only. The second skill was
the ability of the robots to track a preplanned path
while assisted by perception sensors. The third skill
was the ability of the robots to dynamically make
significant modifications to a preplanned path to
avoid sensed obstacles.

5.1.1. Test Formulation

There are few, if any, documented standardized tests
to measure autonomous driving skills at speed. A
review of technical reports of DARPA Grand Chal-
lenge 2005 finishers Stanford Racing Team �Stanford
Racing Team, 2005�, Team Gray �Trepagnierl, Kinney,
Nagel, Dooner & Pearce, 2005� and Team Terramax
�Oshkosh Truck Corp., 2005� found that they all
placed great value on testing but did not mention
specific tests to measure driving skill. While a
method for characterizing tracking performance has
been described �Roth & Batavia, 2002�, the authors
are unaware of literature that describes a standard-
ized process for evaluating perception based
navigation.

The literature on the subject of automotive dy-
namic testing includes International Organization
for Standardization standard ISO-3888-1, Passenger
cars—Test track for a severe lane-change maneuver
Part 1—Double lane-change �International Stan-
dards Organization, 1999� �Figure 29�. This test was
designed as a means to subjectively evaluate vehicle
dynamic performance. The test is subjective because
it only quantifies a small part of a vehicle’s handling
characteristics and is highly dependent on the input
from the driver. This dependence on driver skill is
what makes the test attractive for adaptation to au-
tonomous ground vehicle driving skill testing.

The original ISO-3888-1 course was modified,

Figure 28. H1ghlander �and Sandstorm� were tested ex-
tensively on desert terrain.

Figure 29. ISO-3888-1 test track for a severe lane change maneuver.
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adding 1.5 meter to lane width in all sections to ac-
count for nominal pose estimator and tracking er-
rors. This additional lane width enabled a quantita-
tive measurement of performance considering total
system error. Table V describes the basic steps used
in the autonomous ground vehicle path tracking
skills assessment.

5.1.2. Blind Path Tracking Test

The blind path tracking test uses the modified ISO-
3888-1 to perform a quantitative evaluation of path
tracking performance. A route file for this test is cre-
ated by recording a smooth, “best line” route
through the test course. The recorded path is then
transferred to the robot and used as the baseline
path to be tracked. Figure 30 is a graphical represen-
tation of the path definition file used in the blind
and perception assisted path tracking tests. When
conducting the blind path tracking test, the robot is
configured such that only the pose sensor is consid-
ered in path planning. The absence of all perception
sensor input limits path tracking error to that in-

duced from the pose sensor, path tracking algorithm,
and drive by wire actuation control errors.

5.1.3. Perception Assisted Path Tracking Test

The perception assisted tracking test is conducted
using the same path definition file used in the blind
path tracking test and shown in Figure 30. At the
entrance to each lane segment, a perpendicular
boundary wall has been added to the original ISO-
3888-1 test track. These boundary walls are intended
to ensure a robot will plan a route through the de-
sired lanes. While performing this test, robots are
configured to use all of their perception and pose
sensor data. The test measures driving skill when
given a nominal path through an area constrained
by boundary obstacles.

5.1.4. Perception Planning Test

The perception planning test is conducted on the
same modified ISO-3888-1 test track but uses a route
file that follows the center line of the test track �see

Table V. Test steps for autonomous ground vehicle path tracking skill assessment.

1. Create a route file through the test course.
2. Create a path definition file for the route created in step 1 setting the corridor width slightly wider

than the test track’s lane width and the speed to a constant �e.g., 5 meters/sec�. The path definition
file must include an area before the test course begins for the robot to achieve the required constant
velocity.

3. Load the path definition file into the robot.
4. Command the robot to drive the route described in the path definition file.
5. Record the time the robot is on the test track entry to exit.
6. Record the number of times the robot touches or exits the test track’s boundaries.
7. Repeat steps 2 through 6 increasing the speed by an incremental value �e.g., 2 meters/second� until

the robot can no longer successfully traverse the course or the operation is deemed to be unsafe.
Multiple runs at each speed increment are required to demonstrate consistency.

Figure 30. Bind and perception assisted path tracking route through modified ISO-3888-1 test track.
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Figure 31�. This test measures an autonomous
ground vehicle’s ability to significantly modify the
preplanned path based on perception.

5.1.5. Test Execution

Field tests were conducted at a brown site in Pitts-
burgh, Pennsylvania and at the Nevada Automotive
Test Center �NATC� in Silver Springs, Nevada.
While testing at the Pittsburgh site, small cardboard
boxes wrapped in plastic bags were used as lane
boundaries. As the perception capability improved,
cones were substituted for lane boundaries and ob-
stacles. Figure 32 shows Sandstorm and H1ghlander
operating on the test tracks in Pittsburgh and Ne-
vada.

During development and testing a full battery of
tests was performed on the modified ISO-3888-1 test
track on eight separate occasions. Test personnel in-
cluded the test conductor, robot operator, chase car
driver, and timers. In general, a complete set of blind
path tracking, perception-assisted tracking, and per-
ception planning tests were performed during each
session. Table VI is an example of data collected dur-
ing a typical test session on the modified ISO-3888-1
test tracks.

Sessions on the modified ISO-3888-1 track gen-
erally started with the blind path tracking test at an
initial speed of 5 m per second. The team would ex-
ecute a minimum of three runs then increase the
speed by 2 m per second. At each speed increment,
three runs were executed. Speed was increased until
the vehicle left the course and had to be stopped via
the emergency stop link or the test team deemed
operations at higher speeds were unnecessary. The
blind path tracking test was never conducted at

speeds above 13 m per second. As confidence in the
robot’s blind tracking ability increased, the number
of blind tracking tests decreased, and eventually
were not included in the test routine. The test was
held in reserve for regression testing after hardware
or software changes were made to a robot that
would affect the basic path tracking.

Figure 31. Perception planning route through the modified ISO-3888-1 test track.

Figure 32. Sandstorm �a� and H1ghlander �b� on the
Pittsburgh and NATC test courses.
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Like the blind tracking test, the initial speed for
perception tracking test was 5 m per second. Mul-
tiple runs at the slower speeds were eventually
found to be unnecessary. As in blind path tracking,
incremental speed changes were of 2 m per second,
and the maximum speed was 13 m per second. As
confidence in the perception sensing systems’ ability
to correctly sense and localize obstacles increased,
emphasis on conducting perception tracking was
diminished.

The perception planning test was performed in
the same way as the perception tracking test, with
the exception of using a different path.

5.1.6. Evaluation

The initial blind tracking test of Sandstorm �see Fig-
ure 33� conducted on June 17, 2005, revealed that the
robot did not have a robust path tracking ability. The
observed quality of driving was poor with signifi-
cant overshoot when cornering. The path tracking
control algorithm was modified, adding an integral
term, and when the test was repeated on August 17,
2005, performance was notably improved. The team
was satisfied with Sandstorm’s blind tracking per-
formance at this point and did not conduct the test

on Sandstorm again. Similar performance improve-
ment trends were observed with H1ghlander as
well.

Analysis of the data collected during the percep-
tion tracking and planning tests is inconclusive of
overall performance gains due to changing hard-
ware and software configurations, but it did help
detect system anomalies. As an example, perfor-
mance of the vehicles was observed to decline in
September after the short-range sensors were re-
moved and replaced during addition of a sensor
washing system. This decline was directly attribut-
able to the lack of adequate calibration of the sensors
for object localization.

5.1.7. Perspectives on Controlled Tests

The blind tracking, perception tracking, and percep-
tion planning tests are an effective tool for measur-
ing autonomous ground vehicle driving skill. The
tests are relatively easy to set up and inexpensive to
conduct. While straight forward, the tests are an ef-
fective means to evaluate hardware and software
configuration changes.

The blind tracking test is an excellent tool for
measuring an autonomous ground vehicle’s ability

Table VI. Example data collected during testing.

Test
No. TOD Type

200 m
�s�

Speed
�m/s� Notes

1 2:35 BT-5 40.98 4.88 Cone 9L brushed
2 2:40 BT-5 41.20 4.85 Cone 4L brushed
3 2:44 BT-5 41.13 4.86 Good
4 2:49 BT-7 29.20 6.85 Cone 4L hit hard
5 2:52 BT-7 29.45 6.79 Cone 4L hit hard
6 3:09 BT-7 31.70 6.31 Cone 4L hit more hard
7 3:12 BT-7 31.67 6.32 Cone 4L hit more hard
8 3:15 BT-9 ABORT E-stop because robot leaving course at 4L
9 3:40 PT-5 45.58 4.39 Good
10 3:58 PT-5 45.26 4.42 Good
11 4:04 PT-5 43.64 4.58 Good
12 4:09 PT-7 36.67 5.45 Good
13 4:11 PT-7 37.29 5.36 Good
14 4:15 PT-7 38.70 5.17 Cone 7R hit
15 4:17 PT-9 29.70 6.73 Cone 7R hit
16 4:21 PT-9 31.27 6.40 Cone 7R hit
17 4:25 PP-5 45.89 4.36 Center 3rd wall hit
18 4:28 PP-7 39.72 5.04 Corner 1st wall brushed, 3rd wall corner crushed
19 4:30 PP-9 37.60 5.32 Corner 1st wall, brushed, 3rd wall corner crushed
20 4:32 PP-9 N/A 2nd outer and center wall hit, 3rd corner crushed
21 4:37 PP-9 33.61 5.95 3rd wall corner, 2 wall center punch & corner, 1st wall box crunched
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to blindly follow waypoints and is broadly appli-
cable to all automotive and truck class autonomous
ground vehicles.

The perception tracking test is a good tool to
measure the effects of perception on path tracking
and also as a subjective qualitative assessment of
driving quality. The perception planning test is a
good tool to measure the effectiveness of an autono-
mous ground vehicle’s ability to dynamically adapt
to obstacles impeding the preplanned path. The per-
ception planning test is limited; while it measures a
robot’s ability to rapidly adapt to obstacles, it does
not measure if a vehicle reacts in a smooth manner.
For example, if a human is driving and sees an ob-
stacle in its path, they will generally react as early
and smoothly as possible to change their trajectory
to avoid the obstacle. The perception planning test
could be adapted for this purpose by elongating the
length of the track segments between lane change
barriers.

5.2. End-to-End Tests

The Red Team was deployed to Nevada in late Au-
gust of 2005. Once there, the team began conducting
a series end-to-end system tests designed to simulate
race day conditions. These tests followed the follow-
ing process.

• System test team identifies a route and cre-
ates a route data definition file �RDDF� �this
could take several days to complete�.

• The RDDF is delivered to the preplanning
team who have 1 h and 45 min to create a
path file �ideally, this was accomplished on
the morning of the systems test�.

• The path file is reviewed by the field team to
ensure that it is safe and viable.

• A system test team provides the path file to
the robot operators who have 15 min to load
and launch the robot �this step was timed in

Figure 33. Blind tracking performance for Sandstorm.
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order to validate the operators’ ability to re-
liably launch the robot in a timely manner�.

• Robots were then chased and performance
monitored until either run completion or
intervention.

Identifying routes that were race length includ-
ing a wide collection of terrain, free from undue risk,
proved to be a formidable task. No nonlooping race
length route was identified near the test area. Figure
34 shows two of the routes used for systems tests.
The “Pork Chop” route is a 48 km loop featuring
pavement, gravel road, dry lake bed, sand, wash
out, dirt road/trail, cattle guard, gates, parallel
fences, high-voltage power lines, rail road crossings
and elevations ranging from 4300 to 4750 feet. The
“Hooten Wells Extended” route is 85 km one way.
This route was looped by adding tight circle turns at
both ends. The Hooten Wells route features a gravel
road, dry lake bed, large wash outs, dirt road/trail,
cattle guard, gates, parallel fences, high-voltage
power lines, a canyon, and elevations ranging from
4000 to 4700 feet.

During tests along these routes Sandstorm and
H1ghlander each drove over 1600 kilometers au-
tonomously. Each robot completed challenge length
runs at a race pace on routes more difficult than the
2005 DARPA Grand Challenge race route. Figure 35
shows the daily total number of meters driven dur-
ing testing at the NATC. The figure shows dates of
the three significant failures incurred during testing:
H1ghlander sheering off its front right wheel, Sand-
storm being “clothes lined” by a tree and
H1ghlander rolling.

5.3. Test Conclusions

Over the course of this development, the technology
readiness level �TRL� �Mankins, 1995� of the robots
presented in this paper improved from TRL 3 �ana-
lytical or experimental characteristic proof of con-
cept� in the summer of 2003 to TRL 5 �Technology
component demonstration in a relevant environ-
ment�. This change in readiness was driven by the
rigorous test program. In order to achieve TRL 9 �ac-
tual technology system qualified�, a much wider set
of systems tests must be developed. Although the
testing described above effectively prepared Sand-
storm and H1ghlander to compete in the DARPA
Grand Challenge, it is not adequate for fielding an
autonomous ground vehicle for everyday use.

Standardized tests must be developed that mea-
sure a robot’s ability to sense and accurately localize
obstacles of varying size. These tests should account
for differing perception sensing modes. Standard
tests that measure an autonomous vehicle’s ability to
safely and reliably interact with other vehicles and
humans are needed. These tests and others are re-
quired in order to move autonomous ground ve-
hicles from technological curiosities to common
tools used by people everywhere.

6. THE GRAND CHALLENGE

The 2005 DARPA Grand Challenge began at 6:40 am
on October 8, 2005 with H1ghander and Sandstorm
departing the starting chutes first and third respec-
tively. Both robots completed the challenge, finishing
in third and second place �Figure 36�. Figure 37 illus-
trates the race day route. The route consists primarily
of wide straight dirt roads. There are a few technical
areas including three underpasses and a narrow
winding descent through Beer Bottle pass. Overall,
the route is less difficult than the system test courses
that Sandstorm and H1ghlander had operated on
prior to the Grand Challenge.

6.1. Strategy

To increase the chance of success, the two robots
were run with different speed ranges for each of the
risk levels used by the preplanning system. Table VII
describes the speeds used for each risk level.
H1ghlander ran at near full speed, while Sandstorm
operated with a more conservative speed plan. Both

Figure 34. The “Pork Chop” route is a 48 km loop while
the “Hooten Wells” route is 85 km each way.
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speed policies were within the operational ranges
for which the robots had been tested. The speed
policies resulted in preplanned expected completion
times of 6 h and 19 min for H1ghlander, and 7 h and
1 min for Sandstorm.

The dual speed strategy was selected to increase
the likelihood of at least one Red Team robot cor-
rectly dealing with some challenging unforeseen ob-
stacle on the Grand Challenge route. While the strat-
egy was successful in that both robots completed the
challenge, it limited Sandstorm below its ability and,
in retrospect, prevented it from winning the Grand
Challenge.

6.2. Sandstorm

Sandstorm completed the 212 km course in approxi-
mately 7 h and 4 min to finish, in second place,
11 min behind the winning team from Stanford. At
approximately 6:50 am, Sandstorm launched on time

and without incident. Upon departure, all mechani-
cal, sensing, and navigation systems were operating
nominally. In general, Sandstorm drove the route
well. It completed the course within 1% of the pre-
planned time, and came within 11 min of winning
the Grand Challenge. Sandstorm drove cleanly
through most of the course, only touching an ob-
stacle during the tricky Beer Bottle pass descent.

Sandstorm cleanly navigated through three un-
derpasses. Both Underpass 2 and 3 were sufficiently
long and constrained that the LIDAR terrain evalu-
ation algorithm failed to detect the walls �see Figure
38�. Fortunately, the redundancy in perception algo-
rithms made the navigation system robust to this
failure and Sandstorm cleanly navigated all three
tunnels without contact.

The only contact Sandstorm made with an ob-
stacle during the Grand Challenge occurred during
the descent through Beer Bottle pass. It is impossible
to perform a complete reconstruction of the incident

Figure 35. Daily autonomous driving distance during testing at NATC.
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since the log file containing the pose of the gimbal is
corrupt and the documentation camera stopped op-
erating prior to entering the canyon. Figure 39
shows a cost map constructed from only the shoul-
der, short-range LIDARs, and thus provides an in-
complete picture of what the robot saw. It is likely
that the robot attempted to cut close to the wall to
avoid the incorrectly evaluated terrain to the left of
the trail. Despite this minor contact, Sandstorm
emerged from the canyon relatively unscathed.

Sandstorm drove well and completed the grand
challenge course but was on average 0.25 m/s too
slow to claim victory.

6.3. H1ghlander

H1ghlander completed the challenge in 7 h and
14 min, 55 min longer than its intended completion

time. This failure to achieve intended speeds and
elapsed time was unprecedented in H1ghlander’s
testing history.

6.3.1. Engine Trouble

Figure 40 shows predicted progress plotted versus
actual progress. The upper curve shows the actual
time to reach a given distance, while the lower
shows predicted performance. Figure 40�a� shows a
run of a very challenging course in northern Ne-
vada. In this figure, the predicted and actual curves
are almost indistinguishable. Figure 40�b� shows
performance during the Grand Challenge course.
Early in the race �27 km�, the predicted progress

Figure 36. Sandstorm �a� and H1ghlander �b� cross the
Grand Challenge finish line in second and third place.

Figure 37. The 2005 Grand Challenge Route with the ap-
proximate times at which Sandstorm encountered chal-
lenging terrain.

Table VII. Risk level to speed range mapping during the
Grand Challenge.

Risk
level

Speed ranges
for Sandstorm

�m/s�

Speed ranges
for H1ghlander

�m/s�

Dangerous 5 5

Moderate 7.5 7–9

Safe 10–10.5 10–12

Very Safe 12 13–13.5
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separates from the actual progress. The actual
progress continues to separate throughout the race.

Figure 41 compares velocity controller perfor-
mance on various grades during the race and during
the last long distance traverse before the race. The
prerace plot shows a slight decline in performance at
higher grades while the in-race plot shows a signifi-
cant decline on all grades.

Analysis of velocity performance shows seven
locations where H1ghlander came to a stop. Two of
these stops were on hills where the vehicle rolled
backward several times before being able to crest the
hills. Significantly degraded performance is first no-
ticeable after 27 km and continues for the entire
challenge. Onboard audio indicates that the engine
was stalling regularly while H1ghlander drove. Im-
mediately following the race, the engine idle speed
was oscillating violently. Data were logged while
this phenomenon was occurring; but since the race,
the problem has not reoccurred. Samples of engine
and transmission fluids show no anomalies and the
onboard engine diagnostics showed no faults during
and after the race. At this time, the cause for this
engine problem remains unexplained.

6.3.2. Gimbal Failure

H1ghlander’s gimbal stopped responding to com-
mands 87 km into the race, failing after a hard left
turn. Examination of vehicle speed indicates that
this is an area where H1ghlander was having engine
trouble.

The gimbal is sensitive to power fluctuations,
which may have been the cause of its failure. While
H1ghlander’s power is typically stable, the engine
conditions discussed above may have caused signifi-
cant power generation problems. When the engine’s
rpms are low, the generator stops producing power
and the power system switches to using batteries.
This condition is rare, as engine idle speed is set to
be significantly higher than the generator cutoff
speed. Power system switching was tested repeat-
edly early in the development of H1ghlander, and
had not shown any problems leading up to the race.

It is conjectured that while the engine was not
running normally, the generator shut off tempo-
rarily, causing a brown out in the gimbal power sys-
tem. The gimbal stopped responding to commands
and never recovered. Normally, when processes fail

Figure 38. The third underpass and sensor data illustrating the terrain evaluation bug.
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to respond, they are restarted. In this case, the gim-
bal control computer would have also browned out
and as there is no capability to restart failed comput-
ers, the restart system did not attempt to restart the
gimbal processes.

While this hypothesis seems to be the most logi-
cal explanation for the gimbal failure, there are in-
sufficient data to determine the root cause of failure
as power diagnostics are only logged into a short
rolling buffer. Under normal testing conditions, sys-
tem failures are examined immediately and informa-
tion about power and state of components involved
in the failure is recorded. Due to the nature of the
race, the vehicle could not be stopped for examina-
tion, thus these data were lost.

Despite these two failures, H1ghlander com-
pleted the Grand Challenge, illustrating the ability
of the robot to survive a number of significant faults.

7. CONCLUSIONS

Through the application of simple well-implemented
ideas, it is possible to achieve robust high-speed
desert navigation. At each point in the development

process, we attempted to use the simplest possible
approach, be it the first-order approximations of
physical constraints in the speed planning algorithm
or the expectation based map merging algorithm. The
key to success was performing testing and analysis to
understand where these approaches would fail, and
determining whether a more complex solution was
warranted.

The robustness of this approach was clearly dem-
onstrated by Sandstorm and H1ghlander’s perfor-
mances at the 2005 Grand Challenge. Despite a failing
engine and the loss of a perception sensor, both robots
completed the course within 20 min of the winning
time. Without the careful design and implementation
of the navigation system, and the selection of a robust
vehicle chassis, this feat would not have been
possible.

7.1. Next Steps

While the DARPA Grand Challenge represented a
significant step forward for high-speed navigation in
desert terrain, the robotic navigation problem is far
from solved. Before it will be possible to deploy
fully-autonomous robots, techniques for dealing

Figure 39. Sensor map illustrating the point of contact.
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with dynamic environments must be developed. The
Grand Challenge was carefully designed to keep the
competitors separated. Passing in the Challenge was
constrained such that slower vehicles were stopped
well before, and throughout the time, faster vehicles

encountered them. While this was reasonable for the
Grand Challenge, it is not a viable way for robots to
deal with traffic in general.

While the desert provides numerous challenges,
the terrain is relatively straightforward to model.

Figure 40. A comparison of H1ghlander’s actual and preplanned distance traveled for �a� a representative test and �b�
during the Grand Challenge.
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Most desert terrain is well characterized by its ge-
ometry since there is relatively little vegetation. This
simplifies the perception and terrain evaluation
tasks. The same cannot be said for jungles, forests, or
even farmland. In these environments, a purely geo-
metric understanding of the world would be mis-
leading since there is vegetation that can and must
be driven over and through. Completing the same
challenge in heavily vegetated terrain would be a
tremendous next step.

The Grand Challenge forced teams to develop
reliable near turn-key solutions by requiring a long
duration performance on a specific day. The race for-
mat meant it was not possible to develop a technol-
ogy that worked some of the time, it was necessary
for the robots and supporting systems to work when
called on. While this level of reliability and readiness
was met, it was achieved with large teams with very
specialized knowledge and training. To move this
technology from a compelling demonstration to a
production ready capability will require significant
effort to both harden and quantify performance.

7.2. Lessons for Development of Autonomous

Vehicles

While Sandstorm and H1ghlander performed well,
and the experience of developing and testing the ro-
bots was rewarding, there is much room for im-
provement in both the performance and the process
used to develop them. Over the course of this re-
search, we learned several lessons:

• System testing is essential but results can be mis-
leading. Testing was critical to the success of
Sandstorm and H1ghlander, but at times also
provided a false sense of confidence. Because
of the tight development and testing sched-
ule, component testing was often short and
incomplete, due to an emphasis on integrated
testing. Since the overall system was rela-
tively robust to sensor failures and bad data,
it was possible for intermittent and subtle
problems to go undetected for long periods
of time. A combination of better unit/
component testing or a more in-depth ana-
lytical evaluation of developing algorithms
would have reduced this problem.

• Reliability is critical, and can be achieved. One of
the keys to success in the Grand Challenge
was balancing innovation with engineering.

We used a programmatic approach that effec-
tively annealed ideas to strike this balance. In
the first phase, we cultivated a broad set of
potentially good ideas, hoping to uncover
those that would be the keys to success. In the
second phase, we focused on these ideas
while achieving internally and externally im-
posed milestones �e.g., complete a 320 km
traverse, or perform obstacle avoidance with
a given sensor�. These milestones allowed us
to judge the viability of competing technical
approaches while working to also increase re-
liability. In the third and final phase, we ac-
cepted only ideas that were required to fix
problems with the existing system. We used
a strict process to report any problems iden-
tified during testing and then worked to
quickly rectify them in a way that prevented
recurrence of the same fault. During this final
phase, the robots began to realize their poten-
tial for reliable operation.

• Use commercial off-the-shelf �COTS� compo-
nents, but only with support. A common man-
tra in developing new systems is to buy not
build, and in general this is true, but buyer
beware. Without support, COTS components
can be worse than in-house custom built
components. With in-house built compo-
nents, there is at least someone who designed
and built the system who can debug it. An
unsupported COTS component that behaves
unexpectedly may force a significant rede-
sign of a subsystem, potentially incurring
more cost and time than if the component
had been in-house custom engineered.

• Know the problem. Much of the technical ap-
proach described in this paper was excessive
given the final form of the Grand Challenge.
The groomed roads and carefully detailed
route provided by the organizers greatly re-
duced two of the competitive advantages
�namely the H1 & HMMWV chassis and the
preplanning system� applied by the team.
Furthermore, the team put an excess of wear-
and-tear on the vehicles during testing oper-
ating on more rugged terrain than that en-
countered during the challenge. Had the final
race conditions been known ahead of time, it
would have been possible to shed a signifi-
cant amount of technical complexity.
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• Correctly scoping a problem is a key to success.
One of the programmatic successes was a
process to cut technical ideas if they were not
progressing or showing results. This helped

keep the team focused on the overall goal of

completing the Grand Challenge rather than

chasing after interesting ideas that were irrel-
evant to the task at hand. Without this focus,

Figure 41. A comparison of H1ghlander’s ability to maintain commanded speed between �a� testing and �b� performance
during the Grand Challenge.
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we would not have been able to achieve the
reliability and robustness necessary to com-
plete the Grand Challenge.
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