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Abstract—Many inference problems that arise in sensor networks probabilistic inference problems (e.g., sensor calibration and target
require the computation of a global conclusion that is consistent with tracking), regression (e.g., data modeling and contour finding), and
local information known to each node. A large class of these problems—  iimization (e.g., actuator control, decision-making and pattern
including probabilistic inference, regression, and control problems—can e h f th hi . ful d
be solved by message passing on a data structure called janction classification). At the core of the architecture is a powerful data
tree In this paper, we present a distributed architecture for solving structure called gunction tree which allows all of these inference
these problems that is robust to unreliable communication and node problems to be solved by simple message passing algorithms [7].

failures. In t}his arg:hite_cture, the nodes of the sensor network asse_mble Recently, there have been some proposals to use existing central-
themselves into a junction tree and exchange messages between neighbors d inf lqorith - twork belief propaca-
to solve the inference problem efficiently and exactly. A key part of Ized interence algorithms In sensor networks, e.g., beliet propag

the architecture is an efficient distributed algorithm for optimizing the ~ tion [8], [9] and particle filtering [10]. However, these inference
choice of junction tree to minimize the communication and computation approaches are not as general as ours, and more importantly, they do

required by inference. We present experimental results from a prototype not fully address the practical issues that arise in real deployments:

implementation on a 97-node Mica2 mote network, as well as simulation o . . . g
results for three applications: distributed sensor calibration, optimal communication over wireless networks is unreliable due to noise and

control, and sensor field modeling. These experiments demonstrate that Packet collisions; the wireless network topology changes over time;_
our distributed architecture can solve many important inference problems and, nodes can fail for a number of reasons, often because their

exactly, efficiently, and robustly. batteries die. To address these challenges, we have found that it is
insufficient to implement existing algorithms on the sensor network
architecture; fundamentally new algorithms are required.
Sensor networks consist of nodes that can measure characteristic address these robustness issues we propose a novel architecture
of their local environment, perform computations, and commung¢onsisting of three layersspanning tree formatignjunction tree
cate with each other over a wireless network. In recent yeafsrmation and message passinghe nodes of the sensor network
advancements in hardware and low-level software have led to vialfiest organize themselves into a spanning tree so that neighbors have
multi-hundred node sensor networks that can instrument unstructubggh-quality wireless connections. Using pairwise communication
environments at an unprecedented scale. For example, the Mig@dween neighbors in this tree, the nodes compute the information
“mote” can measure temperature, humidity, pressure, visible andcessary to transform the spanning tree into a junction tree for the
infrared light, sound, magnetic fields, and acceleration. The masference problem. In addition, these two algorithms jointly optimize
popular application of sensor networks to date has been environmgte junction tree to minimize the computation and communication
tal monitoring. In these deployments the sensor data is downloadeduired by inference. Finally, the inference problem is solved exactly
from the network for later analysis [1] or the network aggregatesa message passing on the junction tree. These three algorithms
the measurements using simple local operations that compute, daickly recover from communication and node failures by reacting
example, averages, maxima, or histograms [2], [3]. to changes in each others’ states. We demonstrate the viability of
More advanced applications, such as tracking and actuation, requite architecture with experiments on a sensor network of 97 Mica2
sensor networks that can solve significantly more complex problemmstes, and we illustrate its generality with simulation experiments
like sensor fusion, data modeling, prediction, and optimal contran three different inference tasks using data from a real sensor
Solving these inference problems requires combining all of the nodegtwork deployment. An extended version of this paper presents
local measurements to generate a globally consistent view of thdditional background, details, and experiments [11]. For further
environment, or in the case of actuation, coherent controls to charigail on the application of our architecture to probabilistic inference
it. For example, a node with a temperature sensor can measure Gy regression problems, see [12], [13].
the temperature at its location; if the node’s sensor is biased, it )
is impossible to infer the true temperature from the measuremefit. Inference problems in sensor networks
However, by combining this local information with the measurements Our architecture is useful for solving a wide variety of inference
of the other sensors, the network can solve a global inference problproblems that arise in sensor networks. Below we describe three
that automatically calibrates the temperature sensors at all nodesexamples to give a sense of the range of problems addressed. See
Most existing inference algorithms for sensor networks focus di] for more examples.
solving specific tasks such as computing contour levels of sensoPerhaps the most intuitive exampleaptimal control, where the
values [4], distributed sensor calibration [5], or target tracking [6]. Inodes can control their environment to achieve some end. Consider a
this paper, we present the first general architecture for inferencegireenhouse deployment where nodes actuate the blinds to achieve
sensor networks that can solve a wide range of problems includisigecific desired light levels at different locations. The light level

I. INTRODUCTION



measured by each node will depend on the states of nearby blinds,
and nearby nodes may have conflicting desires. To achieve the setting
of the blinds that are best for all of the nodes, we can specify
for each node aeward functionthat specifies its local utility for

a setting of the blinds given its current light measurement. For
example, if the light location for nodedepends upon blinds 1 and

2 thenQ;(a1, a2; ;) is a local reward function that depends upon
its current light measurememt; and the controls, a2 applied to
nearby blinds (e.g., open or close). Because each blind may affect
the light level at several nodes, these reward functions may represent
conflicting interests. To balance the nodes’ competing desires, we

can select the controls that maximize the sum of all nodes’ rewagg) 1. The temperature measurements from a sensor network deployed in

Temperature (C)

functions: the Intel Berkeley lab and a regressed function.
n
a" = argmax Y _ Qi(a; ;) @) V,.V,Ve V,.V,,Ve V,,V,
a i=1
. . . . . 1 2 3
If solved by enumerating the possible control settings, this opti-

mization problem requires exponential time. However, by exploiting
locality structure—each reward function depends upon a small set
of controls—the problem can often be solved efficiently. Consider

a simple example with 3 binary control§a., az, a3}, where the 4 5 6
reward function isQ(a1,a2) + Q(az2,as). Using distributivity, we
can rewrite the maximization problem as: VaVs Vs V3 Ve

Fig. 2. Example of a junction tree.
max Q(ai,a2) + Q(az,a3) = max Q(a1,az2) + max Q(az,as).
12,08 e “ uploaded to a central location. This is wasteful when the mea-
In this simple example, we can decrease the number of operatisnugements at nearby locations are correlated (as in the temperature
from 16 to 12. More generally, we can exploit distributivity to “push” measurements of the previous example). Regression is a powerful and
the max over each control variable past all terms of the sum that dgeneral framework for maintaining the structure of the sensor field
not depend upon its value, potentially obtaining exponential decreagile significantly decreasing the communication required to access
in complexity [14]. it [13]. In linear regressionthe sensor field is modeled by a weighted
Probabilistic inference is a powerful tool for solving problems combination of basis functionsf(z,y, t) £ Ele w;bj(x,y,t)
where we must reason with partial or noisy information [15kepresents an approximation to the value of the sensor field at
These problems often arise in sensor networks, where the serisoation(z,y) at time¢. Theb;(z,y,t) are basis functions which are
measurements give an incomplete view of the environment. Tbhosen in advance, and the weights are optimized to minimize
general task is to compute the posterior distributions of some desited sum squared error between the observed measurements and
quantities given a probabilistic model of the environment and the model f. The optimal weights constitute a low-dimensional
set of observed measurements. Many challenging problems cansbhenmarization of the original data that can be communicated off the
solved using probabilistic inference; as an example, consider thetwork with significantly less cost. In the general case, computing
distributed sensor calibratiortask [5]. In this problem our nodes the optimal weights requires solving a dense linear systéannel
obtain measurements of some field (e.g., temperature), and thisear regressionis a specialization of this technique where each
measurements are corrupted by unknown, independent biases. B#sis function has bounded support (i.e., a local region of influence),
task is to automatically remove these biases by exploiting tlad the optimal weights are the solution teparselinear system.
correlation between the measurements obtained by nearby nodigure 1 shows the result of fitting such a function to sensor network
To accomplish this with probabilistic inference, we require a prigemperature data. As shown in [13], these regression problems also
probabilistic model of the temperature field, the measurements, amle significant locality structure and a distributive property that can
the biases; given the local correlation structure, a natural choice f exploited to yield an efficient inference algorithm.
this prior is agraphical model whose distribution is a product of ) ) )
local terms [15]. Given this model, we can compute the posterifr Message passing on junction trees
distribution of the true temperatures by instantiating the observedThe inference problems above may seem very different, but they
measurements, multiplying together the terms of the model, ahdve a common algebraic structure [11]. Each problem requires us
marginalizing out nuisance variables. These posterior temperattwefirst combine local pieces of information about a set of variables
estimates automatically “calibrate” the sensors and also accowmbobtain a global model, and then summarize this model to a subset
for measurement noise. As in the control problem, we can expl@if variables; for example, the control problem is specified by a set
distributivity to push these marginalizations past the multiplicationsf local reward functions which are combined (by addition) to form
to obtain an efficient inference algorithm [15]. The application cf global reward function and then summarized (by maximization) to
our architecture to probabilistic inference problems is considered determine the optimal actions for a subset of the control variables.
depth in [12]. Because these problems share this essential structure, they all can be
Another important task that arises in sensor networksgsession  solved by algorithms that pass messages pmetion tree[7]. Below
or function fitting. Many current sensor network deployments amnge describe this important data structure as well as the structure of
used for data gathering: all of the network’'s measurements dhe message passing algorithms. The references above describe the



message passing operations used in each type of inference probienalmost a junction tree; all that would be missing are the cliques
The problems described above each have a sevamfables associated with each node. This hints at a three-layer architecture for
Va,...,V,, which are the objects of inference: in probabilistidistributed inference: (1) thepanning tree layerallows each node
inference, these are the random variables of the model; in regressionselect a set of neighbors with good communication links such
they are the optimal weights; and in control, they are the contrtiiat the nodes are organized in a spanning tree; (2)juhetion
variables. Aclique tree is an undirected tree where each naddie tree layer allows the nodes to compute their cliques to transform the
associated with a subset of the variab{es called itsclique. In the spanning tree into a junction tree that is “embedded” in the network;
clique tree example in Figure 2, we have ti@&s = {V1,V2,V5}. and (3) theinference layerallows the nodes to asynchronously pass
In the message passing inference algorithms, each node begins withinference messages over the edges of the junction tree, each node
local information about (a subset of) the variables in its cligueventually converging to the correct result of inference for its clique
by passing messages along the edges of the tree, the nodes olufirariables. The next three sections describe these layers.
“summaries” of the relevant information that is stored by other nodes.
Informally, the message that nodesends to nodg is computed by Il. SPANNING TREE FORMATION

combining node’s local information with the information it obtains The goal of the spanning tree layer is for each node to choose

in messages from neighbors other thanand then “summarizing a set of neighbors so that the nodes form a spanning tree where

away” information about variables that are not@y. In Figure 2, . . . . . .

. . A adﬁacent nodes have high-quality communication links. In wireless

when sending a message to node 3, node 2 combines informatig : . o .

2 . ) ._sensor networks, this problem is very challenging: link qualities are

from nodes 1 and 5 with its local information, and then summarizes . N .
) ) asymmetric and change over time; and, nodes must discover new

away variables/; and V5 that are not present i@'s. (For example,

. ) . _neighbors and estimate their associated link qualities, as well as
in the control problem nodéadds together local reward functions it . . )

. ) . - detect when neighbors disappear. Fortunately, spanning trees are well
obtains from neighbors other thah and maximizes out all control

. . . studied in distributed systems and sensor networks (e.g., for multi-
variables that are not in nodgs clique.) These messages may b%o routing [16]) Y (eg
scheduled synchronously so each message is computed only onc L . . .
ur application has unique requirements, so we found it necessary
or they may be sent asynchronously so that they converge to the __ . . e
. . . .10 develop a distributed spanning tree algorithm specifically for
correct values. Once a node’s incoming messages are available, it can ) o : .
. s ; . . ur architecture. In addition to being correct and robust to failure,
combine them with its local information to obtain the globally correc : . :
. . . . we require a spanning tree algorithm thatstable—the tree must
result for its clique of variables. For example, in the control problem S . . ;
. . L .. remain fixed whenever possible—arfiéxible—we would like to
a hode can compute optimal settings for its clique of control variable . . . .
. . - . CcHoose between a wide variety of different trees. These properties
in the regression problem, a node can compute an optimal estimate . L . X
N . ) - .. are important for routing, but not crucial: the main goal of routing
of the sensor field in a local neighborhood; and, in the probabilistic . )
. . ... 1S to move packets through the network. In our setting, the spanning
inference problem, a node can compute the posterior distribution of

. ) . . tree defines a “logical architecture” for our inference algorithm; thus,
its clique of random variables given the measurements made by : : )

- the spanning tree algorithm must be as stable as possible so that
nodes in the network.

To guarantee the correctness of these message passing algoritfélkr:ﬁsmferenCe algorithm can make progress. The spanning tree also

; ) . . ermines the computation and communication required to solve the

_the cllqug tree must satisfy a structural constraint calleduheing inference problem, so we must be able to flexibly choose between
|ntersect|0n.prop(_ert?/. . ) different spanning trees to minimize the cost of inference.

!f a var!able 1S 1n C“quef‘ji and C;, then it must aiso .be To achieve these goals our spanning tree algorithm builds upon

_'n all cliques on the (unlqug) path b.etwe.en nodesd ;. existing algorithms. As in the IEEE 802.1d protocol, the nodes of the
If this property holds, the tree is calledjanction tree. Note that network elect the node with the lowest identifier as the root, and each
Figure 2 is a junction tree, e.gls appears inCy and Cs, thus  pode chooses a parent node that offers a path to the root. To ensure
it also appears inC; and C; to satisfy the running intersection stapjlity under changing network conditions, the nodes compute
property. The running intersection property guarantees that the nog§syst link quality estimates using exponentially-weighted moving
reasoning about any variablé; form a subtree. Intuitively, this ayerages [16] and use them to select edges whose bidirectional link
structure guarantees that by pairwise exchanges of information,@}ya”ty is consistently good. To flexibly choose between multiple
nodes reasoning aboli can reach consensus. Because this structy@es we have developed descendant test strategies that give each

holds for all variables simultaneously, complete global consistencyi§ge a larger choice of valid parents. For details on the spanning
also reached by this local communication. tree algorithm see [11].

C. Overview of the architecture

There are two types of information that are relevant to solving
inference problems in sensor networks: prior information (such asRecall that each nodé in the sensor network starts with local
the reward functions of a control problem or the basis functions offormation about a set of variabld3;. Once a spanning tree has
a regression problem), and measurements that are obtained bykthen built, the nodes have formed a distributed data structure similar
sensors. For simplicity we assume the prior information has betna junction tree: a tree where each node has local information
distributed to the nodes of the network (perhaps before deploymeaibout a subset of the variables (see Figure 3). To make this into a
or via dissemination techniques), and each node has obtainedjutsction tree, we must also specify the cliq@g for each node of
sensor readings; thus, each nadegins with local information about the network. These cliques must satisfy two properties: each node’s
some subset of the variabl@3; (which may overlap). Theskcal clique must include its local variable€{ O D, for all nodess);
variables are not known to the other nodes. and, we must have the running intersection property: if two cliques
If we were to now organize the nodes of the sensor network into & and C; have the same variablé, then all nodes on the unique
undirected tree, then we would have a distributed data structure thath between them must also caifry

IIl. JUNCTION TREE FORMATION



V..V, V.V, V,,V, its cliqgue C; using

1 (__) 2 (__) 3 C, A D, U U R;; N Ryi. 3)
¢ "... * "... ¢ J,kenbr(i)
E *., . E -.... é Jj#k
¢ & + For example, in Figure 4, node 2 receives two reachable variables
messages that contaify, and so its clique must includg;, as shown.
4 2l 6 Using the reachable variables messages, a nads also compute
V,, Vg Vg V3, Ve its separator S;; = C;NC; with a neighborj, viaS;; = C;NRy;;

Fig. 3. Example of the initial spanning tree in a six node network; ththis is the set of variables common to nodesdyj, and it determines
dotted lines indicate high-reliability links, the links used in the spanning tretie size of the inference messages they exchange.

are shown with arrows. Next to each nodlés the domainD; of its local . . .
factor. Note that the running intersection is not satisfied; and D5 include To make this message passing algorithm asynchronous, each node

Vs, butD; andDs do not. initializes its incoming reachable variables messages to be empty.
Each time node receives a new reachable variables message from
Vl'V@ Vz@ VaVs a neighborj, it recomputes its reachable variables messages to all

V
5 11
PR PAAAEALY neighbors bug, and transmits them if they have changed from their
1 [ 2 [e===% 3 . O S . .
ViVaVe V1V, Va Ve previous values; in addition, it recomputes its cligue and separators.
S < This algorithm is guaranteed to converge to the unique, minimal
set of cliques that preserve the running intersection property for the

underlying spanning tree.
2) Robust, distributed implementatiofn the presentation above
we assumed reliable communication between neighbors in the span-
Fig. 4. The reachable variables messages for Figure 3. Each inixle ning tree. While this is not true at t.he physical layer, it can be im-
now labeled with its cliqueC;. The reachable variables messdggs = plemented aF the tranSporF layer using message_aCknOW_Iedgr_nents_
{Va, V3, Vs} is obtained by the union oRe3 = {Vs, Vs} with the local by hypothesis, the spanning tree consists of high-quality wireless
variables for node3, D3 = {V2,V3}. The circled variables were added tolinks. We also assumed that the reachable variables messages were
satisfy the running intersection property, e.5s, is included inC» because transmitted after the spanning tree algorithm had run to completion.
%:ssp:geg:_ iNR12 and Rsz, as shown by the underlined variables in thery, algorithm cannot be implemented in this way, though, because
in a sensor network, there is no way to determine when a distributed
Below we present a robust, distributed algorithm that passalgorithm has completed. For example, a node can never rule out the
messages between neighbors in the spanning tree in order to compggsibility that a new node will later join the network.
the unique set of minimal cliques that satisfy these two properties.Our algorithms therefore run concurrently on each node, respond-
Because the spanning tree topology determines the cliques of iihgto changes in each others’ states. When the spanning tree layer on
junction tree, we also present a robust, distributed algorithm farnode adds or removes a neighbor, the junction tree layer is informed
optimizing the spanning tree to induce cliques that minimize thend reacts by updating its reachable variables messages. Ifinode

o)

V,Vq vV, YAYA

communication and computation required by inference. obtains a new neighbgyf, thenR,;; is computed and sent tfy if j
is removed fromi’s neighbor set then for all other neighbd¢sR.;.
A. Ensuring the running intersection is recomputed and retransmitted (if it has changed from its previous

We bedin b ting the algorith der th i tvatlue). This tight interaction between the layers permits the junction
€ begin by presenting the algorithm under the assumptions tPraee to reorganize quickly when changing link qualities, interference,
there is a stable, valid spanning tree and that communication betw%?'hode failures cause the spanning tree to change

neighbors is reliable. Then we generalize it to the case where thes '

assumptions do not hold, and we describe optimizations that minimize ) Minimizing communlcatlonfl'hls junction tree algorithm 'S“ the N
communication only part of our architecture where nodes must reason about “global

1) Message passing algorithnEach node leams its clique usin aspects of the inference problem. In general, the space complexity
ge passing aig . L q Yof Hwe reachable variables messages is linear in the total number of
a message passing algorithm in which it sends a message to an

. . riables; for mple, if i leaf in th nning tree, thédd;;
receives a message from each neighbor.ille¢ a node ang be a \rfutszatt)ir?cs]ijdc; ael)l(?/ar?azlelz I(Z)i:ee? Ios;igws_)palzor' lgrteee r(t)bT:mn;s
neighbor ofi; the variables reachable toj from i, R.;, are: ptp e gep !

then, it is important to choose a compact encoding of the reachable
variables, e.g., bit vectors or sets of integer intervals, to minimize
communication cost.

As we have described the algorithm abo®;. is retransmitted
These messages are defined recursively; the base case is a mesgiageever it changes, which can happen whemeceives a new
from a leaf node, which is simply that node’s local variables. Areachable variables message from another neighbor. A great deal of
interior node: computesR;; by collecting the variables that can becommunication can be saved if instead of sending the new value
reached through each neighbor Quaind adding its local variables of R;;, nodej sends a “patch” that allows nodeto compute the
D;; then it send®R,;; as a message to Figure 4 shows the reachablenew value from the old one. In the full version of the paper we
variables messages for the example of Figure 3. describe an optimized protocol in which nodes transmitadd set

If a node receives two reachable variable messages that batid adrop setto compactly communicate updates to the reachable
include some variabl®’, then it knows that it must also carfiy to  variables messages; we also describe how problem-specific structure
satisfy the running intersection property. Formally, néd®mputes can be exploited to reduce communication [11].

R;=2D;U |J Ru, @)
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B. Optimizing the junction tree on the cycle5 < 2 < 3 < 6 < 5 would change. Therefore, to

The algorithm above transforms the spanning tree into a junctigxaluate the relative cost of an edge swap, only the nodes e

tree by computing the unique set of minimal cliques that satisfy tf?é(de' |.e.: the cycle closed l?y the new edge, must participate in the
?lmputatlon. As the evaluation messages propagate around the swap

running intersection property. Note that different spanning trees ¢ . o .
9 property P 9 cle, each node adds in its local contribution to the cost estimate;

give rise to junction trees with different clique and separator size@{ o . ;
toldo this, it computes the reachable variables messages, clique, and

for example, if in Figure 3 node 5 had chosen to connect to node ) . :
instead of node 2, the node 2's clique would not need to include t gparators it would have if the swap were implemented, and evaluates

variable V5. The size of a node’s clique determines the amount 6 e change to the cost in Eq. (4). The evaluation protocol is described

computation it must perform, and the separator sizes determine # Eta'l 'Z [1tr11].t' itiated th luation broadcast collect
amount of communication required by neighbors in the tree. These € node that initiated the evaluation broadcast COTEcts responses

facts motivate aree optimization algorithnhat chooses a spanningand performs the edge swap that minimizes the cost of the tree. If two

tree that gives rise to a junction tree with small cliques and separatd}g.des undertake edge swaps at the same time and their swap cycles

) . . . . overlap, then the resulting change in cost may be different than the
The input to this algorithm is & cost function that decompos?s ividual cost estimates would indicate. To coordinate these updates

over the cliques and separators of the junction tree. For example,qg . ’ . P !
L ; S . evaluation broadcasts are used only when snooping the broadcast

minimize the computation and communication required to solve th

. c%annel indicates no other evaluations are in progress. When there
inference problem, we may choosg(C;) to be the (energy) cost - e ; .

. . ; e - . are no conflicting edge swaps, this distributed algorithm will converge
of the inference computations required by nadéits clique is C;,

and 3,,(S.;) to be the communication cost paid by node send to a junction tree thaF is a_IocaI m|n|mum.of t‘he cost function.
. o . . As we have described it, the communication pattern of the tree
an inference message to nogleif their separator isS;;. The total

cost is: optimization. algorithm is expensive: w_hen nodstarts an evaluation
N broadcast via a neighbgr, the evaluation messages are propagated
Z ai(Cy) + Z B8i;(Si7) (4) to gll nodes on _they §|C_ie of thez — 7 edge. Fortunately, for_
typical cost functions it is possible to prove that once the running
value of change in cost becomes positive, it can never decrease as
These cost functions can take into account the problem-specific casis evaluation messages propagate. Because we are not interested
of the inference algorithm as well as network characteristics suchiasswaps that increase the tree cost, we can halt propagation of the
link qualities and (perhaps heterogeneous) processor speeds.  evaluation messages whenever the running cost becomes positive.
Finding the spanning tree that minimizes this cost function is NRAnother method to reduce the communication cost is to use a hop
hard (by a simple reduction from centralized junction tree optimizgount limit to limit the local search.
tion [15]), but we can define an efficient distributed algorithm for
greedy local search through the space of spanning trees. First we use
the spanning tree algorithm to build up a good spanning tree usingThe top layer in our architecture is a robust, distributed imple-
link quality information only. Then the tree optimization algorithmmentation of the message passing algorithm for solving the inference
repeatedly reduces the cost of inference by performing legal edyg@blem. The details of these algorithms vary across different prob-
swaps; for example, in Figure 3 node 5 can swap its edge to 1 fems (e.g., probabilistic inference [12] or regression [13]), but the
an edge to 2 or an edge to 6. structure is the same: the message that ricdsds to nodg depends
Nodes learn about a legal edge swap, and the change to tf@n nodei's local information, the messages it receives from all
global cost (Eqg. (4)) that would occur if it was implementedneighbors butj, and the separatd;; 2cin C;. Thus, whenever
using a distributed dynamic programming algorithm. By starting aamy of these quantities changes, the message is recomputed and
evaluation broadcastalong one of its spanning tree edges, a nodetransmitted. For example, if a nodeeceives an updated message
can learn about alternatives for the edge and their relative cogtem a neighbor, it recomputes and retransmits its messages to all
For example, in Figure 3, suppose node 5 sends to its neighbootBer neighbors; if the junction tree layer signals that the separator
a messag&VAL(5, 2), meaning “find legal alternatives for our edgeS,; to nodej has changed, then nodeecomputes and retransmits
5 « 2. Node 2 then propagatdsVAL(5,2) to its other neighbors, its message to nodg If the spanning tree eventually stabilizes, then
nodes 1 and 3. When node 1 receives the message, it sees thathbgunction tree will also stabilize; in this case these rules guarantee
originator, 5, is a potential neighbor, and propagates the message lthek the inference messages will eventually converge to the correct
to 5 outside the spanning tre&Vhen node 5 receives tH&/AL(5,2) values, and the nodes will stop passing inference messages.
message from node 1, it learns of a legal swap: it can trade its edgén some problems, it is possible to make intelligent decisions about
to 2 for an edge to 1. Similarly, node 3 propagates the request to nadeen retransmitting a message is not worth the communication cost.
6, which then propagates it to node 5 outside of the spanning tréer example, if nodg has transmitted a message to nddand it
in this way node 5 learns < 6 is another alternative fos — 2. then receives a new message from another neighbor, it often happens
In general, swapping spanning tree edges has non-local effectstioat the updated message it would sené ie not that different from
the cliques and separators of the induced junction tree, so a nale previous value. In some cases it is possible to obtain error bounds
cannot assess the relative cost of an edge swap locally. Howewassociated with suppressing message updates; this can be an effective
the relative cost can be assessed efficiently by an extension of whay to trade communication cost for approximation error [11].
evaluation broadcast scheme described above. The key idea is thatih our architecture we have achieved robustness with a tight
the edges « 2 were swapped for the edge— 1, only the reachable interaction between the layers: each layer responds to changes in
variables messages (and cliques) on the cycle 2 — 1 < 5would the states of the other two to react to changing network conditions.
changeThis is a direct consequence of the definition of the reachaliait now we have reached the top of our algorithm stack, and we must
variables messages in Eq. (2). Similarly, if the edge~ 2 were consider how an application will use the results of inference when
swapped for the edge < 6, only the reachable variables messageis cannot be sure that the inference algorithm has run to completion.

=1 JEnbr(z)
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Certainly the solution to this problem will be application specific, bun addition, repairing the junction tree after failures requires even
it seems clear that in general it is useful for the inference algorithi®ss communication; e.g., recovering from a simultaneous five-node
to guarantee that at any point during its execution, each nodéslure requires about one third the communication of building the
partial result—i.e., the quantity which is computed when not aljunction tree from scratch.
of the final versions of the messages have arrived—is useful. Somé-or simplicity, we did not implement the complete tree optimiza-
inference algorithms naturally have this property: in the regressigion algorithm in§ IlI-B on the motes. Instead, we used a simple
algorithm the partial result represents the optimal estimate given omgighbor selection heuristic that chooses, among the neighbors that
the measurements obtained by nodes in communication range [1Zjve above average link quality, the one whose initial clique has
Other inference algorithms do not have this property: the partigighest intersection with this node’s initial cligue. We found that
results of the traditional algorithm for probabilistic inference cansing this heuristic decreased communication cost in the inference
be arbitrarily far from the correct results. To make these algorithnieyer by a factor of 33% over considering link quality alone.
useful for inference in sensor networks, extra work is necessary;n addition to the spanning tree and junction tree layers described
for example, see [12] for a new message passing algorithm fibius far, we have an initial Mica2 implementation of the message
probabilistic inference that resolves the problem. passing layer for the kernel regression problem describ§tdAn We
have performed preliminary experiments using a sensor network with
15 Mica2 motes on a regression problem with 2 kernels and 4 spatial
In this section, we evaluate our architecture and algorithms amd temporal basis functions per kernel. In these experiments (see
a real Mica2 sensor network and on a realistic simulator. Here Wwigure 5(e)), the nodes converged to the same regression coefficients
present a brief summary of our findings; see the full version of ttes the optimal offline solution after only 20 epochs. Despite the fact
paper for more detail [11]. that Mica2s only have software fixed-point arithmetic capabilities,
the matrix operations required by regression were stable and pre-
cise. The messages in this layer used reliable communication with
Our first set of experiments test the spanning tree and junction treeknowledgments, requiring between 3 and 7 36-byte packets per
layers on a real sensor network. We implemented these two layatessage. The main limiting factor in the Mica2s is the small amount
in TinyOS and deployed the architecture on a sensor network at tfeRAM (4KB), which did not allow us to hold all of the necessary
Intel Berkeley Research Lab; see Figure 5(a). The network has @atrices in memory at once. We addressed this problem by using
Mica2 motes, each of which is equipped with a 433Mhz radio, lock matrix operations that page unused parts of the matrices to
8MHz microprocessor, 4KB of RAM, and 512KB of flash memoryflash memory.
Each mote is connected to a power supply and ethernet, which was ) )
used only for instrumentation. For our evaluation of these two layes Simulation experiments
we used a kernel regression inference problem [13] with 28 variablesTo further test our architecture and algorithms, we designed a
(basis function coefficients) and 84 nodes. network simulator based on data and link qualities from a different
Figure 5(b) shows the communication properties of the junctiadeployment of 53 Mica2 motes. To verify that our simulations are
tree layer; it plots the total number of bytes of reachable variablesalistic, we simulated the communication cost experiment described
messages (represented using a bit encoding) sent during each seaboge. The simulated results in Figure 5(f) are qualitatively similar
the algorithm runs. There are no messages sent in the beginninghe real results in Figure 5(b); in fact, the real network seems more
because the spanning tree layer is estimating link qualities. Once #table than the simulated one. This gives us some confidence that the
spanning tree layer begins establishing links, the number of reachaditaulation results will also hold on a real network.
variables messages increases. Soon after, the running intersectioe ran another experiment to test the distributed tree optimization
property is satisfied and communication ceases. We ran the algoritalgorithm. We chose our communication cost function to be pro-
for hours at a time and found that the tree was remarkably stable: mortional to the expected number of transmitted bytes necessary to
average it ran for 30 consecutive minutes without sending a singleccessfully communicate the inference messages (for the calibration
reachable variables message. problem described below), taking into account retransmissions. The
We also tested the robustness of the spanning and junction trp@ewise constant curve in Figure 6(a) represents the current cost
to both node and communication failures. We simulated node aafithe spanning tree when one exists; the horizontal line represents a
link failures by signaling individual motes (using the testbed ethernkypothesized optimum: it is the cost of the best tree we were able to
connections) to either die or ignore messages from a given neighldord using centralized optimization techniques. Note that the initial
Figure 5(c) shows that our architecture is very robust, recoverisganning tree, which is selected using only link quality information, is
rapidly from failures. Soon after a failure, communication increasaggnificantly more expensive than the hypothesized optimum, but that
as messages are sent to restore the running intersection propénty,distributed optimization algorithm eventually finds trees whose
but the tree stabilizes rapidly. Note that the communication cost ebst is within a factor of two.
repairing an existing tree is much lower than building the initial tree. The next set of experiments were performed on the distributed
To quantify the communication saved when repairing a brokesensor calibration problem describedg§irA. Using the temperature
junction tree, we ran 30 experiments where groups of random nodiza from the real network, we learned a Gaussian graphical model
were killed. (In this experiment, we used 78 of the nodes.) Figure 5(@er the true temperatures, biases, and temperature measurements. To
shows the average number of bytes of reachable variables messagésip our distributed sensor calibration task we created an artificially
necessary to build an initial junction tree and also to recover frobiased set of measurements by sampling a bias for each node and
failures of one to five randomly selected nodes. We found thatlding these biases to a held-out test set of measurements. The
on average, a node sends only 13 reachable variables messagesence task is for the nodes to estimate these biases from the
to build the initial junction tree; this indicates that building thecorrupted observations, using the probabilistic model. Each node uses
initial junction tree requires a modest amount of communicatioprobabilistic inference to compute its posterior mean bias estimate,

V. EXPERIMENTAL RESULTS

A. Mica2 mote implementation
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Fig. 5. Experimental results. In figures (b), (c), (e), and (f), thexis is time; the bottom bar shows when a valid spanning tree has been constructed, and
the top bar shows when the running intersection property has been enforced.

and the error metric we report is the root mean squared error (RM&jures. Figure 6(d) shows the results of this experiment. As each
from these estimates to the biases we sampled. node dies, its measurement is lost, so the inference problem to be

Figure 6(b) visualizes a trace of the inference architecture whéflved is changing over time; this explains the changing error values
the robust message passing algorithm of [12] is used to solve fee global and local inference. Notice that the network can form
probabilistic inference problem. The main panel of Figure 6(b) plofs junction tree and solve the inference problem exactly past 500
the RMS error of three inference algorithms. The line martgetal seconds, when only 26 of the original 53 nodes are still functioning.
refers to centralized inference using all of the measurements. In thiDur next experiment evaluates our architecture on the regression
case, the posterior mean bias estimates of global inference have @8k described ir§l-A. Using the distributed regression formulation
RMS error. Thus, by solving the global inference problem the nodegscribed in [13], we defined a regression problem on the temperature
can automatically eliminate 39% of the bias. The line markeadl data with 22 basis functions. In our regression task, each node
refers to centralized local inference, where each node’s posterigies its local estimate of the optimal model parameters to predict
is computed using only its measurement. Local inference perfort® measurement of its five nearest neighbors, along with its own
about as well as predicting zero bias, achieving a 0.99 RMS error; thigasurement. Figure 6(e) shows the resulting root mean squared
is expected, since correlated measurements from different nodeserer for this task. As with the calibration case, this graph shows
required for automatic calibration. The third curdéstributed robust three curves: thdocal curve corresponds to each node using its
refers to our architecture. This plot graphically demonstrates the keyn measurement to predict its neighbors’ measurementsjldiel
properties of the algorithm: before any messages have been pasgsgfie corresponds to fitting the regression parameters offline, and
the partial results coincide with the estimates given by local inferenagsing the resulting model for prediction; tdestributedline uses our
at convergence, the estimates coincide with those of centralized globahitecture and the distributed regression messages so that each node
inference; and, before all messages have been passed, the estimgdaly predicts its neighbors’ values using its current estimates of the
are informative approximations. Looking closely, we can see thiasis function coefficients. As with the calibration case, we see that
before the junction tree is valid, and even before a complete spannifng results obtained by our distributed algorithm quickly converge to
tree is constructed, the estimates of the robust message pasgidge obtained by the optimal offline solution.

algorithm quickly approach the exact solution. Our third and final inference problem is an instance of the control
To test the algorithms’ robustness to long-term communicatigftoblem described if§l-A. We defined an actuation problem where
failure, we ran the same experiment, but this time we introduca@ plinds can be moved to change the light conditions; each blind
a period where interference causes the network to be segmented j§tgontrolled by a specific node of the network. Each actuating node
two parts. In Figure 6(c) we can see that the algorithm converggss five possible controls which raise and lower the blinds by varying
before and after the inference period, but that interference prevegtfounts. Each node of the network has a desired light value that is 40
a (complete) spanning tree from being formed. In spite of thigx greater than its current value. The goal is to find positions for all
the robust message passing algorithm converges to an excellp@tplinds that minimize the mean squared deviation from the desired
approximation: each half of the network forms its own junction trefyht values. Our results, shown in Figure 6(f), again compare three
and performs inference with the available information. methods: in thdocal curve each actuating node chooses the blind
We also tested the architecture’s performance under simulated ned#ing that best fits its own desires; thiebal curve corresponds to
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Fig. 6. Experimental results from simulation.
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