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Abstruct- The optimal features with which to discriminate between 
regions and, thus, segment an image often differ depending on the nature 
of the image. Many real images are made up of both smooth and textured 
regions and are hest segmented using different features in different areas. 
In this correspondence, a scheme that automatically selects the optimal 
features for each pixel using wavelet analysis is proposed, leading to a 
robust segmentation algorithm. An automatic method for determining 
the optimal number of regions for segmentation is also developed. 

I. INTRODUCTION 
Image segmentation is becoming increasingly important in a variety 

of fields such as video coding, computer vision, and medical imaging 
[I], [2].  The objective of dividing an image into homogeneous 
regions remains a challenge, especially when the image is made up 
of complex textures. A number of approaches have been suggested 
for this task, including spatial frequency techniques [3],  [4] which 
have proven quite successful. Image segmentation becomes much 
simpler for images made up of smoother regions, where the use of 
simple local grey level statistics often suffices. However, many real 
images are made up of a variety of smooth and textured regions, all 
of which need to be reliably identified in the segmentation algorithm. 
In these cases, the existing techniques fail to produce a meaningful 
segmentation [4], successfully segmenting only the smooth or tex- 
tured regions, depending on the features used. Therefore, it would 
clearly be desirable to have some means of feature selection prior to 
segmentation. In this way, highly textured regions can be segmented 
using spatial frequency-based features, whereas smooth regions can 
be segmented using local grey level statistics such as mean and 
variance. In this correspondence, a scheme that automatically selects 
the optimal features for each pixel using wavelet analysis is proposed. 

Clustering techniques [5]  are commonly used for image segmen- 
tation in a multidimensional feature space. The widely used k-means 
clustering routine usually requires a threshold in its determination 
of the optimal number of regions for segmentation (the “true cluster 
number”). The setting of this threshold is somewhat arbitrary and 
seldom results in a consistently optimal segmentation. In this corre- 
spondence, we also develop an automatic method for determining the 
true cluster number, which requires no arbitrary threshold and leads 
to a fully automatic image segmentation algorithm. 

The block diagram in Fig. 1 summarizes the main features of the 
proposed segmentation algorithm. 

11. OPTIMAL FEATURE SELECTION 
The first stage of image segmentation usually involves the devel- 

opment of a feature space. This comprises calculating the values of 
several features for each pixel (or block of pixels) in the image. Each 
feature should in some way describe the appearance of the local area 
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Fig. 1. Block diagram of the proposed segmentation algorithm. 

surrounding the pixel. These features make up a feature vector for 
each pixel so that each is represented by a point in a multidimensional 
feature space. Consequently, if the features used for the image are 
good descriptors, similar appearing regions in the image will contain 
pixels whose feature vectors occupy similar positions in the feature 
space. These are known as clusters, and the purpose of clustering is 
to identify these clusters and classify the image’s pixels accordingly. 

The quality and the accuracy of the segmentation ultimately 
depends on the type of features used. Therefore, it is very important 
that these features suitably characterize the aspects of the image 
on which the segmentation is to be based. For example, images 
consisting of a number of highly textured regions are best segmented 
using frequency-based features, whereas images made up of smoother 
regions can more easily be segmented using local grey level mean 
and variance as features. Many real images are made up of both types 
of region and, thus, require different features to be used in different 
areas of the image. As a result, existing segmentation algorithms have 
failed to produce meaningful segmentations of many real images. The 
proposed algorithm involves the use of wavelet analysis to determine 
the optimal features corresponding to each pixel or block of pixels 
as described in the next section. 

111. WAVELET ANALYSIS OF IMAGES 
The 2-D wavelet transform [6] ,  [7] is a very popular tool in image 

processing. Its ability to repeatedly decompose an image in the low- 
frequency channels makes it ideal for image analysis since the lower 
frequencies tend to dominate real images. In this correspondence, 
the wavelet transform is used both to analyze the image prior to 
segmentation enabling feature selection as well as to provide spatial 
frequency-based descriptors as features for segmenting textures. 

We would expect smooth images in which there are only gradual 
variations in grey level to be dominated by low spatial frequencies, 
whereas textured images in which the grey level varies rapidly should 
be made up of a wide range of frequencies. Smooth and textured 
images can thus easily be distinguished from each other by examining 
their wavelet transforms. Fig. 2 shows the 2-D wavelet transform of 
a smooth image and a textured image (a portion of cloud and canvas, 
respectively, from Fig. 6(a), both of which have had their means 
subtracted prior to transformation so that there is no dc component). 
The 2-D graphs in Fig. 2 represent the magnitudes of the wavelet 
coefficients across the various frequencies and orientations of the 2- 
D wavelet transform (with the lowest frequencies displayed closest 
to the viewer). The smooth image has strong components only in 
the low frequencies as can be seen in the area around its main 
peak. However, the textured image has substantial components in a 
wide frequency/scale spectrum, as expected. In order to extract useful 
information from this and, hence, discriminate between smooth and 
textured images, it is useful to group the wavelet coefficients into 
channels representing the various frequency/scale bands. 

A three-level wavelet decomposition of an image results in 10 main 
wavelet channels, as shown in Fig. 3. The energy of each channel can 
be calculated by simply finding the mean magnitude of its wavelet 
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(b) 

Fig. 2. Typical 2-D wavelet transform of (a) smooth and (b) textured images. 

LLmHL 6 7  

Fig. 3. Ten main channels of a three-level wavelet decomposition of an image. 

coefficients. The energy in these channels was observed to vary quite 
differently, depending on whether the image was smooth or textured. 
Images in which the grey level varies smoothly are heavily dominated 
by the low-frequency channels in their wavelet transforms, as we 
would expect. However, textured images have large energies in both 
the low and middle frequencies. This is illustrated in Fig. 4(a), which 
shows the energy in the 10 main wavelet channels for a smooth image 
and a textured image (cloud and canvas again). These channels can 
be further grouped into low- (channels 1 4 ) ,  middle- (channels 5-7), 
and high-frequency (channels 8-10) bands, as shown in Fig. 4(b). 
This clearly reflects the difference in frequency distribution between 
smooth and textured images. Hence, the ratio of the mean energy 
in the four low-frequency channels (1-4) to the mean energy in the 
three middle-frequency channels (5-7) is proposed as a criterion for 
optimal feature selection. If this ratio is above a certain threshold, the 
pixel or block of pixels is labeled as smooth; otherwise, it is labeled 
as textured. This ratio is given by 

eel + ecz  + ec3  + 6 0 4  

ec5 + ec6 + ec7 
R =  

where R is the ratio, and eCIL is the energy in the nth channel given 
by 

M N  

where the channel is of dimensions M by N (usually M = N )  and 
z is a wavelet coefficient within the channel. The pixel is labeled as 
smooth if R > T or textured if R 5 T ,  where T is the threshold. 

Different features are then used for segmentation in different areas 
of the image. Local grey level mean and variance were found to be 
adequate features for the segmentation of smooth images and were 
used in the smooth areas of the image. The textured areas of the 
image require more complex spatial frequency-based features. 

It was found that the energy values of the various channels of the 
2-D wavelet transform varied considerably between different textures, 
depending on their dominant orientation and spatial frequencies. The 
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Fig. 4. Example of energy levels in wavelet channels for smooth and textured 
images: (a) Ten main wavelet channels; (b) grouped into IOW-, middle-, and 
high-frequency bands. 

SECOND DIFFERENCES 0.8 

Fig. 5. True cluster number detection: Within-cluster distances (solid line), 
first difference of within-cluster distances (dashed line), and second difference 
of within-cluster distances (dotted line) all normalized here to a range of 0-1. 
The peak of the second differences indicates that the true cluster number is 3. 

energy values in the 10 channels of the wavelet transform of the local 
area were therefore used as features for segmentation in the textured 
areas of the image. 

IV. IMAGE SEGMENTATION BY CLUSTERING 

The k-means clustering technique involves grouping together those 
pixels in the image whose feature vectors represent points that are 
close together in the feature space. The final result is a number of 
clusters I<, where each hopefully depicts a perceptually different 
region in the image. Each cluster can be represented by the mean 
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Fig. 6. (a) Original image; (b) segmentation using only wavelet features; (c) segmentation using only local grey level statistics as features; (d) segmentation 
using the proposed algorithm in which the optimal features are always used in different areas of the image. 

feature vector of all its members (pixels or blocks of pixels) known as 
its cluster center Ck, k E { 1, . . . , K}. To obtain good segmentation, 
the members of each cluster should have feature vectors lying as 
close as possible to the cluster center, and the cluster centers should 
be well separated. 

Each pixel is labeled as being a member of the cluster center to 
which it i s  closest, using the distance function d ( C k ,  X ) ,  where X is 
the pixel’s feature vector. The distance function measures the distance 
between two points in the feature space and is simply the Euclidean 
distance here. The cluster centers are then recalculated as the mean 
feature vector of all their members: 

where 
Qk kth cluster, 
s member of such a cluster, 
X ,  feature vector, 
[gk] number of members in cluster gk. 
Pixels are then relabeled according to their new nearest cluster 

center, and the process is repeated until convergence to a stable 
partition of the feature space has occurred. This gives a segmentation 
result with a certain number of regions equal to the number of clusters 
I<. The clustering routine IS repeated several times: once for every 
possible number of clusters. The difficulty then lies in determining 

the optimal number of clusters for the segmentation, which is known 
as the true cluster number. 

V. AUTOMATIC TRUE CLUSTER NUMBER DETECTION 
One possible method for the determination of the true cluster 

number involves the calculation of the within-cluster distance for 
each cluster number. This is given by the sum of the distances of 
every pixel’s feature vector from its associated cluster centre: 

1 I< 
Within-cluster distance, wk = - d(Ck,X,)  

k=l  SEgk 

where N is the total number of members of all clusters. 
The higher the value of the within-cluster distance, the less simi- 

larity there is between each pixel’s feature vector and its associated 
cluster center; therefore, the segmentation will be worse. An example 
of how the within-cluster distance varies with cluster number is 
given in Fig. 5, where the solid line shows the actual within-cluster 
distances for the clustering of the textured areas of Fig. 6(a) giving 
the result shown in Fig. 6(d). Initially, the within-cluster distances 
are very high for only one cluster but decrease quickly as the 
number of clusters increases until the true cluster number is reached. 
They subsequently remain approximately constant or decrease very 
gradually. The true cluster number is thus taken to be the point at 
which the within-cluster distance becomes approximately constant 
(three in this case). This is usually done by calculating the differences 
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between adjacent within-cluster distances (dashed line in Fig. 5). 
When this difference is suitably low, the true cluster number has 
been found. However, this involves the use of a threshold that is very 
difficult to set so that the optimal segmentation is always guaranteed. 
The proposed algorithm requires no threshold and is thus completely 
automatic. 

It can be seen in Fig. 5 that the true cluster number occurs at the 
point where there is the largest change in gradient in the graph of 
within-cluster distance against cluster number. Therefore, the second 
derivative of this curve should exhibit a peak at this point. The true 
cluster number can thus be detected simply by finding the cluster 
number at which the maximum value of the second difference of 
within-cluster distance occurs, as the dotted line in Fig. 5 shows. This 
method is exceptionally simple and fully automatic and, therefore, 
never fails to provide a good estimate for the true cluster number 
with no need for a threshold or supervision. 

VI. RESULTS 

The proposed algorithm was used to segment Fig. 6(a), which 
shows an image made up of both smooth and textured regions, 
taken from the Brodatz album [8]. The textures are oriental straw 
cloth (D53), French canvas (D21), and cotton canvas (D77), whereas 
the smooth regions are clouds (D91). This image was segmented 
using three approaches. The first two approaches used just one set 
of features (either grey level mean and variance features or wavelet 
features) for the whole image and performed the segmentation using 
a single run of the clustering algorithm described above. The third 
approach used different features in different areas of the image as 
proposed in Sections I1 and I11 and thus employed the clustering 
algorithm twice: once for each set of features. 

The first approach used wavelet features for the entire image and 
resulted in the segmentation shown in Fig. 6(b). As can be seen, 
the algorithm successfully distinguished between the three textures 
but gave meaningless results in the smooth areas. This is because 
although the wavelet features are very good at differentiating between 
the very different spatial frequencies and orientations of the various 
textures, they cannot differentiate between the very similar low spatial 
frequencies that dominate smooth regions. In addition, the sharp 
boundaries between the smooth regions give rise to a number of 
higher frequencies, causing the wavelet transform of such boundary 
areas to be similar to that of a textured area. The use of wavelet 
features in these areas thus results in the boundaries between smooth 
regions being given the same classification as the textured regions 
during clustering, as can be seen in Fig. 6(b). Therefore, new features 
must be introduced that can accurately discriminate between different 
smooth regions without causing significant misclassifications at the 
boundaries-local grey level mean and variance. 

The second approach using only the local grey level statistics 
as features successfully segmented the cloud from its background 
but gave meaningless results in the textured areas as shown in 
Fig. 6(c). This indicates that although these features are suitable for 
the segmentation of smooth images, they cannot distinguish between 
textures where the grey levels can vary in very different ways from 
texture to texture but still have the same local mean and variance. 
As was seen earlier, wavelet-based features are much better suited 
to texture segmentation. 

The third approach was the proposed algorithm using both types 
of feature in the relevant areas as described in this correspondence 
and resulted in a much more meaningful segmentation (Fig. 6(d)). 
The three textures have been segmented correctly, and the cloud 
has been discriminated from its background. There are some small 
boundary errors, but these could be “cleaned up” using some form 
of postprocessing such as contextual information along with certain 

criteria on minimum region dimensions. More importantly, the feature 
selection algorithm had correctly identified the cloud areas as smooth 
regions, identified the three textures as textured regions, and then 
segmented the image accordingly. This clearly demonstrates the 
advantages of the proposed approach, which uses automatic feature 
selection to determine the optimal features for segmentation in each 
area of the image. 

VII. CONCLUSION 

Image segmentation routines too often concentrate only on tex- 
ture segmentation or some very application-specific segmentation of 
smoother regions. Many real images are made up of both smooth 
and textured regions, and the segmentation technique must therefore 
incorporate features capable of describing these regions effectively. 
An algorithm that does this by using wavelet analysis to select the 
relevant features for each area of the image prior to segmentation 
has been proposed here. A clustering routine is then invoked to 
perform the segmentation for the smooth and then the textured areas 
of the image using different features in each case. One common 
difficulty with the k-means clustering algorithm is the determination 
of the optimal number of regions for segmentation: the so-called 
“true cluster number.” A completely automatic method for true cluster 
number estimation using the second derivative of the within-cluster 
distances has been suggested here in which, unlike existing methods, 
no threshold settings are required. 
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