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A robust approach to reference interval
estimation and evaluation

Paur S. HorN," AMADEO J. PEsck,? and BRADLEY E. COPELAND?

We propose a new methodology for the estimation of
reference intervals for data sets with small numbers of
observations or for those with substantial numbers of
outliers. We propose a prediction interval that uses
robust estimates of location and scale. The SAS software
can be readily modified to do these calculations. We
compared four reference interval procedures (nonpara-
metric, transformed, robust with a nonparametric lower
limit, and transformed robust) for sample sizes of 20, 40,
60, 80, 100, and 120 from x? distributions of 1, 4, 7, and 10
df. x* distributions were chosen because they simulate
the skewness of distributions often found in clinical
chemistry populations. We used the root mean square
error as the measure of performance and used computer
simulation to calculate this measure. The robust estima-
tor showed the best performance for small sample sizes.
As the sample size increased, the performance values
converged. The robust method for calculating upper
reference interval values yields reasonable results. In
two examples using real data for haptoglobin and glu-
cose, the robust estimator provides slightly smaller
upper reference limits than the other procedures. Lastly,
the robust estimator was compared with the other pro-
cedures in a population where 5% of the values were
multiplied by a factor of 5. The reference intervals were
calculated with and without outlier detection. In this
case, the robust approach consistently yielded upper
reference interval values that were closer to those of the
true underlying distributions. We propose that robust
statistical analysis can be of great use for determinations
of reference intervals from limited or possibly unreli-
able data.
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The concept of a reference interval in medicine is based on
determining a set of values within which some percent-
age, 95% for example, of the values of a particular analyte
in a healthy population would fall. This interval is then
used for medical decisionmaking. Recommendations on
how to obtain such reference intervals have focused on
the types of statistics best used to calculate such a refer-
ence interval. These parameters then determine the num-
ber of individual specimens required to describe the
reference interval with a high degree of confidence. Lab-
oratories are mandated by the College of American Pa-
thologists and the Joint Commission for the Accreditation
of Health Organizations and Health Care Finance Admin-
istration to determine reference intervals for the popula-
tions they serve. Currently, NCCLS guidelines recom-
mend samples of 120 individuals for parametric and 200
individuals for nonparametric interval determination.
Very often it is not possible to obtain the suggested
number of 120 individuals of a specific group to define a
reference interval. In some cases, only 20 or 40 individuals
in a particular group may be available for study, which is
not an ideal population because of the potential for large
errors in the resulting estimates. In our own experience,
we found it virtually impossible to obtain sufficient
numbers to determine the reference interval for the me-
tabolism of the drug lidocaine into its metabolite methyl-
xylidide because it was difficult to get volunteers who
were both healthy and willing to have lidocaine injected
into them. In addition, the actual cost per each individual
test result was on the order of $100 or more for the test
reagents. To use this assay to make life-or-death decisions
in liver transplant patients, it was very important that we
obtain reliable decisionmaking results with a limited
number of test specimens. The question then arises as to
the best statistical method to calculate the reference inter-
val when limited sample numbers are available. The
purpose of this presentation is to show the usefulness of
robust statistical analysis for obtaining a good estimate of
reference intervals with a small number of samples. In this
presentation, we present the theoretical background for
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using this approach. We look at cases where 20 samples
are available.

CURRENT APPROACHES

There are two traditional approaches to the derivation of
reference intervals. The first is nonparametric and is based
on the sample quantiles. For example, if the (central) 90%
reference interval is required, then the 5th and 95th
sample quantiles are used. A better approach is to use the
distribution-free quantile estimators described by Harrel
and Davis [1]. This estimator is essentially a bootstrapped
[2] version of the traditional sample quantile. The estima-
tor of the p™ quantile is as follows:

where
W, = Llpin + 1), (1 — p)(n + 1)}
- Li—yufpn + 1), 1 — pn + 1)}

where I (a,B) is the incomplete beta function and x;, = . ..
= x, are the observed order statistics. The Harrel and
Davis estimator has been recommended as the nonpara-
metric method of choice for the derivation of reference
intervals [3]. Therefore, it is this version of the nonpara-
metric method that will be examined in this study.

The second approach to deriving reference intervals is
based on transforming the data to achieve normality,
computing the appropriate quantile estimators using nor-
mal theory, and back-transforming to the original scale.
The transformation used in this study is described by
Harris and Boyd [3]. Briefly, an initial transformation
removes skewness:

_[(x* = 1)/Afora # 0
vy = log(x + c)forA = 0

This transformation was introduced by Box and Cox [4].
Here, the maximum likelihood estimator of A, A, is
computed from the original x-data. If |A| < 0.10, then the
log(x + c) transformation is used, and ¢, the maximum
likelihood estimator of ¢, is then computed.

Once the initial transformation is fit, a second transfor-
mation is derived to remove any remaining kurtosis. The
y values in the previous equation are standardized to
have zero mean and unit variance. Then a constant, K, is
determined so that:

z = sign(y) - lyl*
has kurtosis = 0. The power of the transform that is
actually used is (K + 1)/2 [5]. The z-data are then tested
for normality by using the Anderson-Darling statistic at
significance level 0.15 [6]. If the null hypothesis of nor-

mality is not rejected, then the traditional normal quantile
estimates are used on the z-data, namely:

z* z(1—a/2):-s, (1)

where Z and s, are the sample mean and SD of the z-data,
and z(1 — «/2) is the appropriate standard normal
quantile. Therefore, for a 90% reference interval, a = 0.10,
and z(0.95) = 1.645 are used. These two estimates are then
back-transformed to the y-data scale and, finally, the
original x-data scale. On the other hand, if normality is
rejected, then the nonparametric (Harrel and Davis) ref-
erence interval is used.

We end this section by noting that the reference inter-
val can be viewed as a prediction interval based on the
random sample X;,. .. X, for the next observation, X, ;.
If the underlying population is normal, then the random
variable:

Xyv1 — X

syl + 1/n

has a Student’s t-distribution with (n — 1) df. Thus, the
appropriate (1 — «) 100% reference interval is equal to:

Tt (1—a/2)s\1+1/n 2)

where t, _ (1 — «/2) is the appropriate quantile from a
Student’s t-distribution with (n — 1) df.

Clearly, for large samples the reference intervals de-
fined in Egs. 1 and 2 are approximately equal. The 90-95%
reference intervals defined by Eq. 2 are ~8% wider than
those defined by Eq. 1 for n = 20 and only ~1% wider for
n = 100. However, we will use the reference interval
defined by Eq. 1 on the transformed data, even for small
samples, because it is more prevalent in the clinical
chemistry literature. We did examine the reference inter-
val based on Eq. 2, as well as the interval based on the
uniform minimum variance unbiased estimators of the
quantiles. Neither of these performed well enough to
replace the interval defined by Eq. 1 for this study.

ROBUST PREDICTION INTERVALS AND

QUANTILE ESTIMATORS

As noted in the previous section, the (1 — «) 100%
prediction interval for the next observation, X, , ; given
an observed random sample X; = xy,... ,X, = x, has the
form given by Eq. 2. Horn [7] pointed out that Eq. 2 can be
written as:

X+t (1 — a/2)s*+s*/n (3)

In this way, the two components on variation are s>, the
variance of the unknown observation X, , ,, and s*/#, the
variance of %, the estimated center of the interval.

Horn [7] proposed a prediction interval replacing the
three estimates, ¥, s%, and s%/n, by robust estimates of
location and scale. Specifically, the (1 — «) 100% biweight
prediction interval for symmetric populations is defined
as follows:

Tyler) = tyo(1 = a/2) [S3e) +si(e)]? (4)

where Ty(c;) is the biweight location estimator with
tuning constant ¢;, S7(c,) is the biweight estimator of the
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variability of T},(c;), and s(c,) is the biweight estimator of
spread with tuning constant c, [8]. Briefly, T, is the
solution to the equation:

> Ylu) =0 (5)

i=1
where

_ fu(1 = u?), for lul <1
Plu) = 0, elsewhere

(x; — Ty)

u; =
C*S*

s# = estimate of spread
¢ = tuning constant

The term s(u) may be rewritten as ys(u) = u * w(u), where
w(-) is a weight function. Making this substitution in Eq. 5
and solving yields T,; = Z;[x; w(u;)]/Zw(u;). Thus, Ty; is a
weighted mean with weights that decrease as u; goes from
0 to *1; equivalently, as an observation x; goes from the
center T;; to T,; £ ¢ - s*, its weight decreases. If an
observation is more than c - s* from the center T, it gets
weight zero. For example, if ¢ = 6 and s* = s, the sample
SD, then observations >6 SD from the center get weight
Zero.

Equation 5 defines a class of different estimators; each
estimator is the solution based on a specific ¢ function.
For example, if (u) = u, all observations get equal
weight, and the solution is T = x. However, in the case of
biweight (), the solution T,; is computed iteratively,
starting with the sample median. The iteration is neces-
sary because T, is a weighted mean with weights that
depend on (a previously computed) T;.

A popular class of estimators of spread is based on
variance estimates of robust estimators of location. For
estimators based on Eq. 5, the asymptotic variance is
simply E(y?)/[E(')]?, where E(-) denotes mathematical
expectation. The variance estimate, Sj, simply replaces
mathematical expectation with empirical averaging. For
the biweight  function, we use S7(c) to denote this
estimate of Var[T,(c)] based on the tuning constant, c.
Because this variance estimate is essentially a standard
error squared, it goes to 0 by order n. Thus, a reasonable
estimate of spread is S(c) = \m times the square root of
variance estimate of T};(c).

The actual value used for s,; in the iteration of T,; is
slightly different from that given above. We follow the
modified formula given by Kafadar [8]. Specifically, s, is
computed by using the biweight function, y«-), but with
the sample median used for location and MAD/0.6745
(the median absolute deviation about the median) used as
an estimate for scale. (The factor of 0.6745 is included so
that MAD/0.6745 is consistent for o in the gaussian case.)
The s,; used in Eq. 4 is computed in the same manner; the
only difference is the value of the tuning constant. For

details, see Horn [7] and Kafadar [8]. Simple SAS code,
which can be modified for most languages, is included in
the Appendix to this report.

The tuning constant ¢, is set equal to 3.7, which means
that, for the purposes of location estimation, observations
are down-weighted (smoothly) the further they lie from
the center (i.e., the current value of T,; in the iteration
procedure). Any observations that are more than ~3.7 SD
from the center get zero weight. The tuning constant c,, on
the other hand, is a function of the value of the prediction
interval (1 — «). Specifically, ¢, = [0.58173 — 0.607227(1 —
)] ! for 0.05 =< a = 0.5. Thus, for 90% reference intervals,
a = 0.10 and ¢, = 28.4, and for 95% reference intervals, a
= 0.10 and ¢, = 2054 [7].

We intend to examine the performance of this robust
prediction interval after the Box—Cox transformation to
symmetry. Because it was designed to accommodate
possibly heavy-tailed distributions, the power transform
to remove any residual kurtosis is not required.

Another candidate for a robust reference interval uses
the robust quantile estimator for skewed populations as
its upper endpoint [9]. This quantile estimator is based on
the robust prediction described above. The idea is to
examine only data points greater than the sample median.
Then a symmetric pseudo-sample is created by including
all data points greater than the sample median and their
pseudo-values that are equidistant less than the median.
For example, if n = 20, and the data are ordered x; < ...
< X0, then the median, M = (x;5 + x11)/2 and the
symmetric pseudo-sample, is:

2M — x00 < 2M — X190 <...<2M — x4
(=x10)<x11<...<x20

From this sample, the appropriate symmetric prediction
interval is computed as before, and the upper endpoint is
used as the upper limit (quantile) on the reference inter-
val. See Horn [9] for details.

The analogous lower robust quantile is not used,
because in most cases the underlying populations are
positively skewed, and thus the median will be greater
than the mode. Reflected pseudo-samples in these cases,
although symmetric, will be indicative of underlying
bimodal populations [9]. Thus, for the lower endpoint, we
will use the nonparametric estimator (Harrel and Davis)
because it also does not require transformation of the
data.

SIMULATION AND ASSESSMENT

To evaluate the four reference interval procedures (non-
parametric, transformed, robust with nonparametric
lower limit, and transformed robust), a simulation study
was run. Random samples of size 20, 40, 60, 80, 100, and
120 were generated from each of four x* distributions
with df 1, 4, 7, and 10, respectively. The usual measure of
performance is the root mean square error (RMSE) for
each of the endpoints that constitute the reference inter-
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val. Specifically, the RMSE of the upper endpoints of a
particular (1 — ) 100% reference interval, for example, is
as follows:

RMSE = {E[F"'(1—a/2) — F'(1 — a/2)]}}"/?

where F7}(1 — a/2) is the estimate of the true endpoint
(quantile) F~'(1 — «/2). This value is estimated via
simulation by:

1/2

1 3.
N 2F M -a/2)=F 1~ a/2)F

i=1

where F;' (1 — «/2) is the endpoint of the reference
range derived from the i random sample, and N is the
number of random samples in the simulation; here N =
1000.

The RMSEs of the lower and upper endpoints of 90%
and 95% reference intervals are given in Tables 1 and 2,
respectively. For the upper endpoint of 90% reference
intervals, the robust quantile estimator (untransformed)
achieves the smallest RMSE, especially for smaller sample
sizes and the more skewed populations (fewer df). How-
ever, it is essentially equal in performance to the trans-

formed traditional procedure for n = 40. For the lower
endpoint, the RMSEs of the two transformed procedures
(traditional and robust) are about equal and slightly better
than the RMSE of the nonparametric, which is also used
by the untransformed robust procedure. For 95% refer-
ence intervals, however, the robust procedure is clearly
best, especially for the smaller sample sizes (n = 40).
For the larger sample sizes, the transformed pro-
cedures again are about equal, with the robust slightly
better for the more skewed populations and the tradi-
tional (normal theory) procedure slightly better for the
more symmetric populations (more df). For the lower
endpoints, the transformed procedures again are about
equal and only slightly (5-10%) better than the nonpara-
metric procedure.

Traditionally, assessment of reference interval limits
has focused on the RMSE of the interval endpoints as
described above. This certainly makes sense if the interval
endpoints are used as targets for treatment. For example,
suppose the endpoint of the 95% reference interval for
creatine kinase for middle-aged women is 192 U/L, as
derived by a particular laboratory. Physicians who use
this laboratory may evaluate their patients who have

Table 1. RMSE of 90% reference interval endpoints.

Nonparametric Robust Transformed Transformed robust
Sample
size Lower Upper Lower Upper Lower Upper Lower Upper
X2 with 1 df
20 0.024 1.721 0.024 1.393 0.020 1.766 0.015 2.922
40 0.012 1.140 0.012 0.877 0.009 0.996 0.007 0.967
60 0.007 0.986 0.007 0.778 0.006 0.892 0.005 0.815
80 0.006 0.832 0.006 0.669 0.005 0.815 0.005 0.690
100 0.004 0.729 0.004 0.604 0.004 0.723 0.004 0.617
120 0.004 0.659 0.004 0.549 0.004 0.660 0.004 0.565
X2 with 4 df
20 0.379 2.188 0.379 1.938 0.391 1.987 0.353 2.800
40 0.238 1.701 0.238 1.393 0.247 1.366 0.243 1.531
60 0.192 1.311 0.192 1.112 0.194 1.104 0.196 1.161
80 0.172 1.197 0.172 1.014 0.168 0.987 0.170 1.028
100 0.153 1.002 0.153 0.827 0.147 0.851 0.152 0.820
120 0.140 0.968 0.140 0.827 0.132 0.809 0.136 0.791
X2 with 7 df
20 0.696 2.685 0.696 2.414 0.696 2.351 0.667 3.070
40 0.468 2.022 0.468 1.690 0.476 1.682 0.459 1.987
60 0.398 1.568 0.398 1.342 0.389 1.339 0.378 1.450
80 0.338 1.329 0.338 1.136 0.324 1.116 0.322 1.155
100 0.316 1.271 0.316 1.087 0.293 1.079 0.295 1.092
120 0.275 1.103 0.275 0.944 0.253 0.955 0.256 0.954
X2 with 10 df
20 0.970 2.783 0.970 2.517 0.963 2.409 0.929 3.061
40 0.679 2.180 0.679 1.828 0.663 1.795 0.647 2.009
60 0.552 1.780 0.552 1.523 0.519 1.532 0.517 1.606
80 0.484 1.512 0.484 1.302 0.452 1.267 0.455 1.324
100 0.430 1.390 0.430 1.206 0.384 1.184 0.387 1.229
120 0.406 1.202 0.406 1.012 0.363 1.007 0.361 1.022
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Table 2. RMSE of 95% reference interval endpoints.

Nonparametric Robust Transformed Transformed robust
Sample
size Lower Upper Lower Upper Lower Upper Lower Upper
X2 with 1 df
20 0.017 2.075 0.017 1.802 0.013 3.615 0.011 8.961
40 0.006 1.605 0.006 1.192 0.005 1.537 0.004 1.609
60 0.004 1.462 0.004 1.078 0.003 1.355 0.003 1.282
80 0.003 1.281 0.003 0.944 0.002 1.199 0.002 0.971
100 0.002 1.124 0.002 0.887 0.002 1.081 0.002 0.883
120 0.002 1.022 0.002 0.825 0.002 1.009 0.002 0.830
X2 with 4 df
20 0.435 2.637 0.435 2.315 0.396 2.895 0.347 5.366
40 0.231 2.276 0.231 1.703 0.240 1.878 0.235 2.304
60 0.177 1.891 0.177 1.385 0.186 1.508 0.189 1.662
80 0.150 1.777 0.150 1.268 0.158 1.368 0.163 1.457
100 0.136 1.393 0.136 1.082 0.140 1.118 0.148 1.105
120 0.128 1.377 0.128 1.075 0.130 1.100 0.137 1.069
X2 with 7 df
20 0.821 3.243 0.821 2.880 0.755 3.248 0.734 5.184
40 0.516 2.640 0.516 2.008 0.510 2.322 0.491 2.993
60 0.420 2.292 0.420 1.638 0.418 1.839 0.402 2.060
80 0.343 1.951 0.343 1.394 0.338 1.503 0.336 1.595
100 0.321 1.764 0.321 1.347 0.308 1.423 0.311 1.471
120 0.278 1.564 0.278 1.204 0.267 1.290 0.272 1.311
X2 with 10 df
20 1.169 3.403 1.169 2.989 1.059 3.231 1.041 5.070
40 0.754 2.827 0.754 2.178 0.727 2.402 0.711 2.926
60 0.599 2.527 0.599 1.852 0.571 2.047 0.571 2.219
80 0.514 2.187 0.514 1.562 0.489 1.693 0.494 1.800
100 0.465 1.963 0.465 1.466 0.426 1.580 0.429 1.679
120 0.437 1.646 0.437 1.270 0.402 1.339 0.398 1.380

concentrations in excess of this value to determine the
cause. In this case, clearly, the value of the endpoint of the
reference interval itself is vital, and its accuracy (RMSE) is
vital for assessment of a procedure.

On the other hand, the reference interval is designed to
include (or exclude) a specified percentage of the under-
lying population. It could be argued that, in fact, it is this
percentage that should be evaluated. Specifically, we will
now consider the RMSE of the percentage as estimated by
the lower and upper endpoints of the reference interval.
Here, the RMSE of the upper probabilities, for example, is
as follows:

RMSE of probability

= (B{FIF(1 - a/2)] = (1 = a/2)P)"?
which is estimated from the simulation by:
1/2

18
N2AFE (1 - a/2)] = (1= a/2F|

i=1

where F[E;'(1 — «/2)] is the actual (unknown, in practice)
proportion of the population less than the upper limit of the
reference interval from the i simulated random sample.

The RMSE for the lower and upper probabilities of 90%
and 95% reference interval limits are not presented here
because all procedures achieved roughly the same RMSE,
although that of the robust upper probability limit was
slightly smaller for n = 20. One particularly interesting fact
is that the transformed robust procedure, which appeared to
perform poorly (especially for small samples) as an upper
endpoint estimator, should do so well in terms of the RMSE
of the probability. This phenomenon may be explained by
the first few terms of the Taylor expansion of the mean
square error (MSE) of the probability. Specifically, if we
expand MSE {F[F!(p)]} (p = 1 — /2 for brevity) about the
true quantile ', we get the following:

E{F[F " Y(p)] — p}* = E[F ~'(p) — F " Yp)P- fIF Up)]
+E[E~Y(p) —F Y(p)P-fIF Yp)]-fIF '(p)]

where f(-) = F'(:), the underlying population density.

If we examine only the first (nonzero) term of the Taylor
expansion, we see that the MSE (and thus the RMSE) for the
probability is proportional to that of its corresponding
endpoint. However, the second term shows that the upper
limit estimators, which are positively skewed with respect to
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the true quantile, will benefit in terms of MSE for the
probability. This is because, in general, f'[F~'(p)] < 0 for
the upper limits. (These results are not surprising because
the probability contained between an upper quantile and
a one-unit shift to the right is less than that of a one-unit shift
to the left.)

Although rewarding upper limits that tend to be
skewed toward larger values may be the conservative
thing to do statistically (e.g., if we state “p% < x”, we want
at least p%), it could be disastrous in the context of a
medical reference interval, where large values of the
analyte in question are indicative of a possibly adverse
health condition. To equalize the MSE loss, we introduce
a factor to be multiplied by the difference {F [F7'1 — a/2)]
— (1 — «/2)} before squaring for those samples where
[F,7'1 — a/2)] >1 — a/2. We will use as this factor the
ratio of probabilities to the left and right of the upper
quantile. Thus, for the upper limit, this factor on the true
difference in probabilities will be (1 — «/2)/(a/2), when
the probability contained by the upper limit of the refer-
ence interval exceeds the nominal, target value. The same
factor is used for lower limits when their true probabilities
are less than the target value.

The weighted RMSEs of the probabilities for 90%
reference intervals, where the above factors premultiply
the differences before the squaring operation, are pre-
sented in Table 3. Essentially, all of the procedures are
equivalent, with a slight edge going to the robust ap-
proach for the most skewed population and to the trans-
formed traditional approach for the others. One fact to
note is that the transformed robust is worst for n = 20, as
it was for the interval endpoints. The results for 95%
reference intervals are provided in Table 4. In this situa-
tion, however, the robust procedure for the upper limit is
clearly superior in every case. Of particular interest is that
the robust method does very well compared with the
other methods for larger sample sizes. This indicates that
the robust upper limit is a reasonable procedure for large
as well as small samples.

EXAMPLES

As a first example, we examine the haptoglobin data as
given in Harris and Boyd [3]. For these 100 values, the
95% reference intervals (i.e., the 2.5 and 97.5 percentiles)

Table 3. Weighted RMSE of 90% reference interval: upper and lower probabilities.

Nonparametric Robust Transformed Transformed robust
Sample
Size Lower Upper Lower Upper Lower Upper Lower Upper
X2 with 1 df
20 0.137 0.385 0.137 0.328 0.342 0.335 0.378 0.411
40 0.149 0.346 0.149 0.239 0.376 0.246 0.420 0.244
60 0.147 0.305 0.147 0.221 0.347 0.232 0.399 0.202
80 0.150 0.279 0.150 0.203 0.295 0.247 0.344 0.192
100 0.150 0.247 0.150 0.182 0.257 0.226 0.308 0.169
120 0.144 0.230 0.144 0.172 0.190 0.220 0.237 0.167
X2 with 4 df
20 0.283 0.371 0.283 0.349 0.273 0.327 0.378 0.446
40 0.277 0.350 0.277 0.275 0.252 0.251 0.330 0.313
60 0.253 0.298 0.253 0.232 0.231 0.209 0.293 0.250
80 0.224 0.279 0.224 0.223 0.204 0.196 0.258 0.225
100 0.210 0.237 0.210 0.180 0.193 0.162 0.243 0.176
120 0.194 0.234 0.194 0.186 0.178 0.158 0.225 0.170
X2 with 7 df
20 0.322 0.370 0.322 0.362 0.279 0.325 0.384 0.444
40 0.283 0.352 0.283 0.290 0.224 0.272 0.285 0.342
60 0.246 0.302 0.246 0.241 0.197 0.224 0.243 0.274
80 0.227 0.266 0.227 0.213 0.189 0.195 0.229 0.229
100 0.223 0.251 0.223 0.203 0.183 0.187 0.218 0.211
120 0.195 0.228 0.195 0.180 0.162 0.167 0.195 0.186
X2 with 10 df
20 0.325 0.363 0.325 0.360 0.285 0.303 0.377 0.432
40 0.302 0.345 0.302 0.280 0.236 0.254 0.289 0.320
60 0.265 0.291 0.265 0.235 0.205 0.219 0.248 0.260
80 0.243 0.271 0.243 0.222 0.188 0.203 0.226 0.237
100 0.215 0.251 0.215 0.207 0.167 0.192 0.199 0.220
120 0.206 0.219 0.206 0.170 0.159 0.156 0.186 0.182
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Table 4. Weighted RMSE of 95% reference interval: upper and lower probabilities

Nonparametric Robust Transformed Transformed robust
Sample
size Lower Upper Lower Upper Lower Upper Lower Upper
X2 with 1 df
20 0.270 0.963 0.270 0.925 0.886 1.100 0.914 1.340
40 0.353 1.084 0.353 0.633 1.002 0.934 0.895 0.813
60 0.377 1.087 0.377 0.568 0.979 0.920 0.866 0.644
80 0.420 1.069 0.420 0.496 0.831 0.958 0.827 0.532
100 0.440 0.979 0.440 0.436 0.770 0.911 0.651 0.439
120 0.440 0.924 0.440 0.387 0.671 0.888 0.634 0.395
X2 with 4 df
20 0.760 0.923 0.760 1.042 0.974 1.144 1.443 1.592
40 0.894 1.082 0.894 0.784 0.962 0.889 1.321 1.171
60 0.868 1.071 0.868 0.631 0.912 0.749 1.200 0.952
80 0.796 1.079 0.796 0.602 0.844 0.724 1.099 0.849
100 0.768 0.926 0.768 0.454 0.823 0.568 1.062 0.666
120 0.727 0.921 0.727 0.475 0.783 0.583 1.003 0.644
X2 with 7 df
20 0.857 0.933 0.857 1.113 0.990 1.125 1.453 1.585
40 0.906 1.105 0.906 0.863 0.825 0.971 1.118 1.261
60 0.889 1.088 0.889 0.700 0.753 0.828 0.973 1.044
80 0.855 1.035 0.855 0.593 0.724 0.721 0.919 0.884
100 0.849 0.966 0.849 0.556 0.723 0.678 0.895 0.799
120 0.750 0.896 0.750 0.482 0.642 0.630 0.805 0.728
X2 with 10 df
20 0.872 0.894 0.872 1.124 0.971 1.055 1.391 1.577
40 0.956 1.083 0.956 0.848 0.841 0.916 1.106 1.203
60 0.964 1.064 0.964 0.694 0.776 0.799 0.987 0.980
80 0.913 1.065 0.913 0.645 0.720 0.760 0.903 0.905
100 0.843 0.981 0.843 0.592 0.656 0.714 0.813 0.847
120 0.797 0.872 0.797 0.456 0.627 0.601 0.755 0.723

were computed. For each point estimator of a percentile,
a 90% confidence interval is provided. The confidence
interval for the transformed procedure made use of the
formula, (percentile estimate) *ugy . p),H[(2 + a -
a)s2/2N]"?, where s, is the sample SD of the transformed
data, N is the sample size, a defines the quantiles of
interest, and B defines the confidence level of the interval
for each of the point estimators [10]. In our case, a = 0.025
and B = 0.90.

The confidence intervals for the other methods were
derived by using the bootstrap methodology [2]. Here, 200
samples were drawn with replacement (i.e., resampled from
the observed data), yielding 200 reference intervals for each
methodology. From these values, the observed 5th and 95th
quantiles were used as a 90% confidence interval.

The results for the haptoglobin data are given in the
top of Table 5. All of the methods are reasonably consis-
tent. The transformed methods have a lower quantile
estimator about two units larger than that of the nonpara-
metric. The confidence interval for the upper endpoint
based on the bootstrapped robust method is ~1% tighter
than that based on the transformation approach.

As a second example, we compute similar statistics for
blood glucose concentrations (mmol/L) in samples ob-
tained in our laboratory from 46 men, =80 years of age.
The data are as follows:

3.520 3.905 4.070 4.070 4.290 4.345 4.400 4.455 4.565

4.620 4.620 4.675 4.840 4.840 4.895 4.895 4.950 4.950

5.115 5.115 5.225 5.225 5.225 5.335 5.335 5.390 5.390

5.390 5.455 5.555 5.610 5.665 5.720 5.775 5.830 5.830

5.885 5.885 6.215 7.095 7.205 8.140 9.900 10.890 11.605
12.045

The results are given in the bottom of Table 5. We note
that, in this case, no suitable transformation to normality
was found; therefore, only the nonparametric and robust
procedures appear. From Table 5, we see again that the
upper quantile estimator provided by the robust proce-
dure is tighter than that of the nonparametric. Note
that the confidence intervals of both upper quantile esti-
mators lie entirely in the range defined as diabetic
(>7.7 mmol/L or 14 g/L) by the American Diabetic
Association [11].
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Table 5. 95% reference interval endpoints (with 90%
confidence intervals).

comprise 5% of the sample, and they are derived by
multiplying a valid observation by a factor of 5. Except for
a few isolated cases, the robust methods are best with

An.alyte_ rower endpoint Hpper endpoint respect to RMSE for the upper interval endpoint; the
Haptoglobin (n = 100) t R
Nonparametric 23.3(17.0-33.9) 194.6 (178.1-214.1) transformed robust“rnethod is sh’ightly better.for n = 60.
Robust 23.3(17.0-33.9) 190.5 (173.1-206.8) All of the methods “broke down”, however, in the sense
Transformed 25.8 (19.6-32.9) 191.1 (174.5-208.4) that their RMSEs were at least an order of magnitude
( )

Transformed robust 25.1 (18.4-34.2) 192.6
Glucose (n = 46)

Nonparametric 3.7 (3.5-4.2) 11.6 (9.2-12.0)

Robust 3.7 (3.5-4.2) 9.7 (7.7-11.0)

175.6-210.4

OUTLYING OBSERVATIONS

Until now, we have assumed that all of the data come
from a homogeneous population and that any large
aberrant values are also part of that population. However,
in practice, real data are subject to contamination from a
variety of sources, such as human error or the presence of
disease in an individual. Simulation results for the upper
limit of 90% and 95% reference intervals in the presence of
outliers are given in Table 6. In this case, the outliers

larger than those with uncontaminated data (Tables 1 and
2). Nevertheless, the robust methods were more resistant.
(Note that, although the RMSEs generally decrease as the
sample size increases, the decrease is not exactly mono-
tone, as was the case without outliers. This is because the
contamination of the samples introduced more noise to
the simulation.)

The use of outlier detection is not routinely recom-
mended for reference interval analysis because large
values from a skewed population may be mislabeled as
outliers [11]. However, for completeness, Table 7 presents
results based on the same data as Table 6 but with a
simple outlier detection method on the original data; any
value >3.5 SD away from the mean is ignored. One thing
is clear from Table 7—the drastic improvement of all the

Table 6. RMSE of upper 90% and 95% reference interval endpoints: 5% outliers (X 5).

Nonparametric Robust Transformed Transformed robust
Sample
size 90% 95% 90% 95% 90% 95% 90% 95%
X2 with 1 df
20 4.298 5.281 2.178 4.004 3.697 7.089 5.012 17.144
40 3.038 5.378 1.616 3.166 1.996 3.839 1.967 4.178
60 2.230 5.346 1.449 3.228 1.805 4.091 1.553 3.191
80 1.760 4.567 1.336 2.994 1.547 3.870 1.290 2.800
100 1.480 3.950 1.225 2.915 1.367 3.412 1.162 2.481
120 1.354 3.480 1.178 2.810 1.308 3.125 1.149 2.475
X2 with 4 df
20 10.976 13.775 6.042 10.527 6.631 11.878 8.379 23.683
40 8.429 15.006 5.181 9.148 5.432 10.018 5.384 10.276
60 6.660 14.571 4.940 8.793 4.903 9.561 4.707 8.470
80 5.563 13.332 4.822 8.476 4.572 9.147 4.452 7077
100 4.669 12.110 4.603 8.087 4.161 8.647 4.140 7.282
120 4.507 11.659 4.664 8.254 4.137 8.767 4.101 7.445
X2 with 7 df
20 18.562 23.619 10.299 18.049 10.886 18.660 11.751 27.552
40 14.899 25.195 9.101 15.709 9.453 16.879 9.024 16.930
60 11.515 23.994 8.287 14.589 8.487 17.000 7.911 14.523
80 10.000 22.833 8.195 14.258 8.156 17.164 7.621 13.767
100 9.090 21.863 8.109 14.092 7.930 17.214 7.453 13.365
120 8.500 21.188 8.076 13.984 7.664 17.240 7.377 13.285
X2 with 10 df
20 24.180 30.996 13.155 23.549 13.146 22.134 13.644 28.918
40 20.855 34.828 11.933 21.821 13.088 23.299 11.167 21.467
60 16.874 33.509 11.190 20.413 12.323 24.183 10.269 19.339
80 15.465 33.646 11.620 20.822 12.540 25.847 10.639 19.645
100 13.722 31.621 11.328 20.180 11.762 25.456 10.336 19.056

120 12.627 30.379 11.003 19.650 11.243 25.345 10.121 18.577
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Table 7. RMSE of upper 90% and 95% reference interval endpoints: 5% outliers (X 5)—with outlier detection.

Nonparametric Robust Transformed Transformed robust
Sample
size 90% 95% 90% 95% 90% 95% 90% 95%
X2 with 1 df
20 1.780 2.083 1.600 1.985 2.006 4.116 3.581 11.169
40 1.212 1.687 0.980 1.411 1.059 1.577 1.014 1.667
60 1.063 1.461 0.856 1.222 0.980 1.388 0.841 1.263
80 0.903 1.252 0.726 1.064 0.880 1.191 0.729 1.069
100 0.833 1.193 0.683 1.018 0.818 1.146 0.674 0.997
120 0.746 1.100 0.608 0.930 0.752 1.096 0.613 0.908
X2 with 4 df
20 3.474 3.758 2.969 3.490 3.031 4.650 4.506 8.893
40 2.909 4.116 2.127 2.518 2.080 3.141 2.549 4.187
60 2.525 4.245 1.940 2.324 1.891 2.989 2.152 3.367
80 2.282 3.990 1.862 2.142 1.752 2.711 1.936 2.921
100 1.999 3.648 1.709 1.936 1.638 2.521 1.792 2.701
120 2.065 3.857 1.840 2.099 1.741 2.933 1.860 2.772
X2 with 7 df
20 4.702 5.247 3.889 4.684 3.767 5.554 5.166 9.036
40 4.800 7.918 3.488 4.518 3.503 5.823 4.129 6.840
60 3.987 7.456 3.247 4.048 3.110 5.144 3.496 5.539
80 3.605 7.312 3.206 3.992 3.040 5.292 3.328 5.181
100 3.397 7.285 3.270 4.052 3.000 5.371 3.200 4.844
120 3.030 6.668 3.087 3.760 2.805 4.968 3.028 4.632
X2 with 10 df
20 5.554 6.282 4.531 5.473 4.253 6.308 5.811 9.921
40 6.503 11.826 4.666 6.588 4.658 8.269 5.116 8.538
60 5.464 11.268 4.584 6.195 4.385 8.087 4.768 7.687
80 4.933 11.123 4.707 6.247 4.417 8.514 4.810 7.576
100 4.497 10.649 4.652 6.053 4.175 8.001 4.580 7.099
120 4.003 10.053 4.420 5.768 3.959 8.089 4.402 6.798

methods. Nevertheless, the robust method maintains its
superiority in virtually every situation.

Although not presented here, results for the weighted
RMSE of the upper probabilities do not contradict the
above results. Without outlier detection, all methods are
essentially the same, with the robust method having a
slight advantage for the most skewed population. With
outlier detection, all methods improve, but the robust
method becomes clearly the best in every situation.

Discussion
The need to derive reference ranges from samples where
the number of observed data values is small, for example,
20 = n = 60, clearly exists. We show by the simulation
study presented here that the RMSE calculated by the
robust quantile estimator was the smallest for upper
endpoints calculated on small sample sizes. However,
when evaluating the upper and lower probabilities for the
90% and 95% reference intervals, we showed that the
losses in over- vs underestimating should not be treated
symmetrically. To equalize the MSE loss, a weighting
factor was introduced. In this case, the robust statistic was
superior for estimating the upper limit of the 95% refer-

ence interval and about equal to the transformed tradi-
tional interval for estimating the 90% reference interval.
When real serum haptoglobin data were examined in this
fashion, the robust estimator of the 97.5 percentile limit
was smaller than that of the nonparametric estimator and
comparable with the estimator based on transformation.
A second example, using glucose data from 46 elderly
men, showed a similar result. Thus, it is reasonable to
propose that robust estimators can provide relevant ref-
erence intervals when only small numbers of samples are
available. Furthermore, if it is suspected that outliers may
exist, then the robust method should do as well as, if not
better than, other methods, whether or not outlier detec-
tion is used. However, because none of the procedures
did particularly well when confronted with severe con-
tamination, we cannot overstate the importance of ensur-
ing the quality of the data and the data collection process
when determining reference intervals.

In summation, we recommend that nonparametric, ro-
bust, and normal theory (on transformed data) reference
intervals be computed in practice. If the methods are in
agreement, then any one will do reasonably well for
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reporting purposes. However, if the methods disagree,
then we believe that the tightest interval should be used.
The reason we recommend this is that, given the choice
between reasonable, though disparate, reference intervals,
we would prefer to err on the side of more false positives,
rather than false negatives, thus forcing the clinician to
further evaluate the patient. Finally, if the sample size is
so small that it precludes reasonable nonparametric con-
fidence intervals for the limits, or if a suitable transforma-
tion to achieve normality is not possible, then the pro-
posed robust method should be used, at least for the
upper endpoint of the reference interval.

Appendix
**** The ordered data are in the ARRAY Y; the sample
size, N, is even. (Minor modifications are necessary for
when N is odd.)

M=N/2;

M1=M+1;

C=3.7,;

MEDIAN=(Y(M)+Y(M1))/2;

IF MOD(M,2)=0 THEN MAD=((YM+M/2)+YM+1+
M/2))/2)-MEDIAN; ELSE MAD=YM+M+1)/2-
MEDIAN; MAD=MAD/ .6745;

S=MAD;

S51=0; S2=0;

DO J=M1 TO N;

U2=((Y(J)-MEDIAN)/ (C*S))**2;

IF U2<1 THEN DO;

S1=51+2*U2*((1-U2)**4);
S2=52+2*(1-U2)*(1-5*U2); END;

END;

S3=52-1; IF S3<1 THEN S3=1;

IF S2>00001 THEN S=C*S*SQRT((N*S1)/(S2*S3));

SBI=S; S1=0; 52=0;

DO J=M1 TO N;

U2=((Y(J)-MEDIAN)/ (C*SBI))**2;

IF U2<1 THEN DO;

S1=S1+2*U2*((1-U2)**4);

S52=582+2*(1-U2)*(1-5*U2);
END;
END;
S3=52-1; IF S3<1 THEN S3=1;
IF S2>00001 THEN S=C*S*SQRT(S1/(S2*S3));
ST2=5**2;
S=MAD;
S1=0; S2=0;
C=28.4; *** C=205.4 for 95% reference intervals;
DO J=M1 TO N;
U2=((Y(J)-MEDIAN)/(C*S))**2;
IF U2<1 THEN DO;
S1=S1+2*U2((1-U2)**4);
52=52+2*(1-U2)*(1-5*U2); END;
END;
S3=52-1; IF S3<1 THEN S3=1;
IF S2>00001 THEN S=C*S*SQRT((N*S1)/(52*S3));
SBI2=5**2;
rob95=MEDIAN+TINV(.95,(N-1))*SQRT(ST2+SBI2);
*** TINV(.975,(N-1)) for 95% reference intervals;
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