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Abstract: - A robust asynchronous full adder design corresponding to early output logic, synthesized using the 

elements of a standard cell library is presented in this paper. As the name suggests, the adder ensures gate orphan 

freedom and neatly fits into the self-timed system architecture. In comparison with many of the indicating full 

adder designs, which can be embedded in the self-timed system, it is found that the proposed full adder enables 

reduction in latency by 20.7%, occupies lesser area by 15.4% and features minimized average power dissipation by 

8.6% against the best design metrics of its counterparts. These design estimates correspond to simulation results of 

the 32-bit carry-ripple adder circuit; derived by targeting a high-speed 130nm bulk CMOS process technology. 

Also, the proposed full adder facilitates a faster reset and the return-to-zero for the fundamental carry-propagate 

topology is achieved with only two full adder delays. 
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1 Introduction 
Reliability has been labelled as one of the five 

crosscutting design challenges in the Semiconductor 

Industry Association’s ITRS 2008 report on design 

[1], which drives home the point that ‘design 

robustness’ is becoming an increasing priority for 

digital logic design in ultra deep submicron 

technologies. In this scenario, self-timed design 

attracts attention due to its inherent ability to tolerate 

supply voltage, process parameter and temperature 

variations [2]. Due to the absence of a global clock 

reference, robust asynchronous circuits tend to have 

better noise and electro-magnetic compatibility 

properties compared to their synchronous counterparts 

[3]. In addition, they feature greater modularity 

permitting convenient design reuse [4], which is all 

the more important since design reuse as a percentage 

of overall logic is expected to account for 55% by 

2020 [1].  

     This paper deals with a high-speed, low area and 

low power robust asynchronous realization of a basic 

arithmetic component, viz. the full adder. The rest of 

this paper is organized as follows. Section 2 briefly 

summarizes the various timing models adopted, 

discusses the attributes of a function block and 

explains a widely preferred robust asynchronous 

signaling convention: the 4-phase handshaking. Also, 

the full adder designs corresponding to various self- 

 

 

 

timed design methods are highlighted in this section, 

accompanied with a brief discussion about the same. 

Section 3 illustrates the problem of circuit orphans 

describing how they undermine the robustness of an 

asynchronous circuit. The robust asynchronous full 

adder design put forward in this work, based on the 

concept of early output logic, is then presented and its 

properties are described. It is shown how the adder is 

easily embedded into the standard self-timed system 

topology without affecting the latter’s characteristics. 

The simulation results corresponding to various 32-bit 

self-timed carry-ripple adders are given in Section 4, 

and the conclusions are arrived at in Section 5.   

 

 

2 Fundamentals of Input/Output Mode 

Circuits 
 

 

2.1 Timing Models 
The following circuit models adhere to input/output 

mode, with no timing assumptions on when the 

environment should respond to the circuit.   

• Delay-Insensitive (DI) 

• Quasi-Delay-Insensitive (QDI) 

• Speed-Independent (SI) 
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     A DI circuit guarantees correct normal operation 

irrespective of the delays of its gates and the delays 

encountered in the communicating signal wires, i.e. 

unbounded (arbitrary, but positive and finite) gate 

delay and wire delay models are considered. This is 

the most robust of all the unbounded delay models; 

such circuits are guaranteed to be correct by 

construction. It was shown in [5] that C-elements and 

inverters are the only DI elements and so, 

unfortunately, the class of pure DI circuits would be 

very limited when considering only these two logical 

operators.  

     DI circuits with isochronic fork assumptions [5] 

are referred to as QDI circuits; it is not necessary that 

every fork be an isochronic fork in a QDI circuit. The 

isochronic fork assumption has been defined in [5] as 

follows: “In an isochronic fork, when a transition on 

one output is acknowledged, and thus completed, the 

transitions on all outputs are acknowledged, and thus 

completed”. A recent work by Martin et al. [6] shows 

that the main building blocks of QDI logic, including 

realization of the isochronicity assumption, can be 

successfully implemented even in nano-CMOS 

technologies where stricter design rules and larger 

parametric variations could be anticipated. This is an 

encouraging pointer towards the feasibility of this 

approach in the nano-CMOS era. Similar to the DI 

circuit, the QDI circuit conforms to the unbounded 

delay model for gates and wires, but with the 

exclusion of isochronic forks.  

     A SI circuit operates correctly regardless of gate 

delays; wires are assumed to have no or negligible 

delay – hence, unbounded gate delay and bounded 

wire delay. Every fork is assumed to be an isochronic 

fork in a SI circuit. Technically, wire delays are 

typically accounted for in the components (gates) 

according to this timing model, and subsequently 

wires are assumed to be ideal (i.e. zero delay).  

     Referring to the circuit fragment in figure 1(a), dg1, 

dg2 and dg3 represent the propagation delay of gates 

g1, g2 and g3 respectively, while dw1, dw2 and dw3 

signify the delay values of the corresponding nets. For 

the DI delay model, dg1, dg2, dg3, dw1, dw2 and dw3 can 

be arbitrary, while in case of the QDI delay model; dw2 

is assumed to be equal to dw3 with f being an 

isochronic fork junction. For the SI delay model, dw1 = 

dw2 = dw3 = 0, but the wire delays are accounted for in 

the delay of gate g1, whose output acts as input for 

gates g2 and g3. Hence, the delay of gate g1 is 

modeled as dg1+dw1+dw2 or dg1+dw1+dw3, as shown in 

figure 1(b).  

 

 
 

Fig. 1. Illustration of DI, QDI and SI delay models 

 

 

2.2 Function Block – Characterization 
Seitz classified the ‘function block’, which is the 

asynchronous equivalent of a synchronous 

combinational logic circuit, into two basic robust 

categories depending on their indicating mechanism 

as either strongly indicating or weakly indicating [7]. 

A strong-indication function block waits for all of its 

inputs (valid/spacer) to arrive before it starts to 

compute and produce any output (valid/spacer). A 

weak-indication function block starts to compute and 

produce outputs (valid/spacer) even with a subset of 

the inputs (valid/spacer). However, Seitz's weak 

timing specifications require that at least one output 

(valid/spacer) should not have been produced until 

after all inputs (valid/spacer) have arrived. The 

signaling scheme for strong and weak-indication 

timing regimes in terms of their input and output 

behavior is illustrated graphically in figure 2. 

 

 
 

Fig. 2. Depicting strong and weak-indication 

phenomena 
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     Many robust function block designs adhere to a 4-

phase handshaking convention for simplicity of 

implementation and can employ any DI data-encoding 

scheme, with the dual-rail data-encoding scheme 

being widely preferred. Each data wire x is 

represented using two data wires, x0 and x1, with the 

request signal embedded within the data wires. A low-

to-high transition on the x
0
 wire indicates that a zero 

has been transmitted, while a low-to-high transition on 

the x
1
 wire indicates that a one has been transmitted. 

Since the request is embedded within the data wires, a 

transition on either x
0
 or x

1
 informs the receiver about 

the validity of the data. The condition of both x
0
 and 

x
1
 being a zero at the same time is referred to as the 

spacer (empty data). Both x
0
 and x

1
 are not allowed to 

transition simultaneously as it is illegal and invalid, 

since the coding scheme is unordered, i.e. no code 

word should be a subset of another code word.  

 

 
 

Fig. 3. Dual-rail data encoding and 4-phase 

handshaking convention 

 

     With reference to the above figure, the 4-phase 

handshake protocol is explained as follows
1
:  

• The dual-rail data bus is initially in the spacer 

state. The sender transmits the code word 

(valid data). This results in 'low' to 'high' 

transitions on the bus wires, which correspond 

to non-zero bits of the codeword  

• After the receiver receives the codeword, it 

drives the ackout (ackin) wire 'high' ('low') 

• The sender waits for the ackin to go 'low' and 

then resets the data bus (i.e. spacer state)  

• After an unbounded, but finite (positive) 

amount of time, the receiver drives the ackout 

(ackin) wire ‘low’ (‘high’). A single 

transaction is now said to be complete and the 

system is ready to resume the next transaction 

                                                 
1 The explanation remains valid for data representation using any DI data-

encoding scheme.  

2.3 Self-Timed Full Adder Designs 
The strong and weak-indication realizations of a full 

adder based on Seitz's approach [7] are portrayed by 

figures 4 and 5 respectively. The basic equations 

governing a full adder with dual-rail inputs (a1, a0), 

(b1, b0), (cin1, cin0) and dual-rail outputs (Sum1, 

Sum0), (Cout1, Cout0) are given below.  

Sum1 = a0b0cin1 + a0b1cin0 + a1b0cin0 + a1b1cin1

      (1) 

Sum0 = a0b0cin0 + a0b1cin1 + a1b0cin1 + a1b1cin0

      (2) 

Cout1 = a0b1cin1 + a1b0cin1 + a1b1cin0 + a1b1cin1

      (3) 

Cout0 = a0b0cin0 + a0b0cin1 + a0b1cin0 + a1b0cin0

      (4) 

     The weak-indication adder takes advantage of the 

fact that the output carry of an adder module could 

become defined as soon as its input operands become 

defined. This depends on the occurrence of carry-kill 

(a0=b0=1) or carry-generate (a1=b1=1) conditions. 

Thus the carry output equations can be expressed as, 

Cout1 = a0b1cin1 + a1b0cin1 + a1b1  (5) 

Cout0 = a0b1cin0 + a1b0cin0 + a0b0  (6) 

 

 
 

Fig. 4. Seitz’s strong-indication full adder [7] 

 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 223 Issue 7, Volume 10, July 2011



     Comparing the adder circuitry depicted in figures 4 

and 5, it can be noticed that the strong-indication 

adder increases the datapath delay, while the weak-

indication adder incorporates a fast carry propagation 

path as only the sum output depends on all the inputs, 

while the carry output do not always depend, i.e. the 

indication is distributed between the adder outputs in 

case of the latter realization. It is to be noted that the 

completion detection logic, when not implemented as 

a single OR gate due to fan-in restrictions of the cell 

library, would necessitate timing assumptions.  

 

 
 

Fig. 5. Seitz’s weak-indication full adder [7] 

 

     The strong-indication full adder realized according 

to the Delay-Insensitive Minterm Synthesis (DIMS) 

technique [9] is shown in figure 6. Isochronic fork 

assumptions are made with regard to the primary 

inputs as they feed many C-gates
2
, while the forks that 

feed the OR-gates need not be isochronic. Hence, the 

DIMS method corresponds to the QDI timing model. 

Similar to the case of Seitz's weak-indication adder, 

the carry-kill and carry-generate conditions can be 

utilized to make the adder weakly indicating, as 

shown in figure 7. 

                                                 
2
 The C-gate is a rendezvous element. It output a 1(0), when all its inputs 

are 1(0); otherwise it retains its existing steady state. The C-element is 

represented by the AND gate symbol with the marking ‘C’ on its 

periphery. 

 
 

Fig. 6. Strong-indication full adder realization based 

on DIMS method [9] 

 

 
 

Fig. 7. Weak-indication full adder implementation on 

the basis of DIMS method [9] 

 

     The strong and weak-indication realizations of the 

full adder block, derived on the basis of the methods 

proposed in [10] and [13] are portrayed through 

figures 8 and 9 respectively. Strong-indication adders 

are governed by worst-case latency, whereas weak-

indication and early output adders facilitate data-

dependent computation [15]. The weak-indication and 
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early propagative adders generally outperform the 

strongly indicating adders in terms of latency and 

throughput on account of the carry-generate and 

carry-kill scenarios. However, this is not found to be 

the case with Toms et al.’s adders, since the critical 

path of the weak-indication adder [13] would be 

traversed through OR2, CE2 and OR3 elements as 

opposed to CE2 and two OR2 gates for the strong-

indication version [10]
3
. The weak-indication version 

has been constructed adopting the de-synchronization 

approach [16] [17] and takes a cue from the 

asynchronous circuit synthesis method based on 

partial acknowledgement [18].   

 

 
 

Fig. 8. Strong-indication full adder based on [10] 
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Fig. 9. Weak-indication full adder based on [13] 

                                                 
3
 The standard cell library consists of AND gates and OR gates with a 

maximum fan-in of 4 and 3 respectively.   

     Folco et al.'s approach [11] bears a similarity with 

the previous approach in the sense that the synthesis 

of combinational logic as QDI circuits is initially 

performed using 2-input C-elements and OR gates, 

with the resulting circuits satisfying either strong or 

weak-indication constraints [7]. This approach makes 

use of algorithms for constructing reduced ordered 

binary decision diagrams [19] as the basis for its 

synthesis strategy with the exception that logical 

conjunctions are perceived as achieved through C-

gates rather than AND gates. The technology-

mapping step is subsequently performed targeting a 

cell library [20] that includes custom asynchronous 

elements developed on the basis of the 

STMicroelectronics bulk CMOS process. The 

technology mapping process actually follows the 

structural pattern-matching algorithm originally 

proposed by Zhao et al. in [21]. The full adder circuit 

implemented using this approach taking into account 

the shared logic is shown in figure 10. It can be 

observed that while the sum outputs depend on all the 

inputs for evaluation, the carry outputs need not as 

they utilize the carry-kill and carry-generate 

conditions. Thus the full adder adheres to weak-

indication constraints.  

 

 
 

Fig. 10. Full adder synthesized using Folco et al.’s 

approach [11] 

 

     Our earlier full adder design (referred to as the 

SSSC_adder – single-sum, single-carry adder based 

on dual-rail encoding) is shown in figure 11. It was 

designed in a semi-custom style [12] to investigate 

two important issues: i) how the responsibility of 

indication can be confined to the sum output alone, 

thereby freeing the carry signal from indication 

constraints, and ii) how logic redundancy can be made 

implicit in a self-timed design to enable reduction in 
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latency. It can be noticed that the sum output is 

strongly indicating, while the output carry is eager and 

is realized by means of a complex gate, viz. AO222 

cell. Even with the arrival of any subset of the inputs, 

the carry outputs could become defined/undefined, 

while the sum outputs would wait for the arrival of all 

the inputs to become defined/undefined. Thus the full 

adder satisfies Seitz’s weak-indication timing 

constraints [7], but without resorting to distribution of 

inputs indication unlike the conventional approach. 

This style of implementation was later labelled as the 

biased approach in [22], targeting self-timed logic 

circuit synthesis at a block level. However, our 

method differs from this approach in that the latter 

relies upon dual-rail combinational logic (DRCL) 

style as the basis for realizing those outputs, which are 

selected as candidates for relaxation.  

 

 
 

Fig. 11. Weak-indication full adder block [12] 

 

     Reference [8] deals with an approach to realize 

arbitrary combinational logic as asynchronous 

circuits, but this method is not robust since gate 

orphans could result. Also, the physical 

implementation of the circuit may not be feasible 

when the circuit has to be modified to achieve 

robustness. This is owing to the requirement of 

unconventional complex gates, which is clarified 

through an elaborate discussion in [14]. The full adder 

functionality can also be realized based on the Null 

Convention Logic (NCL) design paradigm [23], but 

this would require usage of the proprietary cell macros 

developed on the basis of threshold logic [24] [25]. In 

this context, it should be noted that the NCL utilizes 

the DRCL style as the underlying principle for 

realizing self-timed versions of combinatorial logic, 

which is discussed in the next section. 

 

3 Robust Early Output Full Adder 
The DRCL style utilizes De-Morgan's theorems of 

Boolean algebra to implement a combinational logic 

function in an asynchronous style by replacing each 

gate by its dual-rail equivalent (dual-rail pair). We 

consider two scenarios for the dual-rail combinational 

equivalent of a Boolean function, say F = ab + cd as 

shown in figure 12, to clarify the necessity for 

ensuring proper indication of signal events at the 

primary inputs as well as the intermediate output 

nodes and to describe how wire and gate orphans 

could possibly result [14].   

     Assuming all the data inputs to be currently 

spacers, when a0 and c0 become defined, intermediate 

signals x0 and y0 would become defined and 

eventually F0 would become defined. Assuming b0 

and d0 would also become defined subsequently, they 

would not be acknowledged by the intermediate 

signals (x0 and y0) or by the corresponding output in 

the present evaluation phase resulting in ‘wire 

orphans’.   

     Let us assume that a1 and b1 become defined after 

a return-to-zero phase. This would lead to defining of 

the intermediate signal x1. Assuming that c1 and d1 

become subsequently defined during the current 

evaluation phase, F1 could have become defined as a 

result of x1 alone becoming defined, and hence a late 

transition on y1 would not be acknowledged by the 

primary output, giving rise to a ‘gate orphan’.  

     From the above discussion, it should be clear that 

the DRCL realization is basically non-indicating and, 

as such it conforms to eager evaluation owing to the 

fact that even with a subset of the function block 

inputs becoming defined (undefined), all the outputs 

could become defined (undefined) regardless of the 

lately arriving inputs. Hence the DRCL style is not 

strongly or weakly indicating but corresponds to early 

output logic, i.e. early set and/or reset could happen.   

 

 

Fig. 12. Dual-rail combinational equivalent of the 

logic function, F = ab + cd 
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     The proposed robust early output logic based full 

adder is portrayed by figure 13. (a0, a1) and (b0, b1) 

are the augend and addend inputs, with (cin0, cin1) 

representing the input carry. The sum and carry 

outputs of the adder are specified by the signals 

(Sum0, Sum1) and (Cout0, Cout1) respectively. The 

physical implementation of the adder requires eight 

complex gates (including four AO22 gates), with the 

2-input Muller C-element realized using an AO222 

gate with feedback, and two OR2 gates.  

 

 
 

Fig. 13. Robust asynchronous full adder realization 

corresponding to early output logic 

 

     The synthesized full adder design, shown above, 

pertains to early propagation, but is robust as the 

primary outputs duly acknowledge the steady state of 

all the internal nodes thereby preventing the 

occurrence of gate orphans. This is feasible, with 

intermediate gate output nodes ‘int1’ and ‘int2’ of the 

above figure specified as isochronic fork junctions. 

For example, when valid data is applied, a low-to-high 

transition on int1 or int2 nodes would be followed by 

a low-to-high transition on Sum0/Sum1 output. 

Especially for the up-going transition on int2, multiple 

acknowledgements would result since an up-going 

transition would also eventually occur on Sum0/Sum1 

and Cout0/Cout1 outputs. For a down-going transition 

on nodes int1/int2, such an event is duly 

acknowledged by the sum outputs with the dual-rail 

carry input also experiencing a high-to-low transition. 

Nevertheless, the carry outputs may not acknowledge 

the down-going transition on node int2 since input-

incomplete gates have been used for realizing the 

output carry logic. But this does not affect the 

robustness of the adder realization since Martin’s QDI 

timing assumption is satisfied, which was quoted in 

section 2.1. Also, the primary inputs are routed to 

different gates with the help of isochronic forks that 

are widely prevalent in QDI circuits [27].   

     When valid data is applied the adder circuit shown 

in figure 13, after a return-to-zero state, the sum and 

carry signals would demand the arrival of the 

necessary primary inputs to produce the desired 

output. However for the spacer data, with a reset of 

either the augend or the augend inputs and the input 

carry, the sum outputs could be reset. With respect to 

the output carry, the dual-rail carry signal could be 

reset even with the reset of a single dual-rail input 

regardless of whether the carry-kill, carry-generate or 

carry-propagate condition occurs. Hence, an early 

reset of the adder is possible since the return-to-zero 

condition does not require the reset of all the primary 

inputs thus making it early propagative (early reset). 

Also, an n-bit adder can return to the spacer state with 

just two full adder delays similar to that of Martin’s 

adder [26]. When the augend and/or addend inputs of 

a k
th
 adder stage is reset, the corresponding dual-rail 

carry output is also reset, which serves as the input 

carry for the (k+1)
th
 adder stage. With the 

augend/addend inputs of the (k+1)
th
 adder stage also 

being simultaneously reset, the dual-rail sum outputs 

of that stage could be reset. Thus it becomes clear that 

with an approximate delay of only two full adder 

stages, an entire n-bit carry-ripple adder can be reset, 

which is beneficial for the speed of the adder.       

     With reference to the preceding discussions, the 

important properties of the proposed full adder are 

summarized as follows:     

• Does not process valid data eagerly but could 

be reset in an early fashion, relaxing the 

weak-indication constraints, but without any 

compromise on robustness  

• Exhibits actual case latency when adding 

valid data and constant latency during return-

to-zero, since the intermediate carry outputs 

can be reset on the basis of the data inputs 

associated with each adder stage 

     Though the proposed early output adder guarantees 

gate orphan freedom, wire orphans could still 

manifest. To clarify this phenomenon, we consider an 

instance. With a1=b1=cin1=1 in figure 13, outputs 

Sum1 and Cout1 experience a transition. In the return-

to-zero phase, assuming that a1 and cin1 have 

experienced a low-going transition before b1, Sum1 

and Cout1 could be reset even though b1 has not 

become undefined (spacer), giving rise to a wire 

orphan. Nevertheless, the problem of wire orphans 

gets resolved when the adder is embedded within the 

system configuration as shown in figure 14.  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 227 Issue 7, Volume 10, July 2011



 
 

Fig. 14. Architecture of the self-timed system 

 

     Here, the robust early output combinational logic 

block can be identified as the full adder that is 

sandwiched between two register bank stages. When 

the adder is incorporated into the system topology, the 

reset of b1, although unacknowledged by the 

asynchronous logic block is however acknowledged 

by the completion detection (CD) logic associated 

with the current stage register. The CD circuit in this 

case consists of a bank of OR2 gates with an OR2 

gate dedicated for each dual-rail input. The outputs of 

all the OR gates are synchronized by means of a C-

element tree producing the ackout signal [15], which 

may be buffered to act as the input for the register 

bank of the preceding stage. Given the isochronicity 

assumption on all the primary inputs, wire orphans do 

not crop up. Thus in contrast to an indicating logic 

block, the responsibility of indicating the primary 

inputs is shared between the robust early output logic 

block and the CD circuit, thus preserving the QDI 

property of the system.  

 

 

4 Results 
A number of 32-bit self-timed ripple carry adders 

(RCAs), which incorporate different types of full 

adders were constructed and optimized for minimum 

delay and their design metrics were evaluated. These 

are given in Table 1. Table 2 shows the critical path 

elements encountered in the different self-timed 

RCAs.   

     The simulation results were obtained by targeting a 

high-speed 130nm UMC (Faraday) bulk CMOS 

process technology. The delay metric signifies the 

latency of the critical path. The area parameter refers 

to the total area of all the cells comprising the 

combinatorial adder logic, the register bank and the 

CD circuitry associated with it. The average power 

dissipation is estimated for 1000 random input 

vectors, supplied at intervals of 25ns to the self-timed 

system from the external environment (test bench). 

All the adder inputs were configured with the driving  

strength of the minimum sized inverter in the library 

while the outputs possess fanout-of-4 drive strength.      

 

Table 1. Design metrics of various 32-bit self-timed 

carry-ripple adders 

 

Full adder  

realization style 

Delay  

(ns) 

Area  

(µm
2
) 

Power  

(µW) 

Seitz_adder  

(Strong) [7] 

 

12.8 

 

8329 

 

507.9 

Seitz_adder 

(Weak) [7] 

 

6.5 

 

7689 

 

459.5 

DIMS_adder  

(Strong) [9] 

 

13.8 

 

10089 

 

427.4 

DIMS_adder  

(Weak) [9] 

 

12.8 

 

10665 

 

476.5 

Toms et al._adder 

(Strong) [10] 

 

10.6 

 

7561 

 

388.4 

Folco et al._adder  

(Weak) [11] 

 

8.0 

 

6633 

 

383.2 

SSSC_adder  

(Weak) [12] 

 

5.8 

 

7081 

 

420.4 

Toms et al._adder  

(Weak) [13] 

 

11.6 

 

8713 

 

545.3 

Proposed_adder 

(Robust Early) 

 

4.6 

 

5609 

 

350.1 

 

Table 2. Critical path element(s) pertaining to the 

various self-timed RCAs 

 

Full adder  realization 

style 

Elements in the 

critical path 

Seitz_adder  

(Strong)  

 

OR2 + OR2 + CE2 

Seitz_adder  

(Weak) 

 

AND3 + OR3 

DIMS_adder  

(Strong) 

 

CE3 + OR2 + OR2 

DIMS_adder  

(Weak) 

 

CE3 + OR3 

Toms et al._adder  

(Strong)  

 

CE2 + OR2 + OR2 

Folco et al._adder  

(Weak) 

 

CE2 + OR2 

SSSC_adder  

(Weak) 

 

AO222 

Toms et al._adder  

(Weak) 

 

OR2 + CE2 + OR3 

Proposed_adder    

(Robust Early) 

 

AO22 
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5 Conclusions 
It is evident from the simulation results that the 

proposed robust full adder corresponding to early 

output logic leads to optimization of design metrics, 

outweighing its nearest competitors in terms of delay, 

area and power parameters by 20.7%, 15.4% and 

8.6% respectively – thanks to the reduced latency in 

producing the intermediate carries and the compact 

circuit realization. Thus, this work highlights the merit 

and potential of robust asynchronous arithmetic circuit 

synthesis based on the notion of early propagation. 
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