
A Robust Asynchronous Early Output Full Adder

PADMANABHAN BALASUBRAMANIAN

School of Computer Science

The University of Manchester

Oxford Road, Manchester M13 9PL

UNITED KINGDOM

padmanab@cs.man.ac.uk, spbalan04@gmail.com

Abstract: - A robust asynchronous full adder design corresponding to early output logic, synthesized using the

elements of a standard cell library is presented in this paper. As the name suggests, the adder ensures gate orphan

freedom and neatly fits into the self-timed system architecture. In comparison with many of the indicating full

adder designs, which can be embedded in the self-timed system, it is found that the proposed full adder enables

reduction in latency by 20.7%, occupies lesser area by 15.4% and features minimized average power dissipation by

8.6% against the best design metrics of its counterparts. These design estimates correspond to simulation results of

the 32-bit carry-ripple adder circuit; derived by targeting a high-speed 130nm bulk CMOS process technology.

Also, the proposed full adder facilitates a faster reset and the return-to-zero for the fundamental carry-propagate

topology is achieved with only two full adder delays.

Key-Words: - Full adder, Asynchronous design, Early propagation, Indication, Standard cells, CMOS process

1 Introduction
Reliability has been labelled as one of the five

crosscutting design challenges in the Semiconductor

Industry Association’s ITRS 2008 report on design

[1], which drives home the point that ‘design

robustness’ is becoming an increasing priority for

digital logic design in ultra deep submicron

technologies. In this scenario, self-timed design

attracts attention due to its inherent ability to tolerate

supply voltage, process parameter and temperature

variations [2]. Due to the absence of a global clock

reference, robust asynchronous circuits tend to have

better noise and electro-magnetic compatibility

properties compared to their synchronous counterparts

[3]. In addition, they feature greater modularity

permitting convenient design reuse [4], which is all

the more important since design reuse as a percentage

of overall logic is expected to account for 55% by

2020 [1].

 This paper deals with a high-speed, low area and

low power robust asynchronous realization of a basic

arithmetic component, viz. the full adder. The rest of

this paper is organized as follows. Section 2 briefly

summarizes the various timing models adopted,

discusses the attributes of a function block and

explains a widely preferred robust asynchronous

signaling convention: the 4-phase handshaking. Also,

the full adder designs corresponding to various self-

timed design methods are highlighted in this section,

accompanied with a brief discussion about the same.

Section 3 illustrates the problem of circuit orphans

describing how they undermine the robustness of an

asynchronous circuit. The robust asynchronous full

adder design put forward in this work, based on the

concept of early output logic, is then presented and its

properties are described. It is shown how the adder is

easily embedded into the standard self-timed system

topology without affecting the latter’s characteristics.

The simulation results corresponding to various 32-bit

self-timed carry-ripple adders are given in Section 4,

and the conclusions are arrived at in Section 5.

2 Fundamentals of Input/Output Mode

Circuits

2.1 Timing Models
The following circuit models adhere to input/output

mode, with no timing assumptions on when the

environment should respond to the circuit.

• Delay-Insensitive (DI)

• Quasi-Delay-Insensitive (QDI)

• Speed-Independent (SI)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 221 Issue 7, Volume 10, July 2011

 A DI circuit guarantees correct normal operation

irrespective of the delays of its gates and the delays

encountered in the communicating signal wires, i.e.

unbounded (arbitrary, but positive and finite) gate

delay and wire delay models are considered. This is

the most robust of all the unbounded delay models;

such circuits are guaranteed to be correct by

construction. It was shown in [5] that C-elements and

inverters are the only DI elements and so,

unfortunately, the class of pure DI circuits would be

very limited when considering only these two logical

operators.

 DI circuits with isochronic fork assumptions [5]

are referred to as QDI circuits; it is not necessary that

every fork be an isochronic fork in a QDI circuit. The

isochronic fork assumption has been defined in [5] as

follows: “In an isochronic fork, when a transition on

one output is acknowledged, and thus completed, the

transitions on all outputs are acknowledged, and thus

completed”. A recent work by Martin et al. [6] shows

that the main building blocks of QDI logic, including

realization of the isochronicity assumption, can be

successfully implemented even in nano-CMOS

technologies where stricter design rules and larger

parametric variations could be anticipated. This is an

encouraging pointer towards the feasibility of this

approach in the nano-CMOS era. Similar to the DI

circuit, the QDI circuit conforms to the unbounded

delay model for gates and wires, but with the

exclusion of isochronic forks.

 A SI circuit operates correctly regardless of gate

delays; wires are assumed to have no or negligible

delay – hence, unbounded gate delay and bounded

wire delay. Every fork is assumed to be an isochronic

fork in a SI circuit. Technically, wire delays are

typically accounted for in the components (gates)

according to this timing model, and subsequently

wires are assumed to be ideal (i.e. zero delay).

 Referring to the circuit fragment in figure 1(a), dg1,

dg2 and dg3 represent the propagation delay of gates

g1, g2 and g3 respectively, while dw1, dw2 and dw3

signify the delay values of the corresponding nets. For

the DI delay model, dg1, dg2, dg3, dw1, dw2 and dw3 can

be arbitrary, while in case of the QDI delay model; dw2

is assumed to be equal to dw3 with f being an

isochronic fork junction. For the SI delay model, dw1 =

dw2 = dw3 = 0, but the wire delays are accounted for in

the delay of gate g1, whose output acts as input for

gates g2 and g3. Hence, the delay of gate g1 is

modeled as dg1+dw1+dw2 or dg1+dw1+dw3, as shown in

figure 1(b).

Fig. 1. Illustration of DI, QDI and SI delay models

2.2 Function Block – Characterization
Seitz classified the ‘function block’, which is the

asynchronous equivalent of a synchronous

combinational logic circuit, into two basic robust

categories depending on their indicating mechanism

as either strongly indicating or weakly indicating [7].

A strong-indication function block waits for all of its

inputs (valid/spacer) to arrive before it starts to

compute and produce any output (valid/spacer). A

weak-indication function block starts to compute and

produce outputs (valid/spacer) even with a subset of

the inputs (valid/spacer). However, Seitz's weak

timing specifications require that at least one output

(valid/spacer) should not have been produced until

after all inputs (valid/spacer) have arrived. The

signaling scheme for strong and weak-indication

timing regimes in terms of their input and output

behavior is illustrated graphically in figure 2.

Fig. 2. Depicting strong and weak-indication

phenomena

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 222 Issue 7, Volume 10, July 2011

 Many robust function block designs adhere to a 4-

phase handshaking convention for simplicity of

implementation and can employ any DI data-encoding

scheme, with the dual-rail data-encoding scheme

being widely preferred. Each data wire x is

represented using two data wires, x0 and x1, with the

request signal embedded within the data wires. A low-

to-high transition on the x
0
 wire indicates that a zero

has been transmitted, while a low-to-high transition on

the x
1
 wire indicates that a one has been transmitted.

Since the request is embedded within the data wires, a

transition on either x
0
 or x

1
 informs the receiver about

the validity of the data. The condition of both x
0
 and

x
1
 being a zero at the same time is referred to as the

spacer (empty data). Both x
0
 and x

1
 are not allowed to

transition simultaneously as it is illegal and invalid,

since the coding scheme is unordered, i.e. no code

word should be a subset of another code word.

Fig. 3. Dual-rail data encoding and 4-phase

handshaking convention

 With reference to the above figure, the 4-phase

handshake protocol is explained as follows
1
:

• The dual-rail data bus is initially in the spacer

state. The sender transmits the code word

(valid data). This results in 'low' to 'high'

transitions on the bus wires, which correspond

to non-zero bits of the codeword

• After the receiver receives the codeword, it

drives the ackout (ackin) wire 'high' ('low')

• The sender waits for the ackin to go 'low' and

then resets the data bus (i.e. spacer state)

• After an unbounded, but finite (positive)

amount of time, the receiver drives the ackout

(ackin) wire ‘low’ (‘high’). A single

transaction is now said to be complete and the

system is ready to resume the next transaction

1 The explanation remains valid for data representation using any DI data-

encoding scheme.

2.3 Self-Timed Full Adder Designs
The strong and weak-indication realizations of a full

adder based on Seitz's approach [7] are portrayed by

figures 4 and 5 respectively. The basic equations

governing a full adder with dual-rail inputs (a1, a0),

(b1, b0), (cin1, cin0) and dual-rail outputs (Sum1,

Sum0), (Cout1, Cout0) are given below.

Sum1 = a0b0cin1 + a0b1cin0 + a1b0cin0 + a1b1cin1

 (1)

Sum0 = a0b0cin0 + a0b1cin1 + a1b0cin1 + a1b1cin0

 (2)

Cout1 = a0b1cin1 + a1b0cin1 + a1b1cin0 + a1b1cin1

 (3)

Cout0 = a0b0cin0 + a0b0cin1 + a0b1cin0 + a1b0cin0

 (4)

 The weak-indication adder takes advantage of the

fact that the output carry of an adder module could

become defined as soon as its input operands become

defined. This depends on the occurrence of carry-kill

(a0=b0=1) or carry-generate (a1=b1=1) conditions.

Thus the carry output equations can be expressed as,

Cout1 = a0b1cin1 + a1b0cin1 + a1b1 (5)

Cout0 = a0b1cin0 + a1b0cin0 + a0b0 (6)

Fig. 4. Seitz’s strong-indication full adder [7]

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 223 Issue 7, Volume 10, July 2011

 Comparing the adder circuitry depicted in figures 4

and 5, it can be noticed that the strong-indication

adder increases the datapath delay, while the weak-

indication adder incorporates a fast carry propagation

path as only the sum output depends on all the inputs,

while the carry output do not always depend, i.e. the

indication is distributed between the adder outputs in

case of the latter realization. It is to be noted that the

completion detection logic, when not implemented as

a single OR gate due to fan-in restrictions of the cell

library, would necessitate timing assumptions.

Fig. 5. Seitz’s weak-indication full adder [7]

 The strong-indication full adder realized according

to the Delay-Insensitive Minterm Synthesis (DIMS)

technique [9] is shown in figure 6. Isochronic fork

assumptions are made with regard to the primary

inputs as they feed many C-gates
2
, while the forks that

feed the OR-gates need not be isochronic. Hence, the

DIMS method corresponds to the QDI timing model.

Similar to the case of Seitz's weak-indication adder,

the carry-kill and carry-generate conditions can be

utilized to make the adder weakly indicating, as

shown in figure 7.

2
 The C-gate is a rendezvous element. It output a 1(0), when all its inputs

are 1(0); otherwise it retains its existing steady state. The C-element is

represented by the AND gate symbol with the marking ‘C’ on its

periphery.

Fig. 6. Strong-indication full adder realization based

on DIMS method [9]

Fig. 7. Weak-indication full adder implementation on

the basis of DIMS method [9]

 The strong and weak-indication realizations of the

full adder block, derived on the basis of the methods

proposed in [10] and [13] are portrayed through

figures 8 and 9 respectively. Strong-indication adders

are governed by worst-case latency, whereas weak-

indication and early output adders facilitate data-

dependent computation [15]. The weak-indication and

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 224 Issue 7, Volume 10, July 2011

early propagative adders generally outperform the

strongly indicating adders in terms of latency and

throughput on account of the carry-generate and

carry-kill scenarios. However, this is not found to be

the case with Toms et al.’s adders, since the critical

path of the weak-indication adder [13] would be

traversed through OR2, CE2 and OR3 elements as

opposed to CE2 and two OR2 gates for the strong-

indication version [10]
3
. The weak-indication version

has been constructed adopting the de-synchronization

approach [16] [17] and takes a cue from the

asynchronous circuit synthesis method based on

partial acknowledgement [18].

Fig. 8. Strong-indication full adder based on [10]

C

C

a0

b1

a1

b0

C

C

cin0

cin1

C

C

a0

b0

a1

b1

C

C

cin0

cin1

Sum0 Sum1

C

C Cout1

C

cin0

cin1

C Cout0

a1

b1

a0

b0

Fig. 9. Weak-indication full adder based on [13]

3
 The standard cell library consists of AND gates and OR gates with a

maximum fan-in of 4 and 3 respectively.

 Folco et al.'s approach [11] bears a similarity with

the previous approach in the sense that the synthesis

of combinational logic as QDI circuits is initially

performed using 2-input C-elements and OR gates,

with the resulting circuits satisfying either strong or

weak-indication constraints [7]. This approach makes

use of algorithms for constructing reduced ordered

binary decision diagrams [19] as the basis for its

synthesis strategy with the exception that logical

conjunctions are perceived as achieved through C-

gates rather than AND gates. The technology-

mapping step is subsequently performed targeting a

cell library [20] that includes custom asynchronous

elements developed on the basis of the

STMicroelectronics bulk CMOS process. The

technology mapping process actually follows the

structural pattern-matching algorithm originally

proposed by Zhao et al. in [21]. The full adder circuit

implemented using this approach taking into account

the shared logic is shown in figure 10. It can be

observed that while the sum outputs depend on all the

inputs for evaluation, the carry outputs need not as

they utilize the carry-kill and carry-generate

conditions. Thus the full adder adheres to weak-

indication constraints.

Fig. 10. Full adder synthesized using Folco et al.’s

approach [11]

 Our earlier full adder design (referred to as the

SSSC_adder – single-sum, single-carry adder based

on dual-rail encoding) is shown in figure 11. It was

designed in a semi-custom style [12] to investigate

two important issues: i) how the responsibility of

indication can be confined to the sum output alone,

thereby freeing the carry signal from indication

constraints, and ii) how logic redundancy can be made

implicit in a self-timed design to enable reduction in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 225 Issue 7, Volume 10, July 2011

latency. It can be noticed that the sum output is

strongly indicating, while the output carry is eager and

is realized by means of a complex gate, viz. AO222

cell. Even with the arrival of any subset of the inputs,

the carry outputs could become defined/undefined,

while the sum outputs would wait for the arrival of all

the inputs to become defined/undefined. Thus the full

adder satisfies Seitz’s weak-indication timing

constraints [7], but without resorting to distribution of

inputs indication unlike the conventional approach.

This style of implementation was later labelled as the

biased approach in [22], targeting self-timed logic

circuit synthesis at a block level. However, our

method differs from this approach in that the latter

relies upon dual-rail combinational logic (DRCL)

style as the basis for realizing those outputs, which are

selected as candidates for relaxation.

Fig. 11. Weak-indication full adder block [12]

 Reference [8] deals with an approach to realize

arbitrary combinational logic as asynchronous

circuits, but this method is not robust since gate

orphans could result. Also, the physical

implementation of the circuit may not be feasible

when the circuit has to be modified to achieve

robustness. This is owing to the requirement of

unconventional complex gates, which is clarified

through an elaborate discussion in [14]. The full adder

functionality can also be realized based on the Null

Convention Logic (NCL) design paradigm [23], but

this would require usage of the proprietary cell macros

developed on the basis of threshold logic [24] [25]. In

this context, it should be noted that the NCL utilizes

the DRCL style as the underlying principle for

realizing self-timed versions of combinatorial logic,

which is discussed in the next section.

3 Robust Early Output Full Adder
The DRCL style utilizes De-Morgan's theorems of

Boolean algebra to implement a combinational logic

function in an asynchronous style by replacing each

gate by its dual-rail equivalent (dual-rail pair). We

consider two scenarios for the dual-rail combinational

equivalent of a Boolean function, say F = ab + cd as

shown in figure 12, to clarify the necessity for

ensuring proper indication of signal events at the

primary inputs as well as the intermediate output

nodes and to describe how wire and gate orphans

could possibly result [14].

 Assuming all the data inputs to be currently

spacers, when a0 and c0 become defined, intermediate

signals x0 and y0 would become defined and

eventually F0 would become defined. Assuming b0

and d0 would also become defined subsequently, they

would not be acknowledged by the intermediate

signals (x0 and y0) or by the corresponding output in

the present evaluation phase resulting in ‘wire

orphans’.

 Let us assume that a1 and b1 become defined after

a return-to-zero phase. This would lead to defining of

the intermediate signal x1. Assuming that c1 and d1

become subsequently defined during the current

evaluation phase, F1 could have become defined as a

result of x1 alone becoming defined, and hence a late

transition on y1 would not be acknowledged by the

primary output, giving rise to a ‘gate orphan’.

 From the above discussion, it should be clear that

the DRCL realization is basically non-indicating and,

as such it conforms to eager evaluation owing to the

fact that even with a subset of the function block

inputs becoming defined (undefined), all the outputs

could become defined (undefined) regardless of the

lately arriving inputs. Hence the DRCL style is not

strongly or weakly indicating but corresponds to early

output logic, i.e. early set and/or reset could happen.

Fig. 12. Dual-rail combinational equivalent of the

logic function, F = ab + cd

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 226 Issue 7, Volume 10, July 2011

 The proposed robust early output logic based full

adder is portrayed by figure 13. (a0, a1) and (b0, b1)

are the augend and addend inputs, with (cin0, cin1)

representing the input carry. The sum and carry

outputs of the adder are specified by the signals

(Sum0, Sum1) and (Cout0, Cout1) respectively. The

physical implementation of the adder requires eight

complex gates (including four AO22 gates), with the

2-input Muller C-element realized using an AO222

gate with feedback, and two OR2 gates.

Fig. 13. Robust asynchronous full adder realization

corresponding to early output logic

 The synthesized full adder design, shown above,

pertains to early propagation, but is robust as the

primary outputs duly acknowledge the steady state of

all the internal nodes thereby preventing the

occurrence of gate orphans. This is feasible, with

intermediate gate output nodes ‘int1’ and ‘int2’ of the

above figure specified as isochronic fork junctions.

For example, when valid data is applied, a low-to-high

transition on int1 or int2 nodes would be followed by

a low-to-high transition on Sum0/Sum1 output.

Especially for the up-going transition on int2, multiple

acknowledgements would result since an up-going

transition would also eventually occur on Sum0/Sum1

and Cout0/Cout1 outputs. For a down-going transition

on nodes int1/int2, such an event is duly

acknowledged by the sum outputs with the dual-rail

carry input also experiencing a high-to-low transition.

Nevertheless, the carry outputs may not acknowledge

the down-going transition on node int2 since input-

incomplete gates have been used for realizing the

output carry logic. But this does not affect the

robustness of the adder realization since Martin’s QDI

timing assumption is satisfied, which was quoted in

section 2.1. Also, the primary inputs are routed to

different gates with the help of isochronic forks that

are widely prevalent in QDI circuits [27].

 When valid data is applied the adder circuit shown

in figure 13, after a return-to-zero state, the sum and

carry signals would demand the arrival of the

necessary primary inputs to produce the desired

output. However for the spacer data, with a reset of

either the augend or the augend inputs and the input

carry, the sum outputs could be reset. With respect to

the output carry, the dual-rail carry signal could be

reset even with the reset of a single dual-rail input

regardless of whether the carry-kill, carry-generate or

carry-propagate condition occurs. Hence, an early

reset of the adder is possible since the return-to-zero

condition does not require the reset of all the primary

inputs thus making it early propagative (early reset).

Also, an n-bit adder can return to the spacer state with

just two full adder delays similar to that of Martin’s

adder [26]. When the augend and/or addend inputs of

a k
th
 adder stage is reset, the corresponding dual-rail

carry output is also reset, which serves as the input

carry for the (k+1)
th
 adder stage. With the

augend/addend inputs of the (k+1)
th
 adder stage also

being simultaneously reset, the dual-rail sum outputs

of that stage could be reset. Thus it becomes clear that

with an approximate delay of only two full adder

stages, an entire n-bit carry-ripple adder can be reset,

which is beneficial for the speed of the adder.

 With reference to the preceding discussions, the

important properties of the proposed full adder are

summarized as follows:

• Does not process valid data eagerly but could

be reset in an early fashion, relaxing the

weak-indication constraints, but without any

compromise on robustness

• Exhibits actual case latency when adding

valid data and constant latency during return-

to-zero, since the intermediate carry outputs

can be reset on the basis of the data inputs

associated with each adder stage

 Though the proposed early output adder guarantees

gate orphan freedom, wire orphans could still

manifest. To clarify this phenomenon, we consider an

instance. With a1=b1=cin1=1 in figure 13, outputs

Sum1 and Cout1 experience a transition. In the return-

to-zero phase, assuming that a1 and cin1 have

experienced a low-going transition before b1, Sum1

and Cout1 could be reset even though b1 has not

become undefined (spacer), giving rise to a wire

orphan. Nevertheless, the problem of wire orphans

gets resolved when the adder is embedded within the

system configuration as shown in figure 14.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 227 Issue 7, Volume 10, July 2011

Fig. 14. Architecture of the self-timed system

 Here, the robust early output combinational logic

block can be identified as the full adder that is

sandwiched between two register bank stages. When

the adder is incorporated into the system topology, the

reset of b1, although unacknowledged by the

asynchronous logic block is however acknowledged

by the completion detection (CD) logic associated

with the current stage register. The CD circuit in this

case consists of a bank of OR2 gates with an OR2

gate dedicated for each dual-rail input. The outputs of

all the OR gates are synchronized by means of a C-

element tree producing the ackout signal [15], which

may be buffered to act as the input for the register

bank of the preceding stage. Given the isochronicity

assumption on all the primary inputs, wire orphans do

not crop up. Thus in contrast to an indicating logic

block, the responsibility of indicating the primary

inputs is shared between the robust early output logic

block and the CD circuit, thus preserving the QDI

property of the system.

4 Results
A number of 32-bit self-timed ripple carry adders

(RCAs), which incorporate different types of full

adders were constructed and optimized for minimum

delay and their design metrics were evaluated. These

are given in Table 1. Table 2 shows the critical path

elements encountered in the different self-timed

RCAs.

 The simulation results were obtained by targeting a

high-speed 130nm UMC (Faraday) bulk CMOS

process technology. The delay metric signifies the

latency of the critical path. The area parameter refers

to the total area of all the cells comprising the

combinatorial adder logic, the register bank and the

CD circuitry associated with it. The average power

dissipation is estimated for 1000 random input

vectors, supplied at intervals of 25ns to the self-timed

system from the external environment (test bench).

All the adder inputs were configured with the driving

strength of the minimum sized inverter in the library

while the outputs possess fanout-of-4 drive strength.

Table 1. Design metrics of various 32-bit self-timed

carry-ripple adders

Full adder

realization style

Delay

(ns)

Area

(µm
2
)

Power

(µW)

Seitz_adder

(Strong) [7]

12.8

8329

507.9

Seitz_adder

(Weak) [7]

6.5

7689

459.5

DIMS_adder

(Strong) [9]

13.8

10089

427.4

DIMS_adder

(Weak) [9]

12.8

10665

476.5

Toms et al._adder

(Strong) [10]

10.6

7561

388.4

Folco et al._adder

(Weak) [11]

8.0

6633

383.2

SSSC_adder

(Weak) [12]

5.8

7081

420.4

Toms et al._adder

(Weak) [13]

11.6

8713

545.3

Proposed_adder

(Robust Early)

4.6

5609

350.1

Table 2. Critical path element(s) pertaining to the

various self-timed RCAs

Full adder realization

style

Elements in the

critical path

Seitz_adder

(Strong)

OR2 + OR2 + CE2

Seitz_adder

(Weak)

AND3 + OR3

DIMS_adder

(Strong)

CE3 + OR2 + OR2

DIMS_adder

(Weak)

CE3 + OR3

Toms et al._adder

(Strong)

CE2 + OR2 + OR2

Folco et al._adder

(Weak)

CE2 + OR2

SSSC_adder

(Weak)

AO222

Toms et al._adder

(Weak)

OR2 + CE2 + OR3

Proposed_adder

(Robust Early)

AO22

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 228 Issue 7, Volume 10, July 2011

5 Conclusions
It is evident from the simulation results that the

proposed robust full adder corresponding to early

output logic leads to optimization of design metrics,

outweighing its nearest competitors in terms of delay,

area and power parameters by 20.7%, 15.4% and

8.6% respectively – thanks to the reduced latency in

producing the intermediate carries and the compact

circuit realization. Thus, this work highlights the merit

and potential of robust asynchronous arithmetic circuit

synthesis based on the notion of early propagation.

References:

[1] SIA’s ITRS 2008 Design Report, Available:

http://www.itrs.net

[2] A.J. Martin, S.M. Burns, T.K. Lee, D.

Borkovic and P.J. Hazewindus, “The first

asynchronous microprocessor: the test results,” ACM

SIGARCH Computer Architecture News, vol. 17, no.

4, June 1989, pp. 95-98.

[3] G.F. Bouesse, G. Sicard, A. Baixas and M.

Renaudin, “Quasi delay insensitive asynchronous

circuits for low EMI,” Proc. 4th International

Workshop on Electro-Magnetic Compatibility of

Integrated Circuits, 2004, pp. 27-31.

[4] C.H. van Berkel, M.B. Josephs and S.M.

Nowick, “Scanning the technology: applications of

asynchronous circuits,” Proc. of the IEEE, vol. 87, no.

2, February 1999, pp. 223-233.

[5] A.J. Martin, “The limitation to delay-

insensitivity in asynchronous circuits,” Proc. 6th

Conference on Advanced Research on VLSI, MIT

Press, 1990, pp. 263-278.

[6] A.J. Martin and P. Prakash, “Asynchronous

nano-electronics: preliminary investigation,” Proc.

14th IEEE International Symposium on Asynchronous

Circuits, 2008, pp. 58-68.

[7] C.L. Seitz, “System Timing” in Introduction

to VLSI Systems, C. Mead and L. Conway (Eds.),

Addison-Wesley, MA, USA, 1980, pp. 218-262.

[8] I. David, R. Ginosar and M. Yoeli, “An

efficient implementation of Boolean functions as self-

timed circuits,” IEEE Trans. on Computers, vol. 41,

no. 1, January 1992, pp. 2-11.

[9] J. Sparso and J. Staunstrup, “Delay-

insensitive multi-ring structures,” Integration, the

VLSI Journal, vol. 15, no. 3, pp. 313-340, Oct. 1993.

[10] W.B. Toms and D.A. Edwards, “Efficient

synthesis of speed independent combinational logic

circuits,” Proc. 10th Asia and South-Pacific Design

Automation Conference, 2005, pp. 1022-1026.

[11] B. Folco, V. Bregier, L. Fesquet and M.

Renaudin, “Technology mapping for area optimized

quasi delay insensitive circuits,” Proc. IFIP

International Conference on VLSI/SoC, 2005, pp.

146-151.

[12] P. Balasubramanian and D.A. Edwards, “A

delay efficient robust self-timed full adder,” Proc. 3rd

IEEE International Design and Test Workshop, 2008,

pp. 129-134.

[13] W.B. Toms and D.A. Edwards, “A complete

synthesis method for block-level relaxation in self-

timed datapaths,” Proc. 10th International Conference

on Application of Concurrency to System Design,

2010, pp. 24-34.

[14] P. Balasubramanian, K. Prasad and N.E.

Mastorakis, “Robust asynchronous implementation of

Boolean functions on the basis of duality,” Proc. 14th

WSEAS International Conference on Circuits, 2010,

pp. 37-43.

[15] J. Sparso and S.B. Furber (Eds.), Principles of

Asynchronous Circuit Design – A Systems

Perspective, Kluwer Academic Publishers, Boston,

2001.

[16] A. Kondratyev and K. Lwin, “Design of

asynchronous circuits by synchronous CAD tools,”

IEEE Design & Test of Computers, vol. 19, no. 4,

July-August 2002, pp. 107-117.

[17] J. Cortadella, A. Kondratyev, L. Lavagno and

C. Sotiriou, “Coping with the variability of

combinational logic delays,” Proc. IEEE International

Conference on Computer Design, 2004, pp. 505-508.

[18] Y. Zhou, D. Sokolov and A. Yakovlev, “Cost-

aware synthesis of asynchronous circuits based on

partial acknowledgement,” Proc. IEEE/ACM

International Conference on Computer Aided Design,

2006, pp. 158-163.

[19] R.E. Bryant, “Graph-based algorithms for

Boolean function manipulation,” IEEE Trans. on

Computers, vol. C-35, no. 8, August 1986, pp. 677-

691.

[20] P. Maurine, J.B. Rigaud, F. Bouesse, G.

Sicard and M. Renaudin, “Static implementation of

QDI asynchronous primitives,” Proc. International

Workshop on Power and Timing Modeling,

Optimization and Simulation, J.J. Chico and E. Macii

(Eds.), Lecture Notes in Computer Science, vol. 2799,

2003, pp. 181-191.

[21] M. Zhao and S.S. Sapatnekar, “A new

structural pattern matching algorithm for technology

mapping,” Proc. 38th Annual ACM/IEEE Design

Automation Conference, 2001, pp. 371-376.

[22] C. Jeong and S.M. Nowick, “Block-level

relaxation for timing-robust asynchronous circuits

based on eager evaluation,” Proc. 14th IEEE

International Symposium on Asynchronous Circuits

and Systems, 2008, pp. 95-104.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 229 Issue 7, Volume 10, July 2011

[23] K.M. Fant and S.A. Brandt, “NULL

convention logic: a complete and consistent logic for

asynchronous digital circuit synthesis,” Proc. IEEE

International Conference on Application Specific

Systems, Architectures and Processors, 1996, pp. 261-

273.

[24] K.M. Fant and S.A. Brandt, “Null convention

logic system,” US Patent 5828228, October 1998.

[25] K.M. Fant and G.E. Sobelman, “Null

convention threshold gate,” US Patent 5664211,

February 1997.

[26] A.J. Martin, “Asynchronous datapaths and the

design of an asynchronous adder,” Formal Methods in

Systems Design, vol. 1, no. 1, July 1992, pp. 117-137.

[27] W.B. Toms, “Synthesis of quasi-delay-

insensitive datapath circuits,” PhD Thesis, University

of Manchester, 2006.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Padmanabhan Balasubramanian

ISSN: 1109-2734 230 Issue 7, Volume 10, July 2011

