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A Robust Bisection-Based Estimator for TOA-Based Target
Localization in NLOS Environments

Slavisa Tomic, Marko Beko, Rui Dinis, and Paulo Montezuma

Abstract— This letter addresses the problem of target
localization in harsh indoor environments based on range mea-
surements. To mitigate the non-line-of-sight (NLOS) bias, we pro-
pose a novel robust estimator by transforming the localization
problem into a generalized trust region sub-problem framework.
Although still non-convex in general, this class of problems can
be readily solved exactly by means of bisection procedure. The
new approach does not require to make any assumptions about
the statistics of NLOS bias, nor to try to distinguish which links
are NLOS and which are not. Unlike the existing algorithms,
the computational complexity of the proposed algorithm is
linear in the number of reference nodes. Our simulation results
corroborate the effectiveness of the new algorithm in terms of
NLOS bias mitigation and show that the performance of our
estimator is highly competitive with the performance of the state-
of-the-art algorithms. In fact, they show that the novel estimator
outperforms slightly the existing ones in general, and that it
always provides a feasible solution.

Index Terms— Robust localization, time of arrival (TOA),
non-line-of-sight (NLOS), generalized trust region sub-problem
(GTRS), wireless sensor network (WSN).

I. INTRODUCTION

TARGET localization in indoor environments has received

immense attention recently in the research society,

owing to its pertinence in both military and commercial

applications [1], [2]. In harsh indoor environments, where most

connections are non-line-of-sight (NLOS), a frequently opted

solution is to rely on reference nodes (anchors) and (noisy)

range measurements between the target and anchors. These

are extracted from time of arrival (TOA), received signal

strength or other characteristic of the radio signal [3]–[6].

However, in harsh indoor environments, the influence of

NLOS bias might significantly degrade the localization

performance. Hence, mitigation of NLOS bias is an important

task in practice [7].

Various techniques for NLOS bias mitigation can be found

in the literature [1]. Some of them are based on identifying the
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NLOS links [8], [9], which are then either discarded or used

to improve the performance, while others are robust estima-

tors [10], [11] which are generally more resilient to NLOS

bias. A robust estimator based on semidefinite program-

ming (SDP) relaxation technique was introduced in [10] to

cope with the NLOS bias. Even though this estimator performs

well in adverse environments, its computational complexity

grows rapidly with the network size. Another SDP estimator

was presented in [7]. This estimator tries to mitigate the NLOS

bias by properly handling the NLOS links, but disregards a

relationship established between optimization variables and is

γ -dependent, where γ is a penalization term that prevents the

problem to be ill-posed. In [11], a robust second-order cone

programming (SOCP) estimator was described. It provides

a relatively fast and accurate solution, but it is not always

feasible. A perturbed edge-based SDP (PESDP) estimator

was proposed in [12]. This estimator was originally designed

for cooperative localization, and relies on perturbation terms

introduced in target/target links to enhance its performance.

All of the above algorithms for TOA-based target localiza-

tion in NLOS environments employ sophisticated mathemati-

cal tools which raise severely their computational complexity,

and thus, their execution time. In huge contrast to them,

here, we propose a novel robust estimator whose solution is

exactly obtained by nothing other than a bisection procedure.

The proposed algorithm requires to know the upper bound

on the magnitude of NLOS bias, which is relatively easy

to estimate in practice during the training phase [10], [11],

when the true locations of sensors are available. It does

not require to distinguish between line-of-sight (LOS) and

NLOS links, nor to know the statistics of the NLOS bias.

We take the NLOS bias as a nuisance parameter, and develop

a robust estimator that mitigates its influence. By applying

robust squared-range (RSR) and weighted least squares (WLS)

criterion, we convert the originally non-convex problem into

a generalized trust region sub-problems (GTRS) framework,

whose solution is readily obtained by a bisection proce-

dure [13]. Unlike the described algorithms, the computational

complexity of the new one is linear in the number of anchors,

and its performance is highly competitive with the state-of-

the-art algorithms.

II. PROBLEM FORMULATION

Let x, ai ∈ R
k represent respectively the unknown location

of the target and the known location of the i -th anchor,

i = 1, . . . , N , in a k-dimensional wireless sensor network

(k = 2 or 3). The range measurements between the target and

the i -th anchor [7], [10]–[12], [14] are modeled as

di = ‖x − ai‖ + bi + ni , for i = 1, . . . , N, (1)

where ni is the measurement noise assumed to fol-

low a zero-mean Gaussian distribution with variance σ
2
i ,
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